Semin Thromb Hemost 2017; 43(2): 143-153
DOI: 10.1055/s-0036-1586227
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Plasmin: A Modulator of Immune Function

Dominik F. Draxler
1   Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Australia
,
Maithili Sashindranath
1   Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Australia
,
Robert L. Medcalf
1   Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
27 September 2016 (online)

Abstract

Plasmin is the effector protease of the fibrinolytic system, well known for its involvement in fibrin degradation and clot removal. However, plasmin is also recognized as a potent modulator of immunological processes by directly interacting with various cell types including leukocytes (monocytes, macrophages, and dendritic cells) and cells of the vasculature (endothelial cells, smooth muscle cells) as well as soluble factors of the immune system and components of the extracellular matrix. In fact, the removal of misfolded proteins and maintenance of tissue homeostasis seem to be major physiological functions of plasmin. However, a large body of evidence also suggests that excessive plasmin generation frequently contributes to the pathophysiology of acute and chronic inflammatory processes. Hence, one question arising from the broadening effects of plasmin in physiology is whether antifibrinolytic drugs (i.e., tranexamic acid, epsilon aminocaproic acid, or aprotinin) that target plasmin either directly or indirectly and which are commonly used to prevent or treat bleeding might have unintended consequences on the immune response or on other nonfibrinolytic processes in vivo.

 
  • References

  • 1 Dastre A. Fibrinolyse dans le sang. Arch de physiol norm et path 1893; 5: 661-663
  • 2 Medcalf RL. What drives “fibrinolysis”?. Hamostaseologie 2015; 35 (4) 303-310
  • 3 Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol 2005; 129 (3) 307-321
  • 4 Miles LA, Hawley SB, Baik N, Andronicos NM, Castellino FJ, Parmer RJ. Plasminogen receptors: the sine qua non of cell surface plasminogen activation. Front Biosci 2005; 10: 1754-1762
  • 5 Draxler DF, Medcalf RL. The fibrinolytic system-more than fibrinolysis?. Transfus Med Rev 2015; 29 (2) 102-109
  • 6 Veldman A, Fischer D. The search for a unified theory of coagulation and inflammation. Cell Mol Life Sci 2004; 61 (21) 2744-2749
  • 7 O'Brien M. The reciprocal relationship between inflammation and coagulation. Top Companion Anim Med 2012; 27 (2) 46-52
  • 8 Schuliga M. The inflammatory actions of coagulant and fibrinolytic proteases in disease. Mediators Inflamm 2015; 2015: 437695
  • 9 Syrovets T, Lunov O, Simmet T. Plasmin as a proinflammatory cell activator. J Leukoc Biol 2012; 92 (3) 509-519
  • 10 Muñoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 2010; 6 (5) 280-289
  • 11 Ravichandran KS. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 2011; 35 (4) 445-455
  • 12 Samson AL, Borg RJ, Niego B , et al. A nonfibrin macromolecular cofactor for tPA-mediated plasmin generation following cellular injury. Blood 2009; 114 (9) 1937-1946
  • 13 Samson AL, Knaupp AS, Sashindranath M , et al. Nucleocytoplasmic coagulation: an injury-induced aggregation event that disulfide crosslinks proteins and facilitates their removal by plasmin. Cell Reports 2012; 2 (4) 889-901
  • 14 Kranenburg O, Bouma B, Kroon-Batenburg LM , et al. Tissue-type plasminogen activator is a multiligand cross-beta structure receptor. Curr Biol 2002; 12 (21) 1833-1839
  • 15 Maas C, Schiks B, Strangi RD , et al. Identification of fibronectin type I domains as amyloid-binding modules on tissue-type plasminogen activator and three homologs. Amyloid 2008; 15 (3) 166-180
  • 16 Van Nostrand WE, Porter M. Plasmin cleavage of the amyloid beta-protein: alteration of secondary structure and stimulation of tissue plasminogen activator activity. Biochemistry 1999; 38 (35) 11570-11576
