Planta Med 2007; 73(11): 1156-1162
DOI: 10.1055/s-2007-981587
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Potent Suppressive Effects of 3-O-Methylquercetin 5,7,3′,4′-O-Tetraacetate on Ovalbumin-Induced Airway Hyperresponsiveness

Jiunn-Song Jiang1 , Hui-Chi Chien2 , Chien-Ming Chen3 , Chun-Nan Lin4 , Wun-Chang Ko2
  • 1Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
  • 2Graduate Institute of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
  • 3Department of Medical Technology, College of Medicine, Taipei Medical University, Taipei, Taiwan
  • 4School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
Further Information

Publication History

Received: May 5, 2007 Revised: July 13, 2007

Accepted: July 19, 2007

Publication Date:
07 September 2007 (online)

Abstract

We investigated the suppressive effects of 3-O-methylquercetin 5,7,3′,4′-O-tetraacetate (QMTA), a more-potent phosphodiesterase (PDE)3/4 inhibitor than quercetin 3-O-methyl ether (3-MQ), which has been reported to have the potential for treating asthma, against ovalbumin (OVA)-induced airway hyperresponsiveness (AHR). The IC50 value of QMTA for PDE3 was significantly less than that for PDE4. According to the Lineweaver-Burk analysis, QMTA (1 - 10 μM) competitively inhibited PDE3 and PDE4 activities. The Ki values were 0.9 ± 0.3 (n = 5) and 3.9 ± 0.5 (n = 5) µM, respectively, which significantly differed from each other, suggesting that QMTA has higher affinity for PDE3 than for PDE4. QMTA (3 - 10 μM) concentration-dependently relaxed the baseline level, and significantly inhibited cumulative OVA (10 - 100 μg/mL)-induced contractions in isolated sensitized guinea pig trachealis suggesting that QMTA has bronchodilator and inhibiting effects on mast cell degranulation. After the secondary challenge, the AHR was measured in unrestrained OVA-sensitized mice, with nebulized methacholine (MCh, 6.25 - 50 mg/mL), by barometric plethysmography using a whole-body plethysmograph. In the present results, QMTA (3 - 10 μmol/kg, i. p.) dose-dependently attenuated the enhanced pause (Penh) value induced by MCh (25 - 50 mg/mL). QMTA (3 - 10 μmol/kg, i. p.) also significantly inhibited total inflammatory cells, macrophages, neutrophils, lymphocytes, and eosinophils in BALF after determination of Penh values. It also significantly suppressed the release of interleukin (IL)-2, IL-4, IL-5, IFN-γ, and TNF-α, with the exception that 3 μmol/kg QMTA did not suppress the releases of IL-5. QMTA even at 1 μmol/kg significantly inhibited eosinophils, IL-2, and TNF-α. In conclusion, our results strongly suggest that QMTA has greater potential than 3-MQ for the treatment of asthma.

