Semin Thromb Hemost 2002; 28(1): 67-78
DOI: 10.1055/s-2002-20565
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Dynamic Regulation of Tumor Growth and Metastasis by Heparan Sulfate Glycosaminoglycans

Dongfang Liu1 , Zachary Shriver1 , Yiwei Qi1 , Ganesh Venkataraman2 , Ram Sasisekharan1, 3
  • 1Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • 2Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts
  • 3Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
Further Information

Publication History

Publication Date:
05 March 2002 (online)

ABSTRACT

This article focuses on the emerging views and concepts concerning the role of cell surface and extracellular heparan sulfate-like glycosaminoglycans (HSGAGs) in tumor biology. HSGAGs, found ubiquitously both at the cell surface and in the extracellular matrix (ECM), play a critical role in regulating tumor initiation, progression, and metastasis. The diverse biological functions of HSGAGs include the regulation of coagulation, growth factor signaling, cell adhesion, proliferation, and mobility. HSGAGs, depending on their location (anchored at the cell surface or soluble as free GAGs), the signaling molecules they associate with, and their fine structures, can either promote or inhibit the tumorigenic process.

REFERENCES

  • 1 Landis S H, Murray T, Bolden S, Wingo P A. Cancer statistics, 1998.  CA Cancer J Clin . 1998;  48 6-29
  • 2 Landis S H, Murray T, Bolden S, Wingo P A. Cancer statistics, 1999.  CA Cancer J Clin . 1999;  49 8-31, 1
  • 3 Cotran R, Kumar V, Robbins S L. Pathologic Basis of Disease.  Philadelphia: Saunders 1999
  • 4 Fearon E R, Vogelstein B. A genetic model for colorectal tumorigenesis.  Cell . 1990;  61 759-767
  • 5 Kinzler K W, Vogelstein B. Lessons from hereditary colorectal cancer.  Cell . 1996;  87 159-170
  • 6 Ilyas M, Tomlinson I P. Genetic pathways in colorectal cancer.  Histopathology . 1996;  28 389-399
  • 7 Kinzler K W, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers.  Nature . 1997;  386 761-763
  • 8 Weinberg R. How cancer arises.  Sci Am . 1996;  275 62-70
  • 9 Hunter T. Oncoprotein networks.  Cell . 1997;  88 333-346
  • 10 Nakamura Y, Nishisho I, Kinzler K W. Mutations of the APC (adenomatous polyposis coli) gene in FAP (familial polyposis coli) patients and in sporadic colorectal tumors.  Tohoku J Exp Med . 1992;  168 141-147
  • 11 O'Reilly M S, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice.  Nature Med . 1996;  2 689-692
  • 12 O'Reilly M S, Boehm T, Shing Y. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.  Cell . 1997;  88 277-285
  • 13 Pluda J M. Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies.  Semin Oncol . 1997;  24 203-218
  • 14 Pluda J M, Parkinson D R. Clinical implications of tumor-associated neovascularization and current antiangiogenic strategies for the treatment of malignancies of pancreas.  Cancer . 1996;  78 680-687
  • 15 Sanderson R D. Heparan sulfate proteoglycans in invasion and metastasis.  Semin Cell Dev Biol . 2001;  12 89-98
  • 16 Price J T, Bonovich M T, Kohn E C. The biochemistry of cancer dissemination.  Crit Rev Biochem Mol Biol . 1997;  32 175-253
  • 17 Ziober B L, Lin C S, Kramer R H. Laminin-binding integrins in tumor progression and metastasis.  Semin Cancer Biol . 1996;  7 119-128
  • 18 Stetler-Stevenson W G, Yu A E. Proteases in invasion: matrix metalloproteinases.  Semin Cancer Biol . 2001;  11 143-153
  • 19 Chambers A F, Matrisian L M. Changing views of the role of matrix metalloproteinases in metastasis.  J Natl Cancer Inst . 1997;  89 1260-1270
  • 20 Hulett M D, Freeman C, Hamdorf B J. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis.  Nat Med . 1999;  5 803-809
  • 21 Vlodavsky I, Friedmann Y, Elkin M. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis.  Nature Med . 1999;  5 793-802
