Rofo 2018; 190(07): 601-609
DOI: 10.1055/s-0044-101263
Abdomen
© Georg Thieme Verlag KG Stuttgart · New York

Clinical Evaluation of Free-Breathing Contrast-Enhanced T1w MRI of the Liver using Pseudo Golden Angle Radial k-Space Sampling

Klinische Evaluation der kontrastmittelverstärkten Leber-MRT bei freier Atmung mittels radialer „Pseudo-Golden-Angle“-k-Raum-Abtastung
Dennis M. Hedderich
1   Department of Radiology, University Hospital Cologne, Germany
2   Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
,
Kilian Weiss
3   Philips Healthcare, Hamburg, Germany
,
Judith E. Spiro
1   Department of Radiology, University Hospital Cologne, Germany
4   Department of Radiology, University Hospital, LMU Munich
,
Daniel Giese
1   Department of Radiology, University Hospital Cologne, Germany
,
Gabriele M. Beck
5   Philips Healthcare, Best, The Netherlands
,
David Maintz
1   Department of Radiology, University Hospital Cologne, Germany
,
Thorsten Persigehl
1   Department of Radiology, University Hospital Cologne, Germany
› Author Affiliations
Further Information

Publication History

16 August 2017

10 January 2018

Publication Date:
13 March 2018 (online)

Abstract

Purpose Contrast-enhanced T1-weighted MR imaging of the liver is typically acquired using breath-hold techniques to reduce motion artifacts and to allow for optimal diagnostic image quality. Insufficient breath-holds during MR data collection can cause severe reduction of image quality up to the point of being non-diagnostic. The aim of this study was to evaluate the subjective and objective clinical image quality of a novel free-breathing radial k-space sampling MR technique.

Materials and Methods Consent for this study was given by the local IRB committee. 86 patients who underwent both breath-hold (BH) and free-breathing (FB) late-phase contrast T1w-FS-FFE liver MRI using conventional BH Cartesian (Cartesian-eTHRIVE) and FB “pseudo golden angle” radial k-space sampling (Radial-eTHRIVE) were included in this retrospective analysis. Subjective analysis comprised 5-point Likert scale ratings (1 = very good; 5 = non-diagnostic) for “artifact impact”, “anatomic sharpness”, “vessel sharpness”, “contrast impression”, and “overall diagnostic quality”. Relative signal intensities in different ROIs were compared between Cartesian-eTHRIVE and Radial-eTHRIVE. For statistical differences paired Wilcoxon test and paired t-test have been performed (p < 0.05).

Results The MR scan time was significantly longer for FB Radial-eTHRIVE (2 min, 54 s) compared to BH Cartesian-eTHRIVE (0 min 15 s). Cartesian-eTHRIVE demonstrated a superior subjective contrast impression and objective measurements revealed an increased lesion-to-liver-contrast for hypointense liver lesions (Hypo-LTLC: 0.33 ± 0.19 vs. 0.20 ± 0.11; p = 0.000), while no difference was observed for hyperintense liver lesions (Hyper-LTLC). Subjective evaluation showed superior anatomic sharpness ratings by both readers for Radial-eTHRIVE. Most importantly, in a subgroup analysis of patients who were unable to perform adequate breath-holds, free-breathing Radial-eTHRIVE still demonstrated good subjective image quality.

Conclusion Free-breathing, radial k-space sampling T1w MRI of the liver delivers high diagnostic image quality, especially in patients who are unable to adequately perform breath-hold maneuvers. Thus, Radial-eTHRIVE can be an important clinical alternative in patients with impaired respiration status.

Key points

  • Delayed-phase contrast-enhanced MRI of the liver can be robustly performed using a “pseudo golden angle” Radial-eTHRIVE sequence.

  • Free-breathing Radial-eTHRIVE yields good diagnostic image quality in case of a high artifact burden in breath-hold Cartesian-eTHRIVE and thus could be used as a “back-up” for patients with impaired respiratory capacity.

  • A lower lesion-to-liver-contrast ratio is observed for hypointense liver lesions in free-breathing Radial-eTHRIVE sequence.

