Semin Neurol 2016; 36(03): 306-312
DOI: 10.1055/s-0036-1581995
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Recovery and Rehabilitation after Intracerebral Hemorrhage

Michael F. Saulle
1   Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York
,
Heidi M. Schambra
1   Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
23 May 2016 (online)

Abstract

About half of patients survive intracerebral hemorrhage (ICH), but most are left with significant disability. Rehabilitation after ICH is the mainstay of treatment to reduce impairment, improve independence in activities, and return patients to meaningful participation in the community. The authors discuss the neuroplastic mechanisms underlying recovery in ICH, preclinical and clinical interventional studies to augment recovery, and the rehabilitative and medical management of post-ICH patients.

 
  • References

  • 1 Fogelholm R, Murros K, Rissanen A, Avikainen S. Long term survival after primary intracerebral haemorrhage: a retrospective population based study. J Neurol Neurosurg Psychiatry 2005; 76 (11) 1534-1538
  • 2 Fogelholm R, Nuutila M, Vuorela AL. Primary intracerebral haemorrhage in the Jyväskylä region, central Finland, 1985-89: incidence, case fatality rate, and functional outcome. J Neurol Neurosurg Psychiatry 1992; 55 (7) 546-552
  • 3 Broderick J, Brott T, Tomsick T, Leach A. Lobar hemorrhage in the elderly. The undiminishing importance of hypertension. Stroke 1993; 24 (1) 49-51
  • 4 Boyle PA, Yu L, Nag S , et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 2015; 85 (22) 1930-1936
  • 5 Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 2012; 11 (8) 720-731
  • 6 Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med 2011; 17 (7) 796-808
  • 7 Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 2004; 24 (2) 133-150
  • 8 Carmichael ST. Brain excitability in stroke: the yin and yang of stroke progression. Arch Neurol 2012; 69 (2) 161-167
  • 9 Benowitz LI, Carmichael ST. Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis 2010; 37 (2) 259-266
  • 10 Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol 2013; 26 (6) 609-616
  • 11 Xue M, Del Bigio MR. Intracortical hemorrhage injury in rats: relationship between blood fractions and brain cell death. Stroke 2000; 31 (7) 1721-1727
  • 12 Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett 2000; 283 (3) 230-232
  • 13 Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res 2000; 871 (1) 57-65
  • 14 Donovan FM, Pike CJ, Cotman CW, Cunningham DD. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci 1997; 17 (14) 5316-5326
  • 15 Carmichael ST, Vespa PM, Saver JL , et al. Genomic profiles of damage and protection in human intracerebral hemorrhage. J Cereb Blood Flow Metab 2008; 28 (11) 1860-1875
  • 16 Barratt HE, Lanman TA, Carmichael ST. Mouse intracerebral hemorrhage models produce different degrees of initial and delayed damage, axonal sprouting, and recovery. J Cereb Blood Flow Metab 2014; 34 (9) 1463-1471
  • 17 MacLellan CL, Paquette R, Colbourne F. A critical appraisal of experimental intracerebral hemorrhage research. J Cereb Blood Flow Metab 2012; 32 (4) 612-627
  • 18 Masuda T, Isobe Y, Aihara N , et al. Increase in neurogenesis and neuroblast migration after a small intracerebral hemorrhage in rats. Neurosci Lett 2007; 425 (2) 114-119
  • 19 Yang S, Song S, Hua Y, Nakamura T, Keep RF, Xi G. Effects of thrombin on neurogenesis after intracerebral hemorrhage. Stroke 2008; 39 (7) 2079-2084
  • 20 Nguyen AP, Huynh HD, Sjovold SB, Colbourne F. Progressive brain damage and alterations in dendritic arborization after collagenase-induced intracerebral hemorrhage in rats. Curr Neurovasc Res 2008; 5 (3) 171-177
  • 21 Santos MV, Pagnussat AS, Mestriner RG, Netto CA. Motor skill training promotes sensorimotor recovery and increases microtubule-associated protein-2 (MAP-2) immunoreactivity in the motor cortex after intracerebral hemorrhage in the rat. ISRN Neurol 2013; 2013: 159184