  • 22 Borsig L, Wong R, Feramisco J. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis.  Proc Natl Acad Sci USA . 2001;  98 3352-3357
  • 23 Zacharski L R, Ornstein D L, Mamourian A C. Low-molecular-weight heparin and cancer.  Semin Thromb Hemost . 2000;  26 69-77
  • 24 Zacharski L R, Ornstein D L. Heparin and cancer.  Thromb Haemost . 1998;  80 10-23
  • 25 Zacharski L R, Meehan K R, Algarra S M, Calvo F A. Clinical trials with anticoagulant and antiplatelet therapies.  Cancer Metastasis Rev . 1992;  11 421-431
  • 26 Hejna M, Raderer M, Zielinski C C. Inhibition of metastases by anticoagulants.  J Natl Cancer Inst . 1999;  91 22-36
  • 27 Engelberg H. Actions of heparin that may affect the malignant process.  Cancer . 1999;  85 257-272
  • 28 Sasisekharan R, Venkataraman G. Heparin and heparan sulfate: biosynthesis, structure and function.  Curr Opin Chem Biol . 2000;  4 626-631
  • 29 Sasisekharan R, Ernst S, Venkararaman V. On the regulation of fibroblast growth factor activity by heparin-like glycosaminoglycans.  Angiogenesis . 1997;  1 45-54
  • 30 Lin X, Perrimon N. Role of heparan sulfate proteoglycans in cell-cell signaling in drosophila Matrix Biol .  2000;  19 303-307
  • 31 Lin X, Buff E M, Perrimon N, Michelson A M. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development.  Development . 1999;  126 3715-3723
  • 32 Sasisekharan R, Moses M A, Nugent M A, Cooney C L, Langer R. Heparinase inhibits neovascularization.  Proc Natl Acad Sci USA . 1994;  91 1524-1528
  • 33 Jacques L B. Heparin: an old drug with a new paradigm.  Science . 1979;  206 528-533
  • 34 Bernfield M, Gotte M, Park P W. Functions of cell surface heparan sulfate proteoglycans.  Annu Rev Biochem . 1999;  68 729-777
  • 35 Humphries D E, Wong G W, Friend D S. Heparin is essential for the storage of specific granule proteases in mast cells.  Nature . 1999;  400 769-772
  • 36 Forsberg E, Pejler G, Ringvall M. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme.  Nature . 1999;  400 773-776
  • 37 Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes.  Nature . 2000;  404 725-728
  • 38 Lin X, Perrimon N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling.  Nature . 1999;  400 281-284
  • 39 Carey D J. Syndecans: multifunctional cell-surface co-receptors.  Biochem J . 1997;  327 1-16
  • 40 Shriver Z, Raman R, Venkataraman G. From the cover: sequencing of 3-O sulfate containing heparin decasaccharides with a partial antithrombin III binding site.  Proc Natl Acad Sci USA . 2000;  97 10359-10364
  • 41 Pye D A, Vives R R, Hyde P, Gallagher J T. Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2.  Glycobiology . 2000;  10 1183-1192
  • 42 Pye D A, Vives R R, Turnbull J E, Hyde P, Gallagher J T. Heparan sulfate oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity.  J Biol Chem . 1998;  273 22936-22942
  • 43 Guimond S E, Turnbull J E. Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides.  Curr Biol . 1999;  9 1343-1346
  • 44 Saoncella S, Echtermeyer F, Denhez F. Syndecan-4 signals cooperate with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers.  Proc Natl Acad Sci USA . 1999;  96 2805-2810
  • 45 Woods A, Longley R L, Tumova S, Couchman J R. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts.  Arch Biochem Biophys . 2000;  374 66-72
  • 46 Woods A, Couchman J R. Syndecans: synergistic activators of cell adhesion.  Trends Cell Biol . 1998;  8 189-192
  • 47 Giuffre L, Cordey A S, Monai N. Monocyte adhesion to activated aortic endothelium: role of L-selectin and heparan sulfate proteoglycans.  J Cell Biol . 1997;  136 945-956
  • 48 Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents.  J Clin Invest . 1998;  101 877-889
