Semin Reprod Med 2014; 32(05): 402-409
DOI: 10.1055/s-0034-1376359
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Emerging Roles of MicroRNA in the Embryo–Endometrium Cross Talk

Uri P. Dior
1   Department of Obstetrics and Gynecology, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
,
Liron Kogan
1   Department of Obstetrics and Gynecology, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
,
Henry H. Chill
1   Department of Obstetrics and Gynecology, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
,
Neta Eizenberg
2   Department of Obstetrics and Gynecology, Rabin Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
,
Alexander Simon
1   Department of Obstetrics and Gynecology, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
,
Ariel Revel
1   Department of Obstetrics and Gynecology, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
› Author Affiliations
Further Information

Publication History

Publication Date:
24 June 2014 (online)

Abstract

Embryo implantation requires a reciprocal interaction between the blastocyst and endometrium and is associated with complex regulatory mechanisms. Since their discovery, microRNAs have become prominent regulatory candidates, providing missing links for many biological pathways. In recent years, microRNAs have been implicated as one of the important players in the regulation of multiple physiological functions of the endometrium. This review aims to present recent knowledge pertaining to the diverse aspects of microRNAs in the embryo–endometrial cross talk. We will focus on the role of microRNAs in decidualization. Next, we will review recent studies investigating the role of microRNAs in recurrent pregnancy loss. Finally, we will discuss the role of microRNAs in the tissue invasion of implantation and compare that with tissue invasion in cancers.

Notes

Uri P. Dior, MD, MPH and Liron Kogan, MD have contributed equally to this review.


