Semin Reprod Med 2005; 23(4): 309-318
DOI: 10.1055/s-2005-923388
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

An Update on Embryo Culture for Human Assisted Reproductive Technology: Media, Performance, and Safety

Thomas B. Pool1
  • 1Scientific Director, Fertility Center of San Antonio, San Antonio, Texas
Further Information

Publication History

Publication Date:
29 November 2005 (online)

ABSTRACT

Several culture medium formulations are now available for the successful production and propagation of viable human embryos. In the most popular format, nutrients are provided in a temporal sequence that matches metabolic and amino acid composition with the requirements of specific developmental stage. An alternative philosophy, that all nutritional requirements for preimplantation embryogenesis can be met with a single medium formulation, is represented in commercially available formulations as well. Regardless of format employed, it is not widely appreciated in assisted reproductive technology laboratories that medium performance is strongly influenced by other components of the culture system, such as transitional conditions employed during the retrieval, pH, gas phase, and patient-specific characteristics. There is now further concern that in vitro culture, in general, modifies normal embryonic epigenetic processes and gene expression, genetic changes that may relate to specific ingredients of culture media.

REFERENCES

  • 1 Gardner D K, Lane M. Culture systems for the human embryo. In: Gardner DK, Weissman A, Howles CM, Shoham Z Textbook of Assisted Reproductive Techniques. London, UK; Taylor & Francis 2004: 211-234
  • 2 Pool T B. Recent advances in the production of viable human embryos in vitro.  Reprod Biomed Online. 2002;  4 294-302
  • 3 Summers M C, Biggers J D. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues.  Hum Reprod Update. 2003;  9(6) 557-582
  • 4 Pool T B. Blastocyst development in culture: the role of macromolecules. In: Gardner DK, Lane M ART and the Human Blastocyst. New York; Springer Verlag 2001 (in press)
  • 5 Lane M, Gardner D K. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions.  J Reprod Fertil. 1994;  102 305-312
  • 6 Lane M, Gardner D K. Ammonium induces aberrant blastocyst differentiation, metabolism pH regulation, gene expression and subsequently altars fetal development in the mouse.  Biol Reprod. 2003;  69 1109-1117
  • 7 Sinawat S, Hsaio W, Flockhart J H, Kaufman M H, Keith J, West J D. Fetal abnormalities produced after preimplantation exposure of mouse embryos to ammonium chloride.  Hum Reprod. 2003;  18(10) 2157-2165
  • 8 Wiemer K E, Anderson A R, Kyslinger M L, Weikert M L. Embryonic development and pregnancies following sequential culture in human tubal fluid and a modified simplex optimized medium containing amino acids.  Reprod Biomed Online. 2002;  5(3) 323-327
  • 9 Biggers J D, Racowsky C. The development of fertilized human ova to the blastocyst stage in KSOMAA medium: is a two-step protocol necessary?.  Reprod Biomed Online. 2002;  5 133-140
  • 10 Biggers J D, McGinnis L K, Summers M C. Discrepancies between the effects of glutamine in cultures of preimplantation mouse embryos.  Reprod Biomed Online. 2004;  9(1) 70-73
  • 11 Biggers J D, McGinnis L K, Lawitts J A. Enhanced effect of glycl-L-glutamine on mouse preimplantation embryos in vitro.  Reprod Biomed Online. 2004;  9(1) 59-69
  • 12 Gardner D K. Mammalian embryo culture in the absence of serum or somatic cell support.  Cell Biol Int. 1994;  18 1163-1179
  • 13 Gardner D K, Lane M. Culture and selection of viable blastocysts: a feasible proposition of human IVF?.  Hum Reprod Update. 1997;  3 367-382
  • 14 Pool T B, Atiee S H, Martin J E. In: May JV Oocyte and embryo culture: Basic concepts and recent advances. In: Infertility and Reprod. Med. Clinics of North America, Assisted Reproduction: Laboratory considerations. Philadelphia, PA; WB Saunders 1998: 181-203
  • 15 Gardner D K, Lane M. Embryo culture systems. In: Trounson A, Gardner DK Handbook of In Vitro Fertilization; Second Edition. Boca Raton; CRC Press 1999: 195-254
  • 16 Pool T B, Martin J E. The production of viable human blastocysts: The evolution of sequential culture systems. In: Zelinsky-Wooten M, Wolf D Assisted Fertilization and Nuclear Transfer in Mammals. New York; Humana Press 2000
  • 17 Gardner D K, Pool T B, Lane M. Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation and viability. In: Gardner DK, Rosenwaks Z Seminars in Reproductive Medicine: Novel Approaches to Assisted Reproduction: In Vitro Maturation of Gametes and Embryos. New York; Thieme 2001