  • 49 Sasaki T, Larsson H, Kreuger J. Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin.  EMBO J . 1999;  18 6240-6248
  • 50 Guimond S, Maccarana M, Olwin B B, Lindahl U, Rapraeger A C. Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4.  J Biol Chem . 1993;  268 23906-23914
  • 51 Maccarana M, Casu B, Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor [published erratum appears in J Biol Chem 1994;269:3903].  J Biol Chem . 1993;  268 23898-23905
  • 52 Lyon M, Deakin J A, Mizuno K, Nakamura T, Gallagher J T. Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants.  J Biol Chem . 1994;  269 11216-11223
  • 53 Pellegrini L, Burke D F, von Delft F, Mulloy B, Blundell T L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin.  Nature . 2000;  407 1029-1034
  • 54 Schlessinger J, Plotnikov A N, Ibrahimi O A. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization.  Mol Cell . 2000;  6 743-750
  • 55 Plotnikov A N, Schlessinger J, Hubbard S R, Mohammadi M. Structural basis for FGF receptor dimerization and activation.  Cell . 1999;  98 641-650
  • 56 Venkataraman G, Shriver Z, Davis J C, Sasisekharan R. Fibroblast growth factors 1 and 2 are distinct in oligomerization in the presence of heparin-like glycosaminoglycans.  Proc Natl Acad Sci USA . 1999;  96 1892-1897
  • 57 Caldwell E E, Nadkarni V D, Fromm J R, Linhardt R J, Weiler J M. Importance of specific amino acids in protein binding sites for heparin and heparan sulfate.  Int J Biochem Cell Biol . 1996;  28 203-216
  • 58 Hileman R E, Fromm J R, Weiler J M, Linhardt R J. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins.  Bioessays . 1998;  20 156-167
  • 59 Inki P, Jalkanen M. The role of syndecan-1 in malignancies.  Ann Med . 1996;  28 63-67
  • 60 McCormick C, Duncan G, Goutsos K T, Tufaro F. The putative tumor suppressors EXTI and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate.  Proc Natl Acad Sci USA . 2000;  97 668-673
  • 61 Pilia G, Hughes-Benzie R M, MacKenzie A. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome.  Nature Genet . 1996;  12 241-247
  • 62 Jayson G C, Lyon M, Paraskeva C. Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro.  J Biol Chem . 1998;  273 51-57
  • 63 Nackaerts K, Verbeken E, Deneffe G. Heparan sulfate proteoglycan expression in human lung-cancer cells.  Int J Cancer . 1997;  74 335-345
  • 64 Sharma B, Handler M, Eichstetter I. Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo.  J Clin Invest . 1998;  102 1599-1608
  • 65 Kato M, Saunders S, Nguyen H, Bernfield M. Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells.  Mol Biol Cell . 1995;  6 559-576
  • 66 Kleeff J, Ishiwata T, Kumbasar A. The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer.  J Clin Invest . 1998;  102 1662-1673
  • 67 Redini F, Moczar E, Poupon M F. Cell surface glycosaminoglycans of rat rhabdomyosarcoma lines with different metastatic potentials and of non-malignant rat myoblasts.  Biochim Biophys Acta . 1986;  883 98-105
  • 68 Kure S, Yoshie O, Aso H. Metastatic potential of murine B16 melanoma correlates with reduced surface heparan sulfate glycosaminoglycan.  Jpn J Cancer Res . 1987;  78 1238-1245
  • 69 Filmus J. Glypicans in growth control and cancer.  Glycobiology . 2001;  11 19R-23R
  • 70 Adatia R, Albini A, Carlone S. Suppression of invasive behavior of melanoma cells by stable expression of anti-sense perlecan cDNA.  Ann Oncol . 1997;  8 1257-1261
  • 71 Filla M S, Dam P, Rapraeger A C. The cell surface proteoglycan syndecan-1 mediates fibroblast growth factor-2 binding and activity.  J Cell Physiol . 1998;  174 310-321
  • 72 Rapraeger A C, Krufka A, Olwin B B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation.  Science . 1991;  252 1705-1708
  • 73 Lundin L, Larsson H, Kreuger J. Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis.  J Biol Chem . 2000;  275 24653-24660