 
  • References

  • 1 Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19 (1) 92-105
  • 2 Miranda KC, Huynh T, Tay Y , et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126 (6) 1203-1217
  • 3 Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res 2008; 36 (Database issue) D154-D158
  • 4 Lim LP, Lau NC, Garrett-Engele P , et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433 (7027) 769-773
  • 5 Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 2006; 6 (4) 259-269
  • 6 Cheng CJ, Slack FJ. The duality of oncomiR addiction in the maintenance and treatment of cancer. Cancer J 2012; 18 (3) 232-237
  • 7 Lee TS, Jeon HW, Kim YB, Kim YA, Kim MA, Kang SB. Aberrant microRNA expression in endometrial carcinoma using formalin-fixed paraffin-embedded (FFPE) tissues. PLoS ONE 2013; 8 (12) e81421
  • 8 Shapira I, Oswald M, Lovecchio J , et al. Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. Br J Cancer 2014; 110 (4) 976-983
  • 9 Singh R, Mo YY. Role of microRNAs in breast cancer. Cancer Biol Ther 2013; 14 (3) 201-212
  • 10 Paria BC, Reese J, Das SK, Dey SK. Deciphering the cross-talk of implantation: advances and challenges. Science 2002; 296 (5576) 2185-2188
  • 11 Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med 2007; 25 (6) 445-453
  • 12 Tierney EP, Tulac S, Huang ST, Giudice LC. Activation of the protein kinase A pathway in human endometrial stromal cells reveals sequential categorical gene regulation. Physiol Genomics 2003; 16 (1) 47-66
  • 13 Ueno Y, Yagasaki S. Toxicological approaches to the metabolites of Fusaria. X. Accelerating effect of zearalenone on RNA and protein syntheses in the uterus of ovariectomized mice. Jpn J Exp Med 1975; 45 (3) 199-205
  • 14 Popovici RM, Kao LC, Giudice LC. Discovery of new inducible genes in in vitro decidualized human endometrial stromal cells using microarray technology. Endocrinology 2000; 141 (9) 3510-3513
  • 15 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75 (5) 843-854
  • 16 Aravin AA, Lagos-Quintana M, Yalcin A , et al. The small RNA profile during Drosophila melanogaster development. Dev Cell 2003; 5 (2) 337-350
  • 17 Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21 (17) 4663-4670
  • 18 Leisegang MS, Martin R, Ramírez AS, Bohnsack MT. Exportin t and Exportin 5: tRNA and miRNA biogenesis—and beyond. Biol Chem 2012; 393 (7) 599-604
  • 19 Okada C, Yamashita E, Lee SJ , et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science 2009; 326 (5957) 1275-1279
  • 20 Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 2011; 12 (1) 19-31
  • 21 Iwakawa HO, Tomari Y. Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 2013; 52 (4) 591-601
  • 22 Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002; 297 (5589) 2056-2060
  • 23 Chavali S, Bruhn S, Tiemann K , et al. MicroRNAs act complementarily to regulate disease-related mRNA modules in human diseases. RNA 2013; 19 (11) 1552-1562
  • 24 Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 2011; 3 (3) 83-92
  • 25 Flynt AS, Lai EC. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 2008; 9 (11) 831-842
  • 26 Rana S, Yue S, Stadel D, Zöller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 2012; 44 (9) 1574-1584
  • 27 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9 (6) 654-659
  • 28 Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C , et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011; 2: 282
  • 29 Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 2011; 8 (8) 467-477
  • 30 Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet 2005; 365 (9461) 785-799
  • 31 Jauniaux E, Jurkovic D. Placenta accreta: pathogenesis of a 20th century iatrogenic uterine disease. Placenta 2012; 33 (4) 244-251
  • 32 Qian K, Hu L, Chen H , et al. Hsa-miR-222 is involved in differentiation of endometrial stromal cells in vitro. Endocrinology 2009; 150 (10) 4734-4743
  • 33 Estella C, Herrer I, Moreno-Moya JM , et al. miRNA signature and Dicer requirement during human endometrial stromal decidualization in vitro. PLoS ONE 2012; 7 (7) e41080
  • 34 Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod 2010; 82 (4) 791-801
  • 35 Zhao Y, Zacur H, Cheadle C, Ning N, Fan J, Vlahos NF. Effect of luteal-phase support on endometrial microRNA expression following controlled ovarian stimulation. Reprod Biol Endocrinol 2012; 10: 72
  • 36 Sha AG, Liu JL, Jiang XM , et al. Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril 2011; 96 (1) 150-155 , e5
  • 37 Ubaldi F, Camus M, Smitz J, Bennink HC, Van Steirteghem A, Devroey P. Premature luteinization in in vitro fertilization cycles using gonadotropin-releasing hormone agonist (GnRH-a) and recombinant follicle-stimulating hormone (FSH) and GnRH-a and urinary FSH. Fertil Steril 1996; 66 (2) 275-280
  • 38 Shulman A, Ghetler Y, Beyth Y, Ben-Nun I. The significance of an early (premature) rise of plasma progesterone in in vitro fertilization cycles induced by a “long protocol” of gonadotropin releasing hormone analogue and human menopausal gonadotropins. J Assist Reprod Genet 1996; 13 (3) 207-211
