Planta Med 2007; 73(11): 1182-1189
DOI: 10.1055/s-2007-981598
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Antioxidant and Radical Scavenging Activity of Honey in Endothelial Cell Cultures (EA.hy926)

Giangiacomo Beretta1 , Marica Orioli1 , Roberto Maffei Facino1
  • 1Istituto di Chimica Farmaceutica e Tossicologica Pietro Pratesi”, Faculty of Pharmacy, University of Milan, Milan, Italy
Further Information

Publication History

Received: April 6, 2007 Revised: July 9, 2007

Accepted: July 17, 2007

Publication Date:
07 September 2007 (online)

Abstract

The therapeutic properties of honey, once considered a form of folk or preventive medicine, are acquiring importance for the treatment of acute and chronic free radical-mediated diseases (atherosclerosis, diabetes and cancer). The aim of this work was to study the protective activity of a honey of multifloral origin, standardized for total antioxidant power and analytically profiled (HPLC-MS) in antioxidants, in a cultured endothelial cell line (EA.hy926) subjected to oxidative stress. Cumene hydroperoxide (CuOOH) was used as free radical promoter. Native honey (1 % w/v pH 7.4, 106 cells) showed strong quenching activity against lipophilic cumoxyl and cumoperoxyl radicals, with significant suppression/prevention of cell damage, complete inhibition of cell membrane oxidation, of intracellular ROS production and recovery of intracellular GSH. Experiments with endothelial cells fortified with the isolated fraction from native honey enriched in antioxidants, exposed to peroxyl radicals from 1,1-diphenyl-2-picrylhydrazyl (AAPH, 10 mM) and to hydrogen peroxide (H2O2, 50 - 100 μM), indicated that phenolic acids and flavonoids were the main causes of the protective effect. These results provide unequivocal evidence that, through the synergistic action of its antioxidants, honey by reducing and removing ROS, may lower the risks and effects of acute and chronic free radical induced pathologies in vivo.

References

  • 1 Molan P C. Potential of honey in the treatment of wounds and burns.  Am J Clin Dermatol. 2001;  2 13-9.
  • 2 Mobarok Ali A TM, Al-Swayeh A O. Natural honey prevents ethanol-induced increased vascular permeability changes in the rat stomach.  J Ethnopharmacol. 1997;  55 231-8.
  • 3 Hamzaoglu I, Saribeyoglu K, Durak H, Karahasanoglu T, Bayrak Altug I, Sirin T F. et al . Protective covering of surgical wounds with honey impedes tumor implantation.  Arch Surg. 2000;  135 1414-7.
  • 4 Swellam T, Miyanaga N, Onozawa M, Hattori K, Kawai K, Shimazui T. et al . Antineoplastic activity of honey in an experimental bladder cancer implantation model: in vivo and in vitro studies.  Int J Urol. 2003;  10 213-9.
  • 5 Orsolic N, Terzic S, Šver L, Bašić I. Honey-bee products in prevention and/or therapy of murine transplantable tumours.  J Sci Food Agric. 2005;  85 363-70.
  • 6 Bang L M, Buntting C, Molan P. The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing.  J Altern Compl Med. 2003;  9 267-73.
  • 7 Lopez-Lazaro M. Dual role of hydrogen peroxide in cancer: Possible relevance to cancer chemoprevention and therapy. Cancer Letters 2006 available online at http://www.sciencedirect.com
  • 8 Weston R J. The contribution of catalase and other natural products to the antibacterial activity of honey: a review.  Food Chem. 2000;  71 235-9.
  • 9 Facino R M. Honey in tumor surgery.  Arch Surg. 2001;  136 600.
  • 10 Michaluart P, Masferrer J L, Carothers A M, Subbaramaiah K, Zweifel B S, Koboldt C. et al . Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation.  Cancer Res. 1999;  59 2347-52.
  • 11 Greten F R, Eckmann L, Greten T F, Park J M, Li Z -W, Egan L J. et al . IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer.  Cell. 2004;  118 285-96.
  • 12 Ferreres F, Tomàs-Barberàn F A, Gil M I, Tomàs-Lorente F. An HPLC technique for flavonoids analysis in honey.  J Sci Food Agric. 1991;  56 49-56.
  • 13 Tomàs-Barberàn F A, Ferreres F, Amparo-Blazquez M, Garcia-Viguera C, Tomas-Lorente F. High-performance liquid chromatography of honey flavonoids.  J Chromatogr. 1993;  634 41-6.
  • 14 Ferreres F, Tomàs-Barberàn F A, Soler C, Garcia-Viguera C, Ortiz A, Tomàs-Lorente F. A simple extractive technique for honey flavonoid HPLC analysis.  Apidologie. 1994;  25 21-30.
  • 15 Beretta G, Granata P, Ferrero M, Orioli M, Maffei Facino R. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics.  Anal Chim Acta. 2005;  533 185-91.
  • 16 Azeredo L da C, Azeredo M AA, de Souza S R, Dutra V ML. Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins.  Food Chem. 2003;  80 249-54.
  • 17 Carini M, Aldini G, Piccone M, Maffei Facino R. Fluorescent probes as markers of oxidative stress in keratinocyte cell lines following UVB exposure.  Farmaco. 2000;  55 526-34.
  • 18 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.  J Immunol Methods. 1983;  65 55-63.
  • 19 Aldini G,  Granata P, Beretta G, Carini M, Maffei Facino R. Effects of UVB radiation on 4-hydroxy-2-transnonenal metabolism and toxicity in human keratinocytes.  Chem Res Toxicol.. 2007;  20 416-23.
  • 20 Markwell M A, Haas S M, Tolbert N E, Bieber L L. Protein determination in membrane and lipoprotein samples: manual and automated procedures.  Methods Enzymol. 1981;  72 296-303.
  • 21 Gheldof N, Wang X H, Engeseth N J. Identification and quantification of antioxidant components of honeys from various floral sources. J.  Agric Food Chem. 2002;  50 5870-7.
  • 22 Kluth D, Banning A, Paur I, Blomhoff R, Brigelius-Flohe R. Modulation of pregnane X receptor- and electrophile responsive element-mediated gene expression by dietary polyphenolic compounds.  Free Radic Biol Med. 2007;  42 315-25.
  • 23 Gómez-Caravaca A M, Gómez-Romero M, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A. Advances in the analysis of phenolic compounds in products derived from bees.  J Pharm Biomed Anal. 2006;  41 1220-34.
  • 24 Weston K R, Mitchell R J, Allen K L. Antibacterial phenolic components of New Zealand manuka honey.  J Food Chem. 1999;  64 295-301.
  • 25 Hsiai T K, Hwang J, Barr M L, Correa A, Hamilton R, Alavi M. et al . Hemodynamics influences vascular peroxynitrite formation: Implication for low-density lipoprotein apo-B-100 nitration.  Free Radic Biol Med. 2007;  42 519-29.

Dr. Giangiacomo Beretta

Istituto di Chimica Farmaceutica e Tossicologica

Faculty of Pharmacy

University of Milan

viale Abruzzi 42

20131 Milan

Italy

Phone: +39-02-5031-7519

Fax: +39-02-5031-7565

Email: giangiacomo.beretta@unimi.it

    >