Citation Format

  • Hedderich DM, Weiss K, Spiro JE et al. Clinical Evaluation of Free-Breathing Contrast-Enhanced T1w MRI of the Liver using Pseudo Golden Angle Radial k-Space Sampling. Fortschr Röntgenstr 2018; 190: 601 – 609

Zusammenfassung

Ziel Für die kontrastmittelverstärkte Magnetresonanztomografie (MRT) der Leber wird üblicherweise eine T1w-FS-FFE in Atemanhaltetechnik durchgeführt, um Bewegungsartefakte zu minimieren und eine gute diagnostische Qualität zu gewährleisten. Allerdings kann eine insuffiziente Durchführung des Atemanhaltemanövers die Bildqualität deutlich negativ beeinflussen. Ziel dieser Arbeit war es, die Bildqualität einer neuartigen MR-Sequenz mit radialer „Pseudo-Golden-Angle“-k-Raumabtastung in freier Atmung in der klinischen Routine zu evaluieren.

Material und Methoden Es erfolgte eine retrospektive Auswertung der Leber-MRT in der späten Kontrastmittelphase bei 86 Patienten, die sowohl mittels der konventionellen kartesianischen k-Raumabtastung (Cartesian-eTHRIVE) in Atemanhaltung (BH) als auch mittels der radialen „Pseudo-Golden-Angle“-k-Raumabtastung (Radial-eTHRIVE) in freier Atmung (FB) untersucht wurden. Es wurden sowohl objektive als auch subjektive Qualitätsparameter durch zwei verblindete Reader erhoben und mittels Wilcoxon-Test und gepaartem t-Test verglichen (p < 0,05).

Ergebnisse Die Untersuchungszeit war für die FB-Radial-eTHRIVE signifikant länger als für die BH-Cartesian-eTHRIVE (2 min 54 s vs. 0 min 15 s). Subjektiv zeigte sich ein besseres Kontrastverhalten der Cartesian-eTHRIVE mit einem objektiv höheren Kontrast für hypointense Leberläsionen (0,33 ± 0,19 vs. 0,20 ± 0,11; p = 0,000). Die subjektive Bewertung ergab eine signifikante Überlegenheit bezügliche der Schärfe der Anatomie und der Gefäße der FB-Radial-eTHRIVE. Im Falle starker Atemartefakte in der BH-Cartesian-eTHRIVE zeigte sich in freier Atmung mit der Radial-eTHRIVE weiterhin eine gute diagnostische Bildqualität.

Schlussfolgerung Die radiale Pseudo-Golden-Angle-T1w-FS-FFE liefert eine hohe diagnostische Bildqualität in der kontrastmittelverstärkten Leber-MRT bei freier Atmung, sodass die Radial-eTHRIVE in freier Atmung bei Patienten mit ausgeprägten Atemartefakten in der DCE-MRT eine sehr hilfreiche „add-on“-Sequenz in der klinischen Routine darstellt.

Kernaussagen

  • Die radiale Pseudo-Golden-Angle-k-Raumabtastung in der späten KM-Phase der Leber-MRT liefert zuverlässig eine gute diagnostische Bildqualität.

  • Im Falle starker Atemartefakte in der konventionellen k-Raumabtastung bleibt eine hohe diagnostische Bildqualität erhalten.

  • Der Kontrast hypointenser Leberläsionen ist für die Radial-eTHRIVE herabgesetzt.

