Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T15:21:13.366Z Has data issue: false hasContentIssue false

Longitudinal manganese and copper balances in young infants and preterm infants fed on breast-milk and adapted cow's milkformulas

Published online by Cambridge University Press:  09 March 2007

Klaus Dörner
Affiliation:
University Children's Hospital, D 2300 Kiel I, Federal Republic ofGermany
Stefan Dziadzka
Affiliation:
University Children's Hospital, D 2300 Kiel I, Federal Republic ofGermany
Andreas Höhn
Affiliation:
University Children's Hospital, D 2300 Kiel I, Federal Republic ofGermany
Erika Sievers
Affiliation:
University Children's Hospital, D 2300 Kiel I, Federal Republic ofGermany
Hans-Dieter Oldigs
Affiliation:
University Children's Hospital, D 2300 Kiel I, Federal Republic ofGermany
Gisela Schulz-Lell
Affiliation:
University Children's Hospital, D 2300 Kiel I, Federal Republic ofGermany
Jörgen Schaub
Affiliation:
University Children's Hospital, D 2300 Kiel I, Federal Republic ofGermany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Mn and Cu intake and retention in twenty full-term infants and six preterm infants were studied on the basis of 72 h balances. The age of the infants was 2–16 weeks and the gestational age of the preterm infants (triplets) 34 and 36 weeks. Three nutrition schemes were pursued: breast-fed, formula-fed with unsupplemented adapted formula and formula-fed with trace element supplementation.

2. The mean Mn concentration of all breast-milk samples (n 2339) was 6·2 μg/1. The two formulas had similar Mn concentrations (77 and 99 μg/1) but had different Fe, Cu (121 and 619 μg/1), Zn and I contents. The mean Cu concentration in mother's milk was 833 μg/1.

3. The following mean daily Mn intakes and retentions (μg/kg) respectively were measured: breast-fed fullterm 1·06 (sd 0·43) and 0·43 (sd 0·65), formula-fed full-term 14·2 (sd 3·1) and 2·8 (sd 4·8), formula-fed preterm 15·0 (sd 2·2) and 0·06 (sd 5·87). The results for Cu were 114·5 (sd 22·3) and 88·0 (sd 46·5) μg/kg in breast-fed, 19–8 (sd 4·2) and 4·6 (-11·5–9·6) in the unsupplemented formula-fed and 106·4 (sd 18·9) and 55·5 (sd 20·3) in the supplemented formula full-term infant group. No significant influence of the trace element contents of the formulas on the relative retention of Mn or Cu was found.

4. Young preterm infants, and to some degree young full-term infants, often had negative Mn balances caused by a high faccal excretion. The formulas with a Mn concentration below 100 μg/l gave a sufficient supply of Mn. Preterm infants fed on the unsupplemented formula had a marginal Cu supply and their first balances were negative (-3·8 (sd 1·8) μg/kg).

5. In accordance with the estimated safe and adequate daily dietary intakes (recommended dietary allowances), formula-fed infants receive much more Mn than breast-fed infants and their absolute retention is higher.

6. Cu from breast-milk had a significantly better biological availability than that from cow's milk formula. If retentions similar to those in breast-fed infants are intended, we conclude, therefore, that cow's milk formula should be fortified with Cu up to a level of at least 600 μg/l.

