Der Nuklearmediziner 2014; 37(03): 175-180
DOI: 10.1055/s-0034-1376972
Benigne und maligne Lungenerkrankungen
© Georg Thieme Verlag KG Stuttgart · New York

Optimierung der Strahlentherapieplanung bei lokal fortgeschrittenen NSCLC durch 18F-FDG PET-CT: Stand der PET-Plan-Studie

Optimization of Radiotherapy Planning for Locally Advanced NSCLC using 18F-FDG-PET-CT: Current Status of the PET-Plan Trial
T. Schimek-Jasch
1   Klinik für Strahlenheilkunde, Universitätsklinikum Freiburg, Freiburg
,
A. Küsters
2   Klinik für Strahlentherapie, Kliniken Maria Hilf GmbH, Mönchengladbach
,
H. Hoffmanns
2   Klinik für Strahlentherapie, Kliniken Maria Hilf GmbH, Mönchengladbach
,
U. Nestle
1   Klinik für Strahlenheilkunde, Universitätsklinikum Freiburg, Freiburg
› Author Affiliations
Further Information

Publication History

Publication Date:
18 August 2014 (online)

Zusammenfassung

Während bei inoperablen Patienten mit einem NSCLC im Stadium I und II die hoch dosierte stereotaktische Strahlentherapie eine kurative Option mit hohen lokalen Kontrollraten darstellt, sind die strahlentherapeutischen Möglichkeiten in fortgeschrittenen Stadien limitiert. Durch die Fortschritte in der moderne Strahlentherapie konnten die Therapieergebnisse bei konventionell fraktionierter simultaner Radiochemotherapie mit der Standard-Gesamtdosis von 60 (– 66 Gy) verbessert werden. Der unumstrittene Nutzen und die hohe Zahl an Patienten, für die die simultane Radiochemotherapie eine kurative Option darstellt, erklärt die Notwendigkeit weitere Studien zur kontinuierlichen Verbesserung der Therapieergebnisse. Die PET-Plan-Studie greift die Erkenntnisse der letzten Jahrzehnte zu Chemotherapie und optimierter Strahlentherapie auf und prüft den Vorteil einer Dosiseskalation bei PET-basierter Bestrahlungsplanung hinsichtlich Verbesserung der lokalen Tumorkontrolle und Verringerung der Normalgewebstoxizität.

Abstract

In inoperable patients with early-stage NSCLC stereotactic body radiation therapy is associated with high local tumor control rates, whereas radiotherapy for locally advanced NSCLC leaves room for improvement. The advances in modern radiotherapy with high-quality treatment planning and delivery led to better outcomes of pa­tients treated with simultaneous radio-chemotherapy in conventional fractionation and doses of 60 (-66) Gy.

The obvious benefit and high number of patients eligible for radio-chemotherapy illustrate the need for clinical trials to advance therapy for ­future patients. The PET-Plan-Trial evaluates if an intensification of radiotherapy dose by means of a 18F-FDG-PET confined radio-chemotherapy ­optimizes local tumor control and reduces toxicity.