  • 39 Naguleswaran A, Fialho AM, Chaudhari A, Hong CS, Chakrabarty AM, Sullivan Jr WJ. Azurin-like protein blocks invasion of Toxoplasma gondii through potential interactions with parasite surface antigen SAG1. Antimicrob Agents Chemother 2008; 52 (2) 402-408
  • 40 Li R, Qiao J, Wang L , et al. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol 2011; 9: 29
  • 41 Wilcox AJ, Weinberg CR, O'Connor JF , et al. Incidence of early loss of pregnancy. N Engl J Med 1988; 319 (4) 189-194
  • 42 Guerneri S, Bettio D, Simoni G, Brambati B, Lanzani A, Fraccaro M. Prevalence and distribution of chromosome abnormalities in a sample of first trimester internal abortions. Hum Reprod 1987; 2 (8) 735-739
  • 43 Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH, Lese Martin C. Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet 2004; 74 (6) 1168-1174
  • 44 Wessels JM, Edwards AK, Khalaj K, Kridli RT, Bidarimath M, Tayade C. The microRNAome of pregnancy: deciphering miRNA networks at the maternal-fetal interface. PLoS ONE 2013; 8 (11) e72264
  • 45 Viaggi CD, Cavani S, Malacarne M , et al. First-trimester euploid miscarriages analysed by array-CGH. J Appl Genet 2013; 54 (3) 353-359
  • 46 Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med 2010; 61: 437-455
  • 47 Jeon YJ, Kim SY, Rah H , et al. Association of the miR-146aC>G, miR-149T>C, miR-196a2T>C, and miR-499A>G polymorphisms with risk of spontaneously aborted fetuses. Am J Reprod Immunol 2012; 68 (5) 408-417
  • 48 Fluhr H, Wenig H, Spratte J, Heidrich S, Ehrhardt J, Zygmunt M. Non-apoptotic Fas-induced regulation of cytokines in undifferentiated and decidualized human endometrial stromal cells depends on caspase-activity. Mol Hum Reprod 2011; 17 (2) 127-134
  • 49 Kim SY, Park SY, Choi JW , et al. Association between MTHFR 1298A>C polymorphism and spontaneous abortion with fetal chromosomal aneuploidy. Am J Reprod Immunol 2011; 66 (4) 252-258
  • 50 Vitiello D, Kodaman PH, Taylor HS. HOX genes in implantation. Semin Reprod Med 2007; 25 (6) 431-436
  • 51 Murakami A, Ishida S, Thurlow J, Revest JM, Dickson C. SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res 2001; 29 (16) 3347-3355
  • 52 Luthra R, Singh RR, Luthra MG , et al. MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene 2008; 27 (52) 6667-6678
  • 53 Bernstein E, Kim SY, Carmell MA , et al. Dicer is essential for mouse development. Nat Genet 2003; 35 (3) 215-217
  • 54 Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 2007; 39 (3) 380-385
  • 55 Hayashi K, Chuva de Sousa Lopes SM, Kaneda M , et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS ONE 2008; 3 (3) e1738
  • 56 Medeiros LA, Dennis LM, Gill ME , et al. Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc Natl Acad Sci U S A 2011; 108 (34) 14163-14168
  • 57 Luo M, Weng Y, Tang J , et al. MicroRNA-450a-3p represses cell proliferation and regulates embryo development by regulating Bub1 expression in mouse. PLoS ONE 2012; 7 (10) e47914
  • 58 Ventura W, Koide K, Hori K , et al. Placental expression of microRNA-17 and -19b is down-regulated in early pregnancy loss. Eur J Obstet Gynecol Reprod Biol 2013; 169 (1) 28-32
  • 59 Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril 2012; 98 (5) 1103-1111
  • 60 Stirrat GM. Recurrent miscarriage. Lancet 1990; 336 (8716) 673-675
  • 61 Jaslow CR, Carney JL, Kutteh WH. Diagnostic factors identified in 1020 women with two versus three or more recurrent pregnancy losses. Fertil Steril 2010; 93 (4) 1234-1243
  • 62 Hu Y, Liu CM, Qi L , et al. Two common SNPs in pri-miR-125a alter the mature miRNA expression and associate with recurrent pregnancy loss in a Han-Chinese population. RNA Biol 2011; 8 (5) 861-872
  • 63 Jeon YJ, Choi YS, Rah H , et al. Association study of microRNA polymorphisms with risk of idiopathic recurrent spontaneous abortion in Korean women. Gene 2012; 494 (2) 168-173
  • 64 Wang X, Li B, Wang J , et al. Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression. Reprod Biomed Online 2012; 25 (4) 415-424
  • 65 Goldman-Wohl DS, Ariel I, Greenfield C, Hanoch J, Yagel S. HLA-G expression in extravillous trophoblasts is an intrinsic property of cell differentiation: a lesson learned from ectopic pregnancies. Mol Hum Reprod 2000; 6 (6) 535-540
  • 66 Christiansen OB. Reproductive immunology. Mol Immunol 2013; 55 (1) 8-15
  • 67 Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 1991; 6 (6) 791-798
  • 68 Tuckerman E, Laird SM, Prakash A, Li TC. Prognostic value of the measurement of uterine natural killer cells in the endometrium of women with recurrent miscarriage. Hum Reprod 2007; 22 (8) 2208-2213
  • 69 Liu X, Wang Y, Sun Q , et al. Identification of microRNA transcriptome involved in human natural killer cell activation. Immunol Lett 2012; 143 (2) 208-217
  • 70 Coughlan C, Yuan X, Nafee T, Yan J, Mariee N, Li TC. The clinical characteristics of women with recurrent implantation failure. J Obstet Gynaecol 2013; 33 (5) 494-498
  • 71 Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod 2011; 26 (10) 2830-2840