Type
Minerals
Copyright
Copyright © The Nutrition Society 1989

References

Al-Rashid, R. A. & Spangler, J. (1971). Neonatal copper deficiency. New England Journal of Medicine 285, 841843.CrossRefGoogle ScholarPubMed
Ashkenazi, A., Levin, S., Djaldetti, M., Fishel, E. & Benvenisti, D. (1973). The syndrome of neonatal copper deficiency. Pediatrics 52, 525533.CrossRefGoogle ScholarPubMed
Beisel, W. R. (1979). Metabolic balance studies -their continuing usefulness in nutritional research. American Journal of Clinical Nutrition 32, 271274.CrossRefGoogle ScholarPubMed
Cavell, P. A. & Widdowson, E. M. (1964). Intakes and excretions of iron, copper, and zinc in the neonatal period. Archives of Diseases in Childhood 39, 496501.CrossRefGoogle ScholarPubMed
Dauncey, M. J., Shaw, J. C. L. & Urman, J. (1977). The absorption and retention of magnesium, zinc, and copper by low birth weight infants fed pasteurized human breast milk. Pediatric Research 11, 991997.CrossRefGoogle ScholarPubMed
Doisy, E. A. Jr (1974). Effects of deficiency in manganese upon plasma levels of clotting proteins and cholesterol in man. In Trace Element Metabolism in Animals, 2, pp. 668670 [Hoekstra, W. G., Suttie, J.W. and Ganther, H. E., Mertz, W., editors]. London: Butterworths.Google Scholar
Dörner, K., Dziadzka, St., Oldigs, H.-D., Schulz-Lell, G. & Schaub, J. (1985). Manganese balances in term infants. In Composition and Physiological Properties of Human Milk pp. 117 128 [Schaub, J. editor]. Amsterdam: Elsevier.Google Scholar
Fecly, R. M., Eitenmiller, R. R., Jones, J. B. & Barnhart, H. (1983). Copper, iron, and zinc contents of human milk at early stages of lactation. American Journal of Clinical Nutrition 37, 443448.Google Scholar
Fischer, P., Giroux, A. & L'Abbe, M. R. (1981). The effect of dietary zinc on intestinal copper absorption. American Journal of Clinical Nutrition 34, 16701675.CrossRefGoogle ScholarPubMed
Friel, J. K., Gibson, R. S., Balassa, R. & Watts, J. L. (1984). A comparison of the zinc, copper and manganese status of very low birth weight pre-term and full-term infants during the first twelve months. Acta Paediatrica Scandinavica 73, 596601.CrossRefGoogle ScholarPubMed
Graham, G. G. & Cordano, A. (1976). Copper deficiency in human subjects. In Trace Elements in Human Health and Disease Vol. 1, pp. 363372 [Prasad, A. S. editor]. New York: Academic Press.Google Scholar
Heller, R. M., Kirchner, S. G., O'Neil, J. A. Jr, Hough, A. J. Jr, Howard, L., Kramer, S. S. & Green, H. L. (1978). Skeletal changes of copper deficiency in infants receiving prolonged total parenteral nutrition. Journal of Pediatrics 92, 947949.CrossRefGoogle ScholarPubMed
Higashi, A., Ikeda, T., Kchara, I. & Matsuda, I. (1982). Zinc and copper contents in breast milk of Japanese women. Tohoku Journal of Experimental Medicine 137, 4147.CrossRefGoogle ScholarPubMed
Hillmann, L. S., Martin, L. & Fiore, B. (1981). Effect of oral copper supplementation on serum copper and ceruloplasmin concentrations in premature infants. Journal of Pediatrics 98, 311313.CrossRefGoogle Scholar
Hurley, L. S. (1985). Trace elements in prenatal and neonatal development. In Trace Elements in Nutrition of Children. pp. 121135 [Chandra, R. K. editor]. New York: Raven Press.Google Scholar
Iyengar, G. V. (1982). Elemental Composition of Human and Animal Milk IAEA Report TECDOC-269. Vienna: IAEA.Google Scholar
Iyengar, G. V. & Parr, R. M. (1985). Trace element concentrations in human milk from several global regions. In Composition and Physiological Properties of Human Milk pp. 1731 [Schaub, J. editor]. Amsterdam: Elsevier.Google Scholar
Keen, C. L., Bell, J. G. & Lönnerdal, B. (1986). The effect of age on manganese uptake and retention from milk and infant formulas in rats. Journal of Nutrition 116, 395402.CrossRefGoogle ScholarPubMed
Keen, C. L., Fransson, G.-B. & Lönnerdal, B. (1984). Supplementation of milk with iron bound to lactoferrin using weanling mice.II. Effects on tissue manganese, zinc, and copper. Journal of Pediatric Gastroenterology and Nutrition 3, 256261.CrossRefGoogle ScholarPubMed
Kleinbaum, H. (1962). Kupferstoffwechselbilanzen bei Säuglingen. Zeitschrift für Kinderheilkunde 87 101, 115.Google Scholar