  • 17 Das R, Pluskota E, Plow EF. Plasminogen and its receptors as regulators of cardiovascular inflammatory responses. Trends Cardiovasc Med 2010; 20 (4) 120-124
  • 18 Plow EF, Doeuvre L, Das R. So many plasminogen receptors: why?. J Biomed Biotechnol 2012; 2012: 141806
  • 19 Syrovets T, Tippler B, Rieks M, Simmet T. Plasmin is a potent and specific chemoattractant for human peripheral monocytes acting via a cyclic guanosine monophosphate-dependent pathway. Blood 1997; 89 (12) 4574-4583
  • 20 Ploplis VA, French EL, Carmeliet P, Collen D, Plow EF. Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood 1998; 91 (6) 2005-2009
  • 21 Lighvani S, Baik N, Diggs JE, Khaldoyanidi S, Parmer RJ, Miles LA. Regulation of macrophage migration by a novel plasminogen receptor Plg-R KT. Blood 2011; 118 (20) 5622-5630
  • 22 Mittag D, Proietto AI, Loudovaris T , et al. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J Immunol 2011; 186 (11) 6207-6217
  • 23 Li X, Syrovets T, Genze F , et al. Plasmin triggers chemotaxis of monocyte-derived dendritic cells through an Akt2-dependent pathway and promotes a T-helper type-1 response. Arterioscler Thromb Vasc Biol 2010; 30 (3) 582-590
  • 24 Li X, Syrovets T, Simmet T. The serine protease plasmin triggers expression of the CC-chemokine ligand 20 in dendritic cells via Akt/NF-κB-dependent pathways. J Biomed Biotechnol 2012; 2012: 186710
  • 25 Schutyser E, Struyf S, Van Damme J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 2003; 14 (5) 409-426
  • 26 Borg RJ, Samson AL, Au AE , et al. Dendritic cell-mediated phagocytosis but not immune activation is enhanced by plasmin. PLoS ONE 2015; 10 (7) e0131216
  • 27 Reichel CA, Lerchenberger M, Uhl B , et al. Plasmin inhibitors prevent leukocyte accumulation and remodeling events in the postischemic microvasculature. PLoS ONE 2011; 6 (2) e17229
  • 28 Uhl B, Zuchtriegel G, Puhr-Westerheide D , et al. Tissue plasminogen activator promotes postischemic neutrophil recruitment via its proteolytic and nonproteolytic properties. Arterioscler Thromb Vasc Biol 2014; 34 (7) 1495-1504
  • 29 Das R, Ganapathy S, Settle M, Plow EF. Plasminogen promotes macrophage phagocytosis in mice. Blood 2014; 124 (5) 679-688
  • 30 Rosenwald M, Koppe U, Keppeler H , et al. Serum-derived plasminogen is activated by apoptotic cells and promotes their phagocytic clearance. J Immunol 2012; 189 (12) 5722-5728
  • 31 Cesarman-Maus G, Ríos-Luna NP, Deora AB , et al. Autoantibodies against the fibrinolytic receptor, annexin 2, in antiphospholipid syndrome. Blood 2006; 107 (11) 4375-4382
  • 32 Godier A, Hunt BJ. Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J Thromb Haemost 2013; 11 (1) 26-34
  • 33 Syrovets T, Simmet T. Novel aspects and new roles for the serine protease plasmin. Cell Mol Life Sci 2004; 61 (7–8) 873-885
  • 34 Syrovets T, Jendrach M, Rohwedder A, Schüle A, Simmet T. Plasmin-induced expression of cytokines and tissue factor in human monocytes involves AP-1 and IKKbeta-mediated NF-kappaB activation. Blood 2001; 97 (12) 3941-3950
  • 35 Weide I, Römisch J, Simmet T. Contact activation triggers stimulation of the monocyte 5-lipoxygenase pathway via plasmin. Blood 1994; 83 (7) 1941-1951
  • 36 Weide I, Tippler B, Syrovets T, Simmet T. Plasmin is a specific stimulus of the 5-lipoxygenase pathway of human peripheral monocytes. Thromb Haemost 1996; 76 (4) 561-568
  • 37 Das R, Ganapathy S, Mahabeleshwar GH , et al. Macrophage gene expression and foam cell formation are regulated by plasminogen. Circulation 2013; 127 (11) 1209-1218 , e1–e16
  • 38 Poeckel D, Funk CD. The 5-lipoxygenase/leukotriene pathway in preclinical models of cardiovascular disease. Cardiovasc Res 2010; 86 (2) 243-253