  • 72 Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 2006; 7 (3) 185-199
  • 73 Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, Dey SK. MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci U S A 2007; 104 (38) 15144-15149
  • 74 Daikoku T, Hirota Y, Tranguch S , et al. Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Res 2008; 68 (14) 5619-5627
  • 75 Hasegawa K, Ohashi Y, Ishikawa K , et al. Expression of cyclooxygenase-2 in uterine endometrial cancer and anti-tumor effects of a selective COX-2 inhibitor. Int J Oncol 2005; 26 (5) 1419-1428
  • 76 Nasir A, Boulware D, Kaiser HE , et al. Cyclooxygenase-2 (COX-2) expression in human endometrial carcinoma and precursor lesions and its possible use in cancer chemoprevention and therapy. In Vivo 2007; 21 (1) 35-43
  • 77 Tong BJ, Tan J, Tajeda L , et al. Heightened expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor-delta in human endometrial adenocarcinoma. Neoplasia 2000; 2 (6) 483-490
  • 78 Shen Q, Cicinnati VR, Zhang X , et al. Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol Cancer 2010; 9: 227
  • 79 Song G, Zeng H, Li J , et al. miR-199a regulates the tumor suppressor mitogen-activated protein kinase kinase kinase 11 in gastric cancer. Biol Pharm Bull 2010; 33 (11) 1822-1827
  • 80 Cheung HH, Davis AJ, Lee TL , et al. Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 2011; 30 (31) 3404-3415
  • 81 Dai L, Gu L, Di W. MiR-199a attenuates endometrial stromal cell invasiveness through suppression of the IKKβ/NF-κB pathway and reduced interleukin-8 expression. Mol Hum Reprod 2012; 18 (3) 136-145
  • 82 He J, Jing Y, Li W , et al. Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis. PLoS ONE 2013; 8 (2) e56647
  • 83 Hu SJ, Ren G, Liu JL, Zhao ZA , et al. MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem 2008; 283 (34) 23473-23484
  • 84 Pan Q, Luo X, Chegini N. microRNA 21: response to hormonal therapies and regulatory function in leiomyoma, transformed leiomyoma and leiomyosarcoma cells. Mol Hum Reprod 2012; 18 (12) 61-63
  • 85 Ramón LA, Braza-Boïls A, Gilabert-Estellés J , et al. microRNAs expression in endometriosis and their relation to angiogenic factors. Hum Reprod 2011; 26 (5) 1082-1090
  • 86 Qin X, Yan L, Zhao X, Li C, Fu Y. microRNA-21 overexpression contributes to cell proliferation by targeting PTEN in endometrioid endometrial cancer. Oncol Lett 2012; 4 (6) 1290-1296
  • 87 Torres A, Torres K, Paszkowski T , et al. Highly increased maspin expression corresponds with up-regulation of miR-21 in endometrial cancer: a preliminary report. Int J Gynecol Cancer 2011; 21 (1) 8-14
  • 88 Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol 2009; 4: 199-227
  • 89 Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2008; 283 (2) 1026-1033
  • 90 Meng F, Henson R, Lang M , et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006; 130 (7) 2113-2129
  • 91 Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008; 18 (3) 350-359
  • 92 Laguë MN, Detmar J, Paquet M , et al. Decidual PTEN expression is required for trophoblast invasion in the mouse. Am J Physiol Endocrinol Metab 2010; 299 (6) E936-E946
  • 93 Pan X, Wang R, Wang ZX. The potential role of miR-451 in cancer diagnosis, prognosis, and therapy. Mol Cancer Ther 2013; 12 (7) 1153-1162
  • 94 Oneyama C, Kito Y, Asai R , et al. MiR-424/503-mediated Rictor upregulation promotes tumor progression. PLoS ONE 2013; 8 (11) e80300
  • 95 Talbi S, Hamilton AE, Vo KC , et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology 2006; 147 (3) 1097-1121
  • 96 Cao DX, Li ZJ, Jiang XO , et al. Osteopontin as potential biomarker and therapeutic target in gastric and liver cancers. World J Gastroenterol 2012; 18 (30) 3923-3930
  • 97 Hannan NJ, Paiva P, Meehan KL, Rombauts LJ, Gardner DK, Salamonsen LA. Analysis of fertility-related soluble mediators in human uterine fluid identifies VEGF as a key regulator of embryo implantation. Endocrinology 2011; 152 (12) 4948-4956
  • 98 Kieran MW, Kalluri R, Cho YJ. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb Perspect Med 2012; 2 (12) a006593
  • 99 Chung YW, Bae HS, Song JY , et al. Detection of microRNA as novel biomarkers of epithelial ovarian cancer from the serum of ovarian cancer patients. Int J Gynecol Cancer 2013; 23 (4) 673-679
  • 100 Miles GD, Seiler M, Rodriguez L, Rajagopal G, Bhanot G. Identifying microRNA/mRNA dysregulations in ovarian cancer. BMC Res Notes 2012; 5: 164
  • 101 Nam EJ, Yoon H, Kim SW , et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008; 14 (9) 2690-2695
  • 102 Wu H, Xiao Z, Wang K, Liu W, Hao Q. MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1. Biochem Biophys Res Commun 2013; 441 (4) 693-700
  • 103 Pellegrino L, Stebbing J, Braga VM , et al. miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucleic Acids Res 2013; 41 (10) 5400-5412
  • 104 Loredana P, Krell J, Roca-Alonso L, Stebbing J, Castellano L. MicroRNA-23b regulates cellular architecture and impairs motogenic and invasive phenotypes during cancer progression. BioArchitecture 2013; 3 (4) 119-124