 
  • References

  • 1 Guang Y. et al. Diagnosis value of focal liver lesions with SonoVue(R)-enhanced ultrasound compared with contrast-enhanced computed tomography and contrast-enhanced MRI: a meta-analysis. J Cancer Res Clin Oncol 2011; 137: 1595-1605
  • 2 Eiber M. et al. Detection and classification of focal liver lesions in patients with colorectal cancer: retrospective comparison of diffusion-weighted MR imaging and multi-slice CT. Eur J Radiol 2012; 81: 683-691
  • 3 Banerjee R. et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 2014; 60: 69-77
  • 4 Sommer WH. et al. Contrast agents as a biological marker in magnetic resonance imaging of the liver: conventional and new approaches. Abdom Imaging 2012; 37: 164-179
  • 5 Grazioli L. et al. Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology 2012; 262: 520-529
  • 6 Hedderich DM. et al. Modern magnetic resonance imaging of the liver. Radiologe 2015; 55: 1045-1056
  • 7 ACR. ACR–SAR–SPR PRACTICE PARAMETER FOR THE PERFORMANCE OF MAGNETIC RESONANCE IMAGING (MRI) OF THE LIVER. 2015 [cited 2016 03/15], Available from: http://www.acr.org/~/media/ACR/Documents/PGTS/guidelines/MRI_Liver.pdf
  • 8 Sirlin CB. et al. Consensus report from the 6th International forum for liver MRI using gadoxetic acid. J Magn Reson Imaging 2014; 40: 516-529
  • 9 Luetkens JA. et al. Respiratory motion artefacts in dynamic liver MRI: a comparison using gadoxetate disodium and gadobutrol. Eur Radiol 2015; 25: 3207-3213
  • 10 Inoue Y. et al. Optimal techniques for magnetic resonance imaging of the liver using a respiratory navigator-gated three-dimensional spoiled gradient-recalled echo sequence. Magn Reson Imaging 2014; 32: 975-980
  • 11 Ogasawara G. et al. Evaluation of a respiratory navigator-gating technique in Gd-EOB-DTPA-enhanced magnetic resonance imaging for the assessment of liver tumors. Eur J Radiol 2016; 85: 1232-1237
  • 12 Vasanawala SS. et al. Navigated abdominal T1-W MRI permits free-breathing image acquisition with less motion artifact. Pediatr Radiol 2010; 40: 340-344
  • 13 Pruessmann KP. et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962
  • 14 Griswold MA. et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202-1210
  • 15 Chandarana H. et al. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 2011; 46: 648-653
  • 16 Reiner CS. et al. Contrast-enhanced free-breathing 3D T1-weighted gradient-echo sequence for hepatobiliary MRI in patients with breath-holding difficulties. European Radiology 2013; 23: 3087-3093
  • 17 Chandarana H. et al. Free-Breathing Contrast-Enhanced Multiphase MRI of the Liver Using a Combination of Compressed Sensing, Parallel Imaging, and Golden-Angle Radial Sampling. Invest Radiol 2013; 48: 10-16
  • 18 Davenport MS. et al. Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology 2013; 266: 452-461
  • 19 Lee MS. et al. Gadoxetic acid disodium-enhanced magnetic resonance imaging for biliary and vascular evaluations in preoperative living liver donors: comparison with gadobenate dimeglumine-enhanced MRI. J Magn Reson Imaging 2011; 33: 149-159
  • 20 Fenzi A, Bortolazzi M, Marzola P. Comparison between signal-to-noise ratio, liver-to-muscle ratio, and 1/T2 for the noninvasive assessment of liver iron content by MRI. J Magn Reson Imaging 2003; 17: 589-592
  • 21 Saito K. et al. Assessing liver function using dynamic Gd-EOB-DTPA-enhanced MRI with a standard 5-phase imaging protocol. J Magn Reson Imaging 2013; 37: 1109-1114
  • 22 Motosugi U. et al. An Investigation of Transient Severe Motion Related to Gadoxetic Acid-enhanced MR Imaging. Radiology 2016; 279: 93-102
  • 23 Davenport MS. et al. Matched within-patient cohort study of transient arterial phase respiratory motion-related artifact in MR imaging of the liver: gadoxetate disodium versus gadobenate dimeglumine. Radiology 2014; 272: 123-131
  • 24 Huppertz A. et al. Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 2004; 230: 266-275
  • 25 Motosugi U. et al. Detection of pancreatic carcinoma and liver metastases with gadoxetic acid-enhanced MR imaging: comparison with contrast-enhanced multi-detector row CT. Radiology 2011; 260: 446-453
  • 26 Lee YJ. et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 2015; 275: 97-109
  • 27 Chandarana H. et al. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol 2014; 24: 320-326
  • 28 Shin HJ. et al. Comparison of image quality between conventional VIBE and radial VIBE in free-breathing paediatric abdominal MRI. Clin Radiol 2016; 71: 1044-1049
  • 29 Budjan J. et al. Rapid Cartesian versus radial acquisition: comparison of two sequences for hepatobiliary phase MRI at 3 tesla in patients with impaired breath-hold capabilities. BMC Med Imaging 2017; 17: 32
  • 30 Reiner CS. et al. Contrast-enhanced free-breathing 3D T1-weighted gradient-echo sequence for hepatobiliary MRI in patients with breath-holding difficulties. Eur Radiol 2013; 23: 3087-3093
  • 31 Winkelmann S. et al. An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans Med Imaging 2007; 26: 68-76
  • 32 Chandarana H. et al. Respiratory Motion-Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for Dynamic Liver Magnetic Resonance Imaging. Invest Radiol 2015; 50: 749-756