  • 39 Burysek L, Syrovets T, Simmet T. The serine protease plasmin triggers expression of MCP-1 and CD40 in human primary monocytes via activation of p38 MAPK and janus kinase (JAK)/STAT signaling pathways. J Biol Chem 2002; 277 (36) 33509-33517
  • 40 Lupia E, Del Sorbo L, Bergerone S, Emanuelli G, Camussi G, Montrucchio G. The membrane attack complex of complement contributes to plasmin-induced synthesis of platelet-activating factor by endothelial cells and neutrophils. Immunology 2003; 109 (4) 557-563
  • 41 Flood EC, Hajjar KA. The annexin A2 system and vascular homeostasis. Vascul Pharmacol 2011; 54 (3–6) 59-67
  • 42 Dassah M, Deora AB, He K, Hajjar KA. The endothelial cell annexin A2 system and vascular fibrinolysis. Gen Physiol Biophys 2009; 28 Spec No Focus: F20-F28
  • 43 He KL, Sui G, Xiong H , et al. Feedback regulation of endothelial cell surface plasmin generation by PKC-dependent phosphorylation of annexin A2. J Biol Chem 2011; 286 (17) 15428-15439
  • 44 Chang WC, Shi GY, Chow YH , et al. Human plasmin induces a receptor-mediated arachidonate release coupled with G proteins in endothelial cells. Am J Physiol 1993; 264 (2, Pt 1): C271-C281
  • 45 Fujiyoshi T, Hirano K, Hirano M, Nishimura J, Takahashi S, Kanaide H. Plasmin induces endothelium-dependent nitric oxide-mediated relaxation in the porcine coronary artery. Arterioscler Thromb Vasc Biol 2007; 27 (4) 949-954
  • 46 Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost 2001; 86 (1) 324-333
  • 47 Nicholl SM, Roztocil E, Galaria II, Davies MG. Plasmin induces smooth muscle cell proliferation. J Surg Res 2005; 127 (1) 39-45
  • 48 Roztocil E, Nicholl SM, Galaria II, Davies MG. Plasmin-induced smooth muscle cell proliferation requires epidermal growth factor activation through an extracellular pathway. Surgery 2005; 138 (2) 180-186
  • 49 Houard X, Monnot C, Dive V, Corvol P, Pagano M. Vascular smooth muscle cells efficiently activate a new proteinase cascade involving plasminogen and fibronectin. J Cell Biochem 2003; 88 (6) 1188-1201
  • 50 Meilhac O, Ho-Tin-Noé B, Houard X, Philippe M, Michel JB, Anglés-Cano E. Pericellular plasmin induces smooth muscle cell anoikis. FASEB J 2003; 17 (10) 1301-1303
  • 51 Rossignol P, Anglès-Cano E, Lijnen HR. Plasminogen activator inhibitor-1 impairs plasminogen activation-mediated vascular smooth muscle cell apoptosis. Thromb Haemost 2006; 96 (5) 665-670
  • 52 Bauman KA, Wettlaufer SH, Okunishi K , et al. The antifibrotic effects of plasminogen activation occur via prostaglandin E2 synthesis in humans and mice. J Clin Invest 2010; 120 (6) 1950-1960
  • 53 Kamio N, Hashizume H, Nakao S, Matsushima K, Sugiya H. Plasmin is involved in inflammation via protease-activated receptor-1 activation in human dental pulp. Biochem Pharmacol 2008; 75 (10) 1974-1980
  • 54 Quinton TM, Kim S, Derian CK, Jin J, Kunapuli SP. Plasmin-mediated activation of platelets occurs by cleavage of protease-activated receptor 4. J Biol Chem 2004; 279 (18) 18434-18439
  • 55 Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11 (9) 785-797
  • 56 Amara U, Flierl MA, Rittirsch D , et al. Molecular intercommunication between the complement and coagulation systems. J Immunol 2010; 185 (9) 5628-5636
  • 57 Foley JH, Walton BL, Aleman MM , et al. Complement activation in arterial and venous thrombosis is mediated by plasmin. EBioMedicine 2016; 5: 175-182
  • 58 Barthel D, Schindler S, Zipfel PF. Plasminogen is a complement inhibitor. J Biol Chem 2012; 287 (22) 18831-18842
  • 59 Foley JH, Peterson EA, Lei V, Wan LW, Krisinger MJ, Conway EM. Interplay between fibrinolysis and complement: plasmin cleavage of iC3b modulates immune responses. J Thromb Haemost 2015; 13 (4) 610-618
  • 60 Agarwal V, Talens S, Grandits AM, Blom AM. A novel interaction between complement inhibitor C4b-binding protein and plasminogen that enhances plasminogen activation. J Biol Chem 2015; 290 (30) 18333-18342