  • 22 World Health Organization. Towards a Common Language for Functioning, Disability, and Health. Geneva: World Health Organization; 2002
  • 23 Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil 1987; 1: 6-18
  • 24 van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988; 19 (5) 604-607
  • 25 Granger CV, Dewis LS, Peters NC, Sherwood CC, Barrett JE. Stroke rehabilitation: analysis of repeated Barthel index measures. Arch Phys Med Rehabil 1979; 60 (1) 14-17
  • 26 Daverat P, Castel JP, Dartigues JF, Orgogozo JM. Death and functional outcome after spontaneous intracerebral hemorrhage. A prospective study of 166 cases using multivariate analysis. Stroke 1991; 22 (1) 1-6
  • 27 Barber M, Roditi G, Stott DJ, Langhorne P. Poor outcome in primary intracerebral haemorrhage: results of a matched comparison. Postgrad Med J 2004; 80 (940) 89-92
  • 28 Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Intracerebral hemorrhage versus infarction: stroke severity, risk factors, and prognosis. Ann Neurol 1995; 38 (1) 45-50
  • 29 Lipson DM, Sangha H, Foley NC, Bhogal S, Pohani G, Teasell RW. Recovery from stroke: differences between subtypes. Int J Rehabil Res 2005; 28 (4) 303-308
  • 30 Kelly PJ, Furie KL, Shafqat S, Rallis N, Chang Y, Stein J. Functional recovery following rehabilitation after hemorrhagic and ischemic stroke. Arch Phys Med Rehabil 2003; 84 (7) 968-972
  • 31 Katrak PH, Black D, Peeva V. Do stroke patients with intracerebral hemorrhage have a better functional outcome than patients with cerebral infarction?. PM R 2009; 1 (5) 427-433
  • 32 Schepers VP, Ketelaar M, Visser-Meily AJ, de Groot V, Twisk JW, Lindeman E. Functional recovery differs between ischaemic and haemorrhagic stroke patients. J Rehabil Med 2008; 40 (6) 487-489
  • 33 Paolucci S, Antonucci G, Grasso MG , et al. Functional outcome of ischemic and hemorrhagic stroke patients after inpatient rehabilitation: a matched comparison. Stroke 2003; 34 (12) 2861-2865
  • 34 Mestriner RG, Miguel PM, Bagatini PB , et al. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats. Behav Brain Res 2013; 244: 82-89
  • 35 Hoffmann M, Chen R. The spectrum of aphasia subtypes and etiology in subacute stroke. J Stroke Cerebrovasc Dis 2013; 22 (8) 1385-1392
  • 36 Maeshima S, Ueyoshi A, Matsumoto T , et al. Unilateral spatial neglect in patients with cerebral hemorrhage: the relationship between hematoma volume and prognosis. J Clin Neurosci 2002; 9 (5) 544-548
  • 37 Kato H, Sugawara Y, Ito H, Onodera K, Sato C, Kogure K. Somatosensory evoked potentials following stimulation of median and tibial nerves in patients with localized intracerebral hemorrhage: correlations with clinical and CT findings. J Neurol Sci 1991; 103 (2) 172-178
  • 38 Garcia PY, Roussel M, Bugnicourt JM , et al. Cognitive impairment and dementia after intracerebral hemorrhage: a cross-sectional study of a hospital-based series. J Stroke Cerebrovasc Dis 2013; 22 (1) 80-86
  • 39 Tveiten A, Ljøstad U, Mygland Å, Naess H. Functioning of long-term survivors of first-ever intracerebral hemorrhage. Acta Neurol Scand 2014; 129 (4) 269-275
  • 40 Christensen MC, Mayer SA, Ferran JM, Kissela B. Depressed mood after intracerebral hemorrhage: the FAST trial. Cerebrovasc Dis 2009; 27 (4) 353-360
  • 41 Lee KB, Kim JS, Hong BY, Kim YD, Hwang BY, Lim SH. The motor recovery related with brain lesion in patients with intracranial hemorrhage. Behav Neurol 2015; 2015: 258161
  • 42 Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB. The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 1991; 36 (2–3) 219-228
  • 43 Auriat AM, Colbourne F. Delayed rehabilitation lessens brain injury and improves recovery after intracerebral hemorrhage in rats. Brain Res 2009; 1251: 262-268
  • 44 Kim MH, Lee SM, Koo HM. Ipsilateral and contralateral skilled reach training contributes to the motor function and brain recovery after left haemorrhagic stroke of rats. Brain Inj 2012; 26 (9) 1127-1135