  • 18 Gardner D K, Reed L, Linck D, Sheehan C, Lane M. Quality control in human in vitro fertilization.  Semin Reprod Med. 2005;  23(4) 320-325
  • 19 Gardner D K, Lane M. Towards a single embryo transfer.  Reprod Biomed Online. 2003;  6(4) 470-481
  • 20 Pool T B, Ord V A. Oocyte treatment: from retrieval to insemination. In: Gardner DK, Weissman A, Howles CM, Shoham Z Textbook of Assisted Reproductive Techniques. London, UK; Taylor & Francis 2004: 107-113
  • 21 Ortiz M E, Salvatierra A M, Lopez J, Fernandez E, Croxatto H B. Postovulatory aging of human ova. I. Light microscopic observations.  Gamete Res. 1982;  6 11-17
  • 22 Biggers J D, Whittingham D G, Donahue R P. The pattern of energy metabolism in the mouse oocytes and zygote.  Proc Natl Acad Sci USA. 1967;  58 560-567
  • 23 Donahue R P, Stern S. Follicular cell support of oocytes maturation: Production of pyruvate in vitro.  J Reprod Fertil. 1968;  17 395-398
  • 24 Leese H J, Barton A M. Production of pyruvate by isolated mouse cumulus cells.  J Exp Zool. 1985;  234 231-236
  • 25 Dulbecco R, Vogt M. Plaque formation and isolation of pure lines with poliomyelitis viruses.  J Exp Med. 1954;  199 167-182
  • 26 Good N E, Winget G D, Winter W, Connolly T N, Izawa S, Singh M M. Hydrogen ion buffers for biological research.  Biochemistry. 1966;  5 467-477
  • 27 Phillips K P, Leveille M C, Claman P, Baltz J. Intracellular pH regulation in human preimplantation embryos.  Hum Reprod. 2000;  15 896-904
  • 28 Pickering S J, Braude P R, Johnson M H, Cant A, Currie J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte.  Fertil Steril. 1990;  54 102-108
  • 29 Wang W H, Keefe D L. Spindle observation in living mammalian oocytes with the polarizing microscope and its practical use.  Cloning Stem Cells. 2002;  4 269-276
  • 30 Atiee S H, Pool T B, Martin J E. A simple approach to intracytoplasmic sperm injection.  Fertil Steril. 1995;  63 652-655
  • 31 Balmaceda J P, Heitman T O, Garcia M R, Pauerstein C J, Pool T B. Embryo cryopreservation in cynomolgus monkeys.  Fertil Steril. 1986;  45 403-406
  • 32 Martino A, Pollard J W, Leibo S P. Effect of chilling bovine oocytes on their developmental competence.  Mol Reprod Dev. 1996;  45 503-512
  • 33 Wu B, Tong J, Leibo S P. Effects of cooling germinal vesicle-stage bovine oocytes on meiotic spindle formation following in vitro maturation.  Mol Reprod Dev. 1999;  54 388-395
  • 34 Pollard J W, Leibo S P. Chilling sensitivity of mammalian embryos.  Theriogenology. 1994;  41 101-106
  • 35 Leibo S P, Martino A, Kobayashi S, Pollard J W. Stage-dependent sensitivity of oocytes and embryos to low temperatures.  Anim Reprod Sci. 1996;  42 45-53
  • 36 Lim J M, Reggio B C, Godke R A, Hansel W. Development of in-vitro-derived bovine embryos cultured in 5% CO2 in air or in 5% O2, 5% CO2 and 90% N2.  Hum Reprod. 1999;  14 458-464
  • 37 Behr B, Pool T B, Milki A A, Moore D, Gebhardt J, Dasig D. Preliminary clinical experience with human blastocyst development in vitro without co-culture.  Hum Reprod. 1999;  14 454-457
  • 38 Dumoulin J CM, Meijers C JJ, Bras M, Coonen E, Geraedts J PM, Evers J LH. Effects of oxygen concentration on human in-vitro fertilization and embryo culture.  Hum Reprod. 1999;  14 465-469
  • 39 Gardner D K, Lane M, Johnson J, Wagley L, Stevens J, Schoolcraft W B. Reduced oxygen tension increases blastocyst development, differentiation and viability.  Fertil Steril. 1999;  72(suppl 1) S30-S31
  • 40 Meintjes M, Hill K, Johnston S, Waugh T, Rodriguez A, Madden J. The effect of lowered incubator oxygen tension on implantation-pregnancy and cryopreservation rates in a predominantly day 5 embryo transfer program.  Fertil Steril. 2000;  74(suppl 1) P-511
  • 41 Karagenc L, Sertkaya Z, Ciray N, Ulug U, Bahceci M. Impact of oxygen concentration on embryonic development of mouse zygotes.  Reprod Biomed Online. 2004;  9(4) 409-417
  • 42 Burton G J, Hempstock J, Jauniaux E. Oxygen, early embryonic metabolism and free radical -mediated embryopathies.  Reprod Biomed Online. 2003;  6(1) 84-96
  • 43 Harvey A J, Kind K L, Pantaleon M, Armstrong D T, Thompson J G. Oxygen-regulated gene expression in bovine blastocysts.  Biol Reprod. 2004;  71 1108-1119
  • 44 McConnell J, Petrie L. Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors.  Reprod Biomed Online. 2004;  9(4) 418-424