  • 61 Myles T, Nishimura T, Yun TH , et al. Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation. J Biol Chem 2003; 278 (51) 51059-51067
  • 62 Campbell W, Okada N, Okada H. Carboxypeptidase R is an inactivator of complement-derived inflammatory peptides and an inhibitor of fibrinolysis. Immunol Rev 2001; 180: 162-167
  • 63 Leung LL, Nishimura T, Myles T. Regulation of tissue inflammation by thrombin-activatable carboxypeptidase B (or TAFI). Adv Exp Med Biol 2008; 632: 61-69
  • 64 Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. Complement and coagulation: strangers or partners in crime?. Trends Immunol 2007; 28 (4) 184-192
  • 65 Wojta J, Kaun C, Zorn G , et al. C5a stimulates production of plasminogen activator inhibitor-1 in human mast cells and basophils. Blood 2002; 100 (2) 517-523
  • 66 Roth D, Piekarek M, Paulsson M , et al. Plasmin modulates vascular endothelial growth factor-A-mediated angiogenesis during wound repair. Am J Pathol 2006; 168 (2) 670-684
  • 67 Grabowska MM, Day ML. Soluble E-cadherin: more than a symptom of disease. Front Biosci (Landmark Ed) 2012; 17: 1948-1964
  • 68 Mortier A, Berghmans N, Ronsse I , et al. Biological activity of CXCL8 forms generated by alternative cleavage of the signal peptide or by aminopeptidase-mediated truncation. PLoS ONE 2011; 6 (8) e23913
  • 69 Medcalf RL. Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J Thromb Haemost 2007; 5 (Suppl. 01) 132-142
  • 70 Medcalf RL, Kruithof EK, Schleuning WD. Plasminogen activator inhibitor 1 and 2 are tumor necrosis factor/cachectin-responsive genes. J Exp Med 1988; 168 (2) 751-759
  • 71 Okada K, Ueshima S, Kawao N , et al. Lack of both α2-antiplasmin and plasminogen activator inhibitor type-1 induces high IgE production. Life Sci 2013; 93 (2–3) 89-95
  • 72 Becker Y. Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy—a review. Virus Genes 2006; 33 (2) 235-252
  • 73 Heissig B, Ohki M, Ishihara M , et al. Contribution of the fibrinolytic pathway to hematopoietic regeneration. J Cell Physiol 2009; 221 (3) 521-525
  • 74 Lord JM, Midwinter MJ, Chen YF , et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet 2014; 384 (9952): 1455-1465
  • 75 McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs 2012; 72 (5) 585-617
  • 76 Stübgen JP. Immune-mediated myelitis following hepatitis B vaccination. Autoimmun Rev 2012; 12 (2) 144-149
  • 77 Cañas F, Simonin L, Couturaud F, Renaudineau Y. Annexin A2 autoantibodies in thrombosis and autoimmune diseases. Thromb Res 2015; 135 (2) 226-230
  • 78 Romer J, Bugge TH, Pyke C , et al. Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med 1996; 2 (3) 287-292
  • 79 Shen Y, Guo Y, Mikus P , et al. Plasminogen is a key proinflammatory regulator that accelerates the healing of acute and diabetic wounds. Blood 2012; 119 (24) 5879-5887
  • 80 Li J, Eriksson PO, Hansson A, Hellström S, Ny T. Plasmin/plasminogen is essential for the healing of tympanic membrane perforations. Thromb Haemost 2006; 96 (4) 512-519
  • 81 Shen Y, Guo Y, Du C, Wilczynska M, Hellström S, Ny T. Mice deficient in urokinase-type plasminogen activator have delayed healing of tympanic membrane perforations. PLoS ONE 2012; 7 (12) e51303
  • 82 Shen Y, Guo Y, Wilczynska M, Li J, Hellström S, Ny T. Plasminogen initiates and potentiates the healing of acute and chronic tympanic membrane perforations in mice. J Transl Med 2014; 12: 5
  • 83 Sulniute R, Shen Y, Guo YZ , et al. Plasminogen is a critical regulator of cutaneous wound healing. Thromb Haemost 2016; 115 (5) 1001-1009
  • 84 Gong Y, Zhao Y, Li Y, Fan Y, Hoover-Plow J. Plasminogen regulates cardiac repair after myocardial infarction through its noncanonical function in stem cell homing to the infarcted heart. J Am Coll Cardiol 2014; 63 (25, Pt A): 2862-2872