  • 45 Mestriner RG, Pagnussat AS, Boisserand LSB, Valentim L, Netto CA. Skilled reaching training promotes astroglial changes and facilitated sensorimotor recovery after collagenase-induced intracerebral hemorrhage. Exp Neurol 2011; 227 (1) 53-61
  • 46 Tamakoshi K, Ishida A, Takamatsu Y , et al. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats. Behav Brain Res 2014; 260: 34-43
  • 47 Takamatsu Y, Ishida A, Hamakawa M, Tamakoshi K, Jung CG, Ishida K. Treadmill running improves motor function and alters dendritic morphology in the striatum after collagenase-induced intracerebral hemorrhage in rats. Brain Res 2010; 1355: 165-173
  • 48 Auriat AM, Grams JD, Yan RH, Colbourne F. Forced exercise does not improve recovery after hemorrhagic stroke in rats. Brain Res 2006; 1109 (1) 183-191
  • 49 Jin J, Kang HM, Park C. Voluntary exercise enhances survival and migration of neural progenitor cells after intracerebral haemorrhage in mice. Brain Inj 2010; 24 (3) 533-540
  • 50 Chen J, Qin J, Su Q, Liu Z, Yang J. Treadmill rehabilitation treatment enhanced BDNF-TrkB but not NGF-TrkA signaling in a mouse intracerebral hemorrhage model. Neurosci Lett 2012; 529 (1) 28-32
  • 51 Nijland R, Kwakkel G, Bakers J, van Wegen E. Constraint-induced movement therapy for the upper paretic limb in acute or sub-acute stroke: a systematic review. Int J Stroke 2011; 6 (5) 425-433
  • 52 Ishida A, Tamakoshi K, Hamakawa M , et al. Early onset of forced impaired forelimb use causes recovery of forelimb skilled motor function but no effect on gross sensory-motor function after capsular hemorrhage in rats. Behav Brain Res 2011; 225 (1) 126-134
  • 53 DeBow SB, Davies ML, Clarke HL, Colbourne F. Constraint-induced movement therapy and rehabilitation exercises lessen motor deficits and volume of brain injury after striatal hemorrhagic stroke in rats. Stroke 2003; 34 (4) 1021-1026
  • 54 Ishida A, Misumi S, Ueda Y , et al. Early constraint-induced movement therapy promotes functional recovery and neuronal plasticity in a subcortical hemorrhage model rat. Behav Brain Res 2015; 284: 158-166
  • 55 Janssen H, Bernhardt J, Collier JM , et al. An enriched environment improves sensorimotor function post-ischemic stroke. Neurorehabil Neural Repair 2010; 24 (9) 802-813
  • 56 Auriat AM, Wowk S, Colbourne F. Rehabilitation after intracerebral hemorrhage in rats improves recovery with enhanced dendritic complexity but no effect on cell proliferation. Behav Brain Res 2010; 214 (1) 42-47
  • 57 Caliaperumal J, Colbourne F. Rehabilitation improves behavioral recovery and lessens cell death without affecting iron, ferritin, transferrin, or inflammation after intracerebral hemorrhage in rats. Neurorehabil Neural Repair 2014; 28 (4) 395-404
  • 58 Auriat AM, Colbourne F. Influence of amphetamine on recovery after intracerebral hemorrhage in rats. Behav Brain Res 2008; 186 (2) 222-229
  • 59 Khodaparast N, Hays SA, Sloan AM , et al. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke. Neurorehabil Neural Repair 2014; 28 (7) 698-706
  • 60 Porter BA, Khodaparast N, Fayyaz T , et al. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb Cortex 2012; 22 (10) 2365-2374
  • 61 Hays SA, Khodaparast N, Hulsey DR , et al. Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke 2014; 45 (10) 3097-3100
  • 62 Follesa P, Biggio F, Gorini G , et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res 2007; 1179: 28-34
  • 63 Sun Z, Baker W, Hiraki T, Greenberg JH. The effect of right vagus nerve stimulation on focal cerebral ischemia: an experimental study in the rat. Brain Stimulat 2012; 5 (1) 1-10
  • 64 Ay I, Sorensen AG, Ay H. Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia: an unlikely role for cerebral blood flow. Brain Res 2011; 1392: 110-115
  • 65 Lo AC, Guarino PD, Richards LG , et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2010; 362 (19) 1772-1783
  • 66 Dromerick AW, Lang CE, Birkenmeier RL , et al. Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS): a single-center RCT. Neurology 2009; 73 (3) 195-201