 
  • Literatur

  • 1 Aupérin A, Le Péchoux C, Rolland E et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 2010; 28: 2181-2190
  • 2 Blum T, Schönfeld N, Goeckenjan G et al. Implementation of the german guideline for the prevention, diagnosis, treatment, and follow-up of lung cancer in the federal state of Berlin. Pneumologie 2013; 67: 118-122
  • 3 Bradley JD, Komaki PR et al. A randomized phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy with or without cetuximab for stage III non-small cell lung cancer: Results on radiation dose in RTOG 0617. J Clin Oncol 2013; 31 (Supplement)
  • 4 Bradley J, Thorstad WL, Mutic S et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004; 59: 78-86
  • 5 Brianzoni E, Rossi G, Ancidei S et al. Radiotherapy planning: PET/CT scanner performances in the definition of gross tumour volume and clinical target volume. Eur J Nucl Med Mol Imaging 2005; 32: 1392-1399
  • 6 Caldwell CB, Mah K, Ung YC et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001; 51: 923-931
  • 7 Chapet O, Kong FM, Quint LE et al. CT-based definition of thoracic lymph node stations: an atlas from the University of Michigan. Int J Radiat Oncol Biol Phys 2005; 63: 170-178
  • 8 De Ruysscher D, Wanders S, van Haren E et al. Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 2005; 62: 988-994
  • 9 Emami B, Mirkovic N, Scott C et al. The impact of regional nodal radiotherapy (dose/volume) on regional progression and survival in unresectable non-small cell lung cancer: an analysis of RTOG data. Lung Cancer 2003; 41: 207-214
  • 10 Everitt S, Plumridge N, Herschtal A et al. The impact of time between staging PET/CT and definitive chemo-radiation on target volumes and survival in patients with non-small cell lung cancer. Radiother Oncol 2013; 106: 288-291
  • 11 Fleckenstein J, Hellwig D, Kremp S et al. F-18-FDG-PET confined radiotherapy of locally advanced NSCLC with concomitant chemotherapy: results of the PET-PLAN pilot trial. Int J Radiat Oncol Biol Phys 2011; 81: e283-e289
  • 12 Giraud P, De Rycke Y, Lavole A et al. Probability of mediastinal involvement in non-small-cell lung cancer: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy?. Int J Radiat Oncol Biol Phys 2006; 64: 127-135
  • 13 Goeckenjan G, Sitter H, Thomas M et al. Prevention, diagnosis, therapy, and follow-up of lung cancer: interdisciplinary guideline of the German Respiratory Society and the German Cancer Society. Pneumologie 2011; 65: 39-59
  • 14 Gregory DL, Hicks RJ, Hogg A et al. Effect of PET/CT on management of patients with non-small cell lung cancer: results of a prospective study with 5-year survival data. J Nucl Med 2012; 53: 1007-1015
  • 15 Kong FM, Ten Haken RK, Schipper MJ et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys 2005; 63: 324-333
  • 16 Kong FM, Ten Haken R, Eisbruch A et al. Non-small cell lung cancer therapy-related pulmonary toxicity: an update on radiation pneumonitis and fibrosis. Semin Oncol 2005; 32: S42-S54
  • 17 Le Chevalier T, Brisgand D, Douillard JY et al. Randomized study of vinorelbine and cisplatin versus vindesine and cisplatin versus vinorelbine alone in advanced non-small-cell lung cancer: results of a European multicenter trial including 612 patients. J Clin Oncol 1994; 12: 360-367
  • 18 Mac Manus MP. Use of PET/CT for staging and radiation therapy ­planning in patients with non-small cell lung cancer. Q J Nucl Med Mol Imaging 2010; 54: 510-520
  • 19 Machtay M, Bae K, Movsas B et al. Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 2012; 82: 425-434
  • 20 Marks LB, Bentzen SM, Deasy JO et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 2010; 76: S70-S76
  • 21 Nestle U, Walter K, Schmidt S et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999; 44: 593-597
  • 22 Rosenzweig KE, Sim SE, Mychalczak B et al. Elective nodal irradiation in the treatment of non-small-cell lung cancer with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 2001; 50: 681-685
  • 23 Rucker G, Schimek-Jasch T, Nestle U et al. Measuring inter-observer agreement in contour delineation of medical imaging in a dummy run using Fleiss’ kappa. Methods Inf Med 2012; 51: 489-494
  • 24 Saunders M, Dische S, Barrett A et al. Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial. CHART Steering committee. Radiother Oncol 1999; 52: 137-148
  • 25 Schaefer A, Kremp S, Hellwig D et al. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008; 35: 1989-1999
  • 26 Schaefer A et al. Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer. Nuklearmedizin 2012; 51: 101-110
  • 27 Steenbakkers RJ, Duppen JC, Fitton I et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 2006; 64: 435-448
  • 28 Stewart JR, Fajardo LF, Gillette SM et al. Radiation injury to the heart. Int J Radiat Oncol Biol Phys 1995; 31: 1205-1211
  • 29 Timmerman R, Paulus R, Galvin J et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010; 303: 1070-1076
  • 30 Werner-Wasik M, Yu X, Marks LB et al. Normal-tissue toxicities of thoracic radiation therapy: esophagus, lung, and spinal cord as organs at risk. Hematol Oncol Clin North Am 2004; 18: 131-160 x-xi