  • 85 Garcia-Touchard A, Henry TD, Sangiorgi G , et al. Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol 2005; 25 (6) 1119-1127
  • 86 Bauriedel G, Hutter R, Welsch U, Bach R, Sievert H, Lüderitz B. Role of smooth muscle cell death in advanced coronary primary lesions: implications for plaque instability. Cardiovasc Res 1999; 41 (2) 480-488
  • 87 Niessner A, Weyand CM. Dendritic cells in atherosclerotic disease. Clin Immunol 2010; 134 (1) 25-32
  • 88 Marik PE, Flemmer M. The immune response to surgery and trauma: Implications for treatment. J Trauma Acute Care Surg 2012; 73 (4) 801-808
  • 89 Ortmann E, Besser MW, Klein AA. Antifibrinolytic agents in current anaesthetic practice. Br J Anaesth 2013; 111 (4) 549-563
  • 90 Shakur H, Roberts I, Bautista R , et al; CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376 (9734): 23-32
  • 91 Fergusson DA, Hébert PC, Mazer CD , et al; BART Investigators. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 2008; 358 (22) 2319-2331
  • 92 Hébert PC, Fergusson DA, Hutton B , et al; BART Investigators. Regulatory decisions pertaining to aprotinin may be putting patients at risk. CMAJ 2014; 186 (18) 1379-1386
  • 93 Later AF, Bruggemans EF, Romijn FP, van Pelt J, Klautz RJ. A comparative study of the immune modulating properties of antifibrinolytics in cardiac surgery. Cytokine 2013; 61 (2) 438-444
  • 94 Later AF, Sitniakowsky LS, van Hilten JA , et al. Antifibrinolytics attenuate inflammatory gene expression after cardiac surgery. J Thorac Cardiovasc Surg 2013; 145 (6) 1611-1616 , 1616.e1–1616.e4
  • 95 Jimenez JJ, Iribarren JL, Lorente L , et al. Tranexamic acid attenuates inflammatory response in cardiopulmonary bypass surgery through blockade of fibrinolysis: a case control study followed by a randomized double-blind controlled trial. Crit Care 2007; 11 (6) R117
  • 96 Jiménez JJ, Iribarren JL, Brouard M , et al. Safety and effectiveness of two treatment regimes with tranexamic acid to minimize inflammatory response in elective cardiopulmonary bypass patients: a randomized double-blind, dose-dependent, phase IV clinical trial. J Cardiothorac Surg 2011; 6: 138
  • 97 Graham EM, Atz AM, Gillis J , et al. Differential effects of aprotinin and tranexamic acid on outcomes and cytokine profiles in neonates undergoing cardiac surgery. J Thorac Cardiovasc Surg 2012; 143 (5) 1069-1076
  • 98 Greilich PE, Brouse CF, Whitten CW, Chi L, Dimaio JM, Jessen ME. Antifibrinolytic therapy during cardiopulmonary bypass reduces proinflammatory cytokine levels: a randomized, double-blind, placebo-controlled study of epsilon-aminocaproic acid and aprotinin. J Thorac Cardiovasc Surg 2003; 126 (5) 1498-1503
  • 99 Türköz A, Ciğli A, But K , et al. The effects of aprotinin and steroids on generation of cytokines during coronary artery surgery. J Cardiothorac Vasc Anesth 2001; 15 (5) 603-610
  • 100 Dorman BH, Stroud RE, Wyckoff MM , et al. Differential effects of epsilon-aminocaproic acid and aprotinin on matrix metalloproteinase release in patients following cardiopulmonary bypass. J Cardiovasc Pharmacol 2008; 51 (4) 418-423
  • 101 Hill GE, Alonso A, Spurzem JR, Stammers AH, Robbins RA. Aprotinin and methylprednisolone equally blunt cardiopulmonary bypass-induced inflammation in humans. J Thorac Cardiovasc Surg 1995; 110 (6) 1658-1662
  • 102 Greilich PE, Okada K, Latham P, Kumar RR, Jessen ME. Aprotinin but not epsilon-aminocaproic acid decreases interleukin-10 after cardiac surgery with extracorporeal circulation: randomized, double-blind, placebo-controlled study in patients receiving aprotinin and epsilon-aminocaproic acid. Circulation 2001; 104 (12) (Suppl. 01) I265-I269
  • 103 Medjadba W, Martin-Eauclaire MF, Laraba-Djebari F. Involvement of Kallikrein-Kinin system on cardiopulmonary alterations and inflammatory response induced by purified Aah I toxin from scorpion venom. Inflammation 2016; 39 (1) 290-302