  • 67 Nadeau SE, Dobkin B, Wu SS, Pei Q, Duncan PW ; LEAPS Investigative Team. The effects of stroke type, locus, and extent on long-term outcome of gait rehabilitation: the LEAPS experience. Neurorehabil Neural Repair 2015; [Epub ahead of print]
  • 68 Mead G, Hackett ML, Lundström E, Murray V, Hankey GJ, Dennis M. The FOCUS, AFFINITY and EFFECTS trials studying the effect(s) of fluoxetine in patients with a recent stroke: a study protocol for three multicentre randomised controlled trials. Trials 2015; 16: 369
  • 69 Liu N, Cadilhac DA, Andrew NE , et al. Randomized controlled trial of early rehabilitation after intracerebral hemorrhage stroke: difference in outcomes within 6 months of stroke. Stroke 2014; 45 (12) 3502-3507
  • 70 Fritsch B, Reis J, Martinowich K , et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010; 66 (2) 198-204
  • 71 Reis J, Schambra HM, Cohen LG , et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A 2009; 106 (5) 1590-1595
  • 72 Mortensen J, Figlewski K, Andersen H. Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial. Disabil Rehabil 2016; 38 (7) 637-643
  • 73 Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models?. Neurorehabil Neural Repair 2012; 26 (8) 923-931
  • 74 Langhorne P, Duncan P. Does the organization of postacute stroke care really matter?. Stroke 2001; 32 (1) 268-274
  • 75 Beghi E, D'Alessandro R, Beretta S , et al; Epistroke Group. Incidence and predictors of acute symptomatic seizures after stroke. Neurology 2011; 77 (20) 1785-1793
  • 76 Claassen J, Jetté N, Chum F , et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology 2007; 69 (13) 1356-1365
  • 77 Naidech AM, Garg RK, Liebling S , et al. Anticonvulsant use and outcomes after intracerebral hemorrhage. Stroke 2009; 40 (12) 3810-3815
  • 78 Messé SR, Sansing LH, Cucchiara BL, Herman ST, Lyden PD, Kasner SE ; CHANT Investigators. Prophylactic antiepileptic drug use is associated with poor outcome following ICH. Neurocrit Care 2009; 11 (1) 38-44
  • 79 Battey TWK, Falcone GJ, Ayres AM , et al. Confounding by indication in retrospective studies of intracerebral hemorrhage: antiepileptic treatment and mortality. Neurocrit Care 2012; 17 (3) 361-366
  • 80 Gilad R, Boaz M, Dabby R, Sadeh M, Lampl Y. Are post intracerebral hemorrhage seizures prevented by anti-epileptic treatment?. Epilepsy Res 2011; 95 (3) 227-231
  • 81 Hemphill III JC, Greenberg SM, Anderson CS , et al; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2015; 46 (7) 2032-2060
  • 82 Arima H, Tzourio C, Butcher K , et al; PROGRESS Collaborative Group. Prior events predict cerebrovascular and coronary outcomes in the PROGRESS trial. Stroke 2006; 37 (6) 1497-1502
  • 83 Hanger HC, Wilkinson TJ, Fayez-Iskander N, Sainsbury R. The risk of recurrent stroke after intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 2007; 78 (8) 836-840
  • 84 Mayer SA, Sacco RL, Shi T, Mohr JP. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology 1994; 44 (8) 1379-1384
  • 85 Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke 1999; 30 (6) 1167-1173
  • 86 Gebel Jr JM, Jauch EC, Brott TG , et al. Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002; 33 (11) 2636-2641
  • 87 Inaji M, Tomita H, Tone O, Tamaki M, Suzuki R, Ohno K. Chronological changes of perihematomal edema of human intracerebral hematoma. Acta Neurochir Suppl (Wien) 2003; 86: 445-448
  • 88 Balami JS, Buchan AM. Complications of intracerebral haemorrhage. Lancet Neurol 2012; 11 (1) 101-118
  • 89 Xi G, Strahle J, Hua Y, Keep RF. Progress in translational research on intracerebral hemorrhage: is there an end in sight?. Prog Neurobiol 2014; 115: 45-63
  • 90 Paciaroni M, Agnelli G, Venti M, Alberti A, Acciarresi M, Caso V. Efficacy and safety of anticoagulants in the prevention of venous thromboembolism in patients with acute cerebral hemorrhage: a meta-analysis of controlled studies. J Thromb Haemost 2011; 9 (5) 893-898