Abbreviations

AHR:airway hyperresponsiveness

BALF:bronchoalveolar lavage fluid

CBA:cytometric bead array

IFN-γ:interferon-γ

IL:interleukin

OVA:ovalbumin

PDE:phosphodiesterase

Penh:enhanced pause

QMTA:3-O-methylquercetin 5,7,3′,4′-O-tetraacetate

TNF-α:tumor necrosis factor-α

References

  • 1 Lee M E, Markowitz J, Lee J O, Lee H. Crystal structure of phosphodiesterase 4D and inhibitor complex (1).  FEBS Lett. 2002;  530 53-8.
  • 2 de Boer J, Philpott A J, van Amsterdam R G, Shahid M, Zaagsma J, Nicholson C D. Human bronchial cyclic nucleotide phosphodiesterase isoenzymes: biochemical and pharmacological analysis using selective inhibitors.  Br J Pharmacol. 1992;  106 1028-34.
  • 3 Silver P J, Hamel L T, Perrone M H, Bentley R G, Bushover C R, Evans D B. Differential pharmacologic sensitivity of cyclic nucleotide phosphodiesterase isozymes isolated from cardiac muscle, arterial and airway smooth muscle.  Eur J Pharmacol. 1988;  150 85-94.
  • 4 Ko W C, Chen M C, Wang S H, Lai Y H, Chen J H, Lin C N. 3-O-Methylquercetin more selectively inhibits phosphodiesterase subtype 3.  Planta Med. 2003;  69 310-5.
  • 5 Underwood D C, Kotzer C J, Bochnowicz S, Osborn R R, Luttmann M A, Hay D W. et al . Comparison of phosphodiesterase III, IV and dual III/IV inhibitors on bronchospasm and pulmonary eosinophil influx in guinea pigs.  J Pharmacol Exp Ther. 1994;  270 250-9.
  • 6 Chiu N Y, Chang K H. The illustrated medicinal plants of Taiwan. 5.  Taipei: Southern Materials. Center;  1998 135-6.
  • 7 Jiang J S, Shih C M, Wang S H, Chen T T, Lin C N, Ko W C. Mechanisms of suppression of nitric oxide production by 3-O-methylquercetin in RAW 264.7 cells.  J Ethnopharmacol. 2006;  103 281-7.
  • 8 Ko W C, Shih C M, Chen M C, Lai Y H, Chen J H, Chen C M. et al . Suppressive effects of 3-O-methylquercetin on ovalbumin-induced airway hyperresponsiveness.  Planta Med. 2004;  70 1123-7.
  • 9 Ferte J, Kuhnel J M, Chapuis G, Rolland Y, Lewin G, Schwaller M A. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationships.  J Med Chem. 1999;  42 478-89.
  • 10 Lin C N, Lu C M, Lin H C, Ko F N, Teng C M. Novel antiplatelet naphthalene from Rhamnus nakaharai .  J Nat Prod. 1995;  58 1934-40.
  • 11 Kanehiro A, Ikemura T, Makela M J, Lahn M, Joetham A, Dakhama A. et al . Inhibition of phosphodiesterase 4 attenuates airway hyperresponsiveness and airway inflammation in a model of secondary allergen challenge.  Am J Respir Crit Care Med. 2001;  163 173-84.
  • 12 Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen G L, Irvin C G. et al . Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography.  Am J Respir Crit Care Med. 1997;  156 766-75.
  • 13 Winterrowd G E, Chin J E. Flow cytometric detection of antigen-specific cytokine responses in lung T cells in a murine model of pulmonary inflammation.  J Immunol Methods. 1999;  226 105-18.
  • 14 Thompson W J, Appleman M M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain.  Biochemistry. 1971;  10 311-6.
  • 15 Ahn H S, Crim W, Romano M, Sybertz E, Pitts B. Effects of selective inhibitors on cyclic nucleotide phosphodiesterases of rabbit aorta.  Biochem Pharmacol. 1989;  38 3331-9.
  • 16 Podzuweit T, Nennstiel P, Muller A. Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine.  Cell Signal. 1995;  7 733-8.
  • 17 Harrison S A, Reifsnyder D H, Gallis B, Cadd G G, Beavo J A. Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs.  Mol Pharmacol. 1986;  29 506-14.
  • 18 Reeves M L, Leigh B K, England P J. The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors.  Biochem J. 1987;  241 535-41.
  • 19 Gillespie P G, Beavo J A. Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M&B 22,948.  Mol Pharmacol. 1989;  36 773-81.
  • 20 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-54.
  • 21 Tsien R W. Calcium channels in excitable cell membranes.  Annu Rev Physiol. 1983;  45 341-58.
  • 22 Busse W W, Lemanske RF J r. Asthma.  N Engl J Med. 2001;  344 350-62.
  • 23 Revets H, Pynaert G, Grooten J, De Baetselier P. Lipoprotein I, a TLR2/4 ligand modulates Th2-driven allergic immune responses.  J Immunol. 2005;  174 1097-103.
  • 24 Taube C, Duez C, Cui Z H, Takeda K, Rha Y H, Park J W. et al . The role of IL-13 in established allergic airway disease.  J Immunol. 2002;  169 6482-9.
  • 25 Tucker J, Fanta C H. Integrative inflammation pharmacology: asthma. In: Golan DE, Tashjian Jr AH, Armstrong EJ, Galanter JM, Armstrong AW, Arnaout RA et al., editors Principles of pharmacology-the pathophysiologic basis of drug therapy. Philadephia; Lippincott Williams & Wilkins 2005: 695-705.
  • 26 Vargaftig B B, Singer M. Leukotrienes mediate murine bronchopulmonary hyperreactivity, inflammation, and part of mucosal metaplasia and tissue injury induced by recombinant murine interleukin-13.  Am J Respir Cell Mol Biol. 2003;  28 410-9.
  • 27 Murphy A W, Platts-Mills T AE. Drug used in asthma and obstructive lung disease. In: Brody TM, Larner J, Minneman KP, editors. Human pharmacology - molecular to clinical. St.  Louis:. Mosby;  1998 797-825.
  • 28 Groundwater P W, Solomons K R, Drewe J A, Munawar M A. Protein tyrosine kinase inhibitors.  Prog Med Chem. 1996;  33 233-329.
  • 29 Giembycz M A. Phosphodiesterase 4 inhibitors and the treatment of asthma: Where are we now and where do we go from here?.  Drugs. 2000;  59 193-212.
  • 30 Fan C K. Phosphodiesterase inhibitors in airways disease.  Eur J Pharmacol. 2006;  533 110-7.

Prof. Dr. Wun-Chang Ko

Graduate Institute of Pharmacology

College of Medicine

Taipei Medical University

250 Wu-Hsing St.

Taipei 110

Taiwan

R.O.C.

Fax: +886-2-2377-7639

Email: wc_ko@tmu.edu.tw

    >