  • 104 Brown JR, Toler AW, Kramer RS, Landis RC. Anti-inflammatory effect of aprotinin: a meta-analysis. J Extra Corpor Technol 2009; 41 (2) 79-86
  • 105 Lewis CJ, Li P, Stewart L , et al. Tranexamic acid in life-threatening military injury and the associated risk of infective complications. Br J Surg 2016; 103 (4) 366-373
  • 106 Oh CK, Ariue B, Alban RF, Shaw B, Cho SH. PAI-1 promotes extracellular matrix deposition in the airways of a murine asthma model. Biochem Biophys Res Commun 2002; 294 (5) 1155-1160
  • 107 Kuramoto E, Nishiuma T, Kobayashi K , et al. Inhalation of urokinase-type plasminogen activator reduces airway remodeling in a murine asthma model. Am J Physiol Lung Cell Mol Physiol 2009; 296 (3) L337-L346
  • 108 Schuliga M, Westall G, Xia Y, Stewart AG. The plasminogen activation system: new targets in lung inflammation and remodeling. Curr Opin Pharmacol 2013; 13 (3) 386-393
  • 109 Soreq H, Miskin R. Plasminogen activator in the rodent brain. Brain Res 1981; 216 (2) 361-374
  • 110 Krystosek A, Seeds NW. Plasminogen activator release at the neuronal growth cone. Science 1981; 213 (4515): 1532-1534
  • 111 Yepes M, Lawrence DA. New functions for an old enzyme: nonhemostatic roles for tissue-type plasminogen activator in the central nervous system. Exp Biol Med (Maywood) 2004; 229 (11) 1097-1104
  • 112 Gur-Wahnon D, Mizrachi T, Maaravi-Pinto FY , et al. The plasminogen activator system: involvement in central nervous system inflammation and a potential site for therapeutic intervention. J Neuroinflammation 2013; 10: 124
  • 113 Lu W, Bhasin M, Tsirka SE. Involvement of tissue plasminogen activator in onset and effector phases of experimental allergic encephalomyelitis. J Neurosci 2002; 22 (24) 10781-10789
  • 114 East E, Baker D, Pryce G, Lijnen HR, Cuzner ML, Gverić D. A role for the plasminogen activator system in inflammation and neurodegeneration in the central nervous system during experimental allergic encephalomyelitis. Am J Pathol 2005; 167 (2) 545-554
  • 115 Koh CS, Kwaan HC, Paterson PY. Neurovascular fibrinolytic activity in normal Lewis rats and rats with cell-transferred experimental allergic encephalomyelitis. J Neuroimmunol 1990; 28 (3) 189-200
  • 116 Paterson PY, Gausas J, Koh CS, Kwaan HC. The clotting system: gatekeeper of cerebrovascular permeability and monitor of clinical manifestations of neuroautoimmune disease. Trans Am Clin Climatol Assoc 1986; 97: 149-157
  • 117 Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 2012; 34 (1) 43-62
  • 118 Bardehle S, Rafalski VA, Akassoglou K. Breaking boundaries-coagulation and fibrinolysis at the neurovascular interface. Front Cell Neurosci 2015; 9: 354
  • 119 Cortes-Canteli M, Strickland S. Fibrinogen, a possible key player in Alzheimer's disease. J Thromb Haemost 2009; 7 (Suppl. 01) 146-150
  • 120 Loof TG, Deicke C, Medina E. The role of coagulation/fibrinolysis during Streptococcus pyogenes infection. Front Cell Infect Microbiol 2014; 4: 128
  • 121 Kłak M, Anäkkälä N, Wang W , et al. Tranexamic acid, an inhibitor of plasminogen activation, aggravates staphylococcal septic arthritis and sepsis. Scand J Infect Dis 2010; 42 (5) 351-358
  • 122 Guo Y, Li J, Hagström E, Ny T. Protective effects of plasmin(ogen) in a mouse model of Staphylococcus aureus-induced arthritis. Arthritis Rheum 2008; 58 (3) 764-772
  • 123 Guo Y, Li J, Hagström E, Ny T. Beneficial and detrimental effects of plasmin(ogen) during infection and sepsis in mice. PLoS ONE 2011; 6 (9) e24774
  • 124 Vieira ML, Nascimento AL. Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Crit Rev Microbiol 2015; •••: 1-15
  • 125 Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P. Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit Rev Microbiol 2015; 1-17