  • 45 Bean C J, Hassold T J, Judis L, Hunt P A. Fertilization in vitro increases non-disjunction during early cleavage divisions in a mouse model system.  Hum Reprod. 2002;  17(9) 2362-2367
  • 46 Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte.  Hum Reprod. 1998;  13 964-970
  • 47 Biggers J D, McGinnis L K, Raffin M. Amino acids and preimplatation development of the mouse I protein-free potassium simplex optimized medium.  Biol Reprod. 2000;  63 281-293
  • 48 Gardner D K, Lane M. Development of viable mammalian embryos in vitro: evolution of sequential media. In: Cibelli J, Lanza RP, Campbell KHS, West MD Principles of Cloning. New York; Academic Press 2002: 187-213
  • 49 Macklon N S, Pieters M HEC, Hassan M A, Jeucken P HM, Eijkemans M JC, Fauser B CJM. A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development.  Hum Reprod. 2002;  17 2700-2705
  • 50 Barak Y, Goldman S, Gonen Y, Bartoov B, Kogosowski A. Does glucose affect fertilization, development and pregnancy rates of human in-vitro fertilized oocytes?.  Hum Reprod. 1998;  13(suppl 4) 203-211
  • 51 Utsunomiya T, Naitou T, Nagaki M. A prospective trial of blastocyst culture and transfer.  Hum Reprod. 2002;  17 1846-1851
  • 52 Fleming T P, Kwong W Y, Porter R et al.. The embryo and its future.  Biol Reprod. 2004;  71 1046-1054
  • 53 Lonergan P, Pedersen H G, Rizos D et al.. Effect of post-fertilization culture environment on the incidence of chromosome aberrations in bovine blastocysts.  Biol Reprod. 2004;  71 1096-1100
  • 54 Lonergan P, Rizos D, Gutierrez-Adan A, Fair T, Boland M P. Effect of culture environment on embryo quality and gene expression-experience from animal studies.  Reprod Biomed Online. 2003;  7(6) 657-663
  • 55 Lonergan P, Rizos D, Gutierrez-Adan A et al.. Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo.  Biol Reprod. 2003;  69 1424-1431
  • 56 Wrenzycki C, Niemann H. Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer.  Reprod Biomed Online. 2003;  7(6) 649-656
  • 57 Rizos D, Lonergan P, Boland M P et al.. Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality.  Biol Reprod. 2002;  66 589-595
  • 58 Doherty A S, Mann M RW, Tremblay K D, Bartolomei M S, Schultz R M. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo.  Biol Reprod. 2000;  62 1526-1535
  • 59 Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.  Biol Reprod. 2001;  64 918-926
  • 60 Ecker D J, Stein P, Xu Z et al.. Long-term effects of culture of preimplantation mouse embryos on behavior.  Proc Natl Acad Sci USA. 2004;  101(6) 1595-1600
  • 61 De Rycke M, Liebaers I, Steirteghem A V. Epigenetic risks related to assisted reproductive technologies risk analysis and epigenetic inheritance.  Hum Reprod. 2002;  17(10) 2487-2494
  • 62 Thompson J G, Kind K L, Roberts C T, Robertson S A, Robinson J S. Epigenetic risks related to assisted reproductive technologies short and long term consequences for the health of children conceived through assisted reproduction technology: more reason for caution?.  Hum Reprod. 2002;  17(11) 2783-2786
  • 63 Geuns E, De Rycke M, Van Steirteghem A, Liebaers I. Methylation imprints of the imprint control region of the snrpn-gene in human gametes and preimplantation embryos.  Hum Mol Genet. 2003;  12(22) 2873-2879
  • 64 Lambert R D. Safety issues in assisted reproductive technology; aetiology of health problems in singleton ART babies.  Hum Reprod. 2003;  18(10) 1987-1991
  • 65 Maher E R, Afnan M, Barratt C L. Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting ART and icebergs?.  Hum Reprod. 2003;  18(12) 2508-2511
  • 66 Lucifero D, Chaillet J R, Trasler J M. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology.  Hum Reprod Update. 2004;  10(1) 3-18
  • 67 Maher E R, Brueton L A, Bowdin S C. Beckwith-Wiedemann syndrome and assisted reproduction technology (art).  J Med Genet. 2003;  40 62-64
  • 68 Edwards R G, Ludwig M. Are major defects in children conceived in vitro due to innate problems in patients or to induced genetic damage?.  Reprod Biomed Online. 2003;  7(2) 131-138
  • 69 Schieve L A, Rasmussen S A, Buck G M et al.. Are children born after assisted reproductive technology at increased risk for adverse health outcomes?.  American College of Obstetricians and Gynecology. 2004;  103(6) 1154-1163
  • 70 Bermudez M G, Wells D, Malter H et al.. Expression profiles of individual human oocytes using microarray technology.  Reprod Biomed Online. 2004;  8(3) 325-337

Thomas B PoolPh.D. 

Scientific Director, Fertility Center of San Antonio, 4499 Medical Drive, Suite 200, San Antonio, TX 78230

Email: rpool@fertilitysa.com

    >