Kotz, L., Kaiser, G., Tschöpel, P. & Tölg, G. (1972). Aufschluβ biologischer Matrices für die Bestimmung sehrniedriger Spurenelernentgehalte bei begrenzter Einwaage mit Salpetersäure unter Druck in einem Teflongefäβ. Zeitschrift für Analytische Chemie 260, 207209.CrossRefGoogle Scholar
Levy, Y., Zeharia, A., Grunebaum, M., Nitzau, M. & Steinherz, R. (1985). Copper deficiency in infants fed cow's milk. Journal of Pediatrics 106, 786788.CrossRefGoogle Scholar
Mena, I. (1981). Manganese. In Disorders of Mineral Metabolism Vol. 1, pp. 233236 [Brommer, F. and Coburn, J. W., editors]. New York: Academic Press.CrossRefGoogle Scholar
Mendelson, R. A., Anderson, G. H. & Bryan, M. H. (1982). Zinc, copper and iron content of milk from mothers of preterm and full-term infants. Early Human Development 6, 145151.CrossRefGoogle ScholarPubMed
Miller, S. T., Cotzias, G. C. & Evert, H. A. (1975). Control of tissue manganese: initial absence and sudden emergence of excretion in the neonatal mouse. American Journal of Physiology 229, 10801084.CrossRefGoogle ScholarPubMed
National Research Council (1980). Recommended Dietary Allowances 9th revised ed. Washington DC: National Academy of Sciences.Google Scholar
Naveh, Y., Hazani, A. & Berant, M. (1981). Copper deficiency with cow's milk diet. Pediatrics 68, 397400.CrossRefGoogle ScholarPubMed
Ohtake, M., Chiba, R., Moachizuki, K. & Tada, K. (1981). Zinc and copper concentrations in human milk and in serum from exclusively breast-fed infants during the first 3 months of life. Tohoku Journal of Experimental Medicine 135, 335343.CrossRefGoogle ScholarPubMed
Picciano, M. F. & Guthrie, H. A. (1976). Copper, iron, and zinc content of mature human milk. American Journal of Clinical Nutrition 29, 242254.CrossRefGoogle ScholarPubMed
Pleban, P. A., Numerof, B. S. & Wirth, F. H. (1985). Trace elements in the fetus and neonate. Clinics in Endocrinology and Metabolism 14, 545566.CrossRefGoogle ScholarPubMed
Rajalakshimi, K. & Srikantia, S. G. (1980). Copper, zinc, and magnesium content of breast-milk of Indian women. American Journal of Clinical Nutrition 33, 664669.CrossRefGoogle Scholar
Shaw, J. C. L. (1980). Trace elements in the fetus and young infant. II. Copper, manganease. selenium, and chromium. American Journal of Diseases of Children 134, 7481.CrossRefGoogle ScholarPubMed
Stastny, D., Vogel, R. S. & Picciano, M. F. (1984). Manganese intake and serum manganese concentration of human milk-fed and formula-fed infants. American Journal of Clinical Nutrition 39, 872874.CrossRefGoogle ScholarPubMed
Tanaka, Y., Hatano, S., Nishi, Y. & Usui, T. (1980). Nutritional copper deficiency in a Japanese infant on formula. Journal of Pediatrics 96, 255257.CrossRefGoogle Scholar
Taper, L. J., Hinners, M. L. & Ritchey, S. J. (1980). Effects of zinc intake on copper balance in adult females. American Journal of Clinical Nutrition 33, 10771082.CrossRefGoogle ScholarPubMed
Tyrala, E. E. (1986). Zinc and copper balances in preterm infants. Pediatrics 77, 513517.CrossRefGoogle ScholarPubMed
Van Campen, D. R. & Scaufe, P. U. (1967). Zinc interference with copper absorption in rats. Journal of Nutrition 91, 473476.CrossRefGoogle ScholarPubMed
Vaughan, L. A., Weber, C. W. & Kemberling, S. R. (1979). Longitudinal changes in the mineral content of human milk. American Journal of Clinical Nutrition 32, 23012306.CrossRefGoogle ScholarPubMed
Vuori, E. (1979). Intake of copper, iron, manganese and zinc by healthy, exclusively breast-fed infants during the first 3 months of life. British Journal of Nutrition 42, 407411.CrossRefGoogle ScholarPubMed
Vuori, E. & Kuitunen, P. (1979). The concentration of copper and zinc in human milk; a longitudinal study. Acta Paediatrica Scandinavica 68, 3337.CrossRefGoogle ScholarPubMed
Widdowson, E. M. (1969). Trace elements in human development. In Mineral Metabolism in Pediatrics pp. 8588 [Barltrop, D. and Burland, W. L., editors]. Oxford: Blackwell.Google Scholar
Widdowson, E. M., Cahn, H., Harrison, G. E. & Molner, R. D. G. (1972). Accumulation of Cu, Zn, Mn, Cr and Co in the human liver before birth. Biology of the Neonate 20, 360367.CrossRefGoogle Scholar