  • 74 Turnbull J E, Fernig D G, Ke Y, Wilkinson M C, Gallagher J T. Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate.  J Biol Chem . 1992;  267 10337-10341
  • 75 Gallagher J T. Structure-activity relationship of heparan sulphate.  Biochem Soc Trans . 1997;  25 1206-1209
  • 76 Fannon M, Forsten K E, Nugent M A. Potentiation and inhibition of bFGF binding by heparin: a model for regulation of cellular response.  Biochemistry . 2000;  39 1434-1445
  • 77 Gengrinovitch S, Berman B, David G. Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165.  J Biol Chem . 1999;  274 10816-10822
  • 78 Folkman J, Langer R, Linhardt R J, Haudenschild C, Taylor S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone.  Science . 1983;  221 719-725
  • 79 Brickman Y G, Nurcombe V, Ford M D. Structural comparison of fibroblast growth factor-specific heparan sulfates derived from a growing or differentiating neuroepithelial cell line.  Glycobiology . 1998;  8 463-471
  • 80 Jayson G C, Gallagher J T. Heparin oligosaccharides: inhibitors of the biological activity of bFGF on Caco-2 cells.  Br J Cancer . 1997;  75 9-16
  • 81 Karumanchi S A, Jha V, Ramchandran R. Cell surface glypicans are low-affinity endostatin receptors.  Mol Cell . 2001;  7 811-822
  • 82 Woods A, Oh E S, Couchman J R. Syndecan proteoglycans and cell adhesion.  Matrix Biol . 1998;  17 477-483
  • 83 Tovari J, Paku S, Raso E. Role of sinusoidal heparan sulfate proteoglycan in liver metastasis formation.  Int J Cancer . 1997;  71 825-831
  • 84 Venkataraman G, Shriver Z, Raman R, Sasisekharan R. Sequencing complex polysaccharides.  Science . 1999;  286 537-542
  • 85 Keiser N, Venkataraman G, Shriver Z, Sasisekharan R. Direct isolation and sequencing of specific protein-binding glycosaminoglycans.  Nature Med . 2001;  7 123-128
  • 86 Sears P, Wong C H. Toward automated synthesis of oligosaccharides and glycoproteins.  Science . 2001;  291 2344-2350
  • 87 Plante O J, Palmacci E R, Seeberger P H. Automated solid-phase synthesis of oligosaccharides.  Science . 2001;  291 1523-1527
  • 88 Aikawa J, Esko J D. Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/N-sulfotransferase family.  J Biol Chem . 1999;  274 2690-2695
  • 89 Kobayashi M, Habuchi H, Yoneda M, Habuchi O, Kimata K. Molecular cloning and expression of Chinese hamster ovary cell heparan-sulfate 2-sulfotransferase.  J Biol Chem . 1997;  272 13980-13985
  • 90 Kobayashi M, Sugumaran G, Liu J. Molecular cloning and characterization of a human uronyl 2-sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan/chondroitin sulfate.  J Biol Chem . 1999;  274 10474-10480
  • 91 Kojima T, Shworak N W, Rosenberg R D. Molecular cloning and expression of two distinct cDNA-encoding heparan sulfate proteoglycan core proteins from a rat endothelial cell line.  J Biol Chem . 1992;  267 4870-4877
  • 92 Shworak N W, Liu J, Fritze L M. Molecular cloning and expression of mouse and human cDNAs encoding heparan sulfate D-glucosaminyl 3-O-sulfotransferase.  J Biol Chem . 1997;  272 28008-28019
  • 93 Shworak N W, Liu J, Petros L M. Multiple isoforms of heparan sulfate d-glucosaminyl 3-O-sulfotransferase. Isolation, characterization, and expression of human cDNAs and identification of distinct genomic loci.  J Biol Chem . 1999;  274 5170-5184
  • 94 Sugahara K, Kitagawa H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans.  Curr Opin Struct Biol . 2000;  10 518-527
  • 95 Bullock S L, Fletcher J M, Beddington R S, Wilson V A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase.  Genes Dev . 1998;  12 1894-1906
  • 96 Alexander C M, Reichsman F, Hinkes M T. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice.  Nature Genet . 2000;  25 329-332
    >