Rofo 2015; 187(10): 863-871
DOI: 10.1055/s-0035-1553306
Review
© Georg Thieme Verlag KG Stuttgart · New York

Imaging-Based Liver Function Tests – Past, Present and Future

Bildgestützte Leberfunktionstests – Stand der Technik und zukünftige Entwicklungen
D. Geisel
1   Department of Diagnostic and Interventional Radiology, Charité, Campus Virchow-Klinikum, Berlin, Germany
,
L. Lüdemann
2   Department of Medical Physics, Essen University Hospital, Essen, Germany
,
B. Hamm
1   Department of Diagnostic and Interventional Radiology, Charité, Campus Virchow-Klinikum, Berlin, Germany
,
T. Denecke
1   Department of Diagnostic and Interventional Radiology, Charité, Campus Virchow-Klinikum, Berlin, Germany
› Author Affiliations
Further Information

Publication History

03 December 2014

02 May 2015

Publication Date:
31 July 2015 (online)

Abstract

Preoperative assessment of liver function and prediction of postoperative functional reserve are important in patients scheduled for liver resection. While determination of absolute liver function currently mostly relies on laboratory tests and clinical scores, postoperative remnant liver function is estimated volumetrically using imaging data obtained with computed tomography (CT) or magnetic resonance imaging (MRI). Accurate estimation of hepatic function is also relevant for intensive care patients, oncologic patients, and patients with diffuse liver disease. The indocyanine green (ICG) test is still the only established test for estimating true global liver function. However, more recent tools such as the LiMAx test also allow global assessment of hepatic function. These tests are limited when liver function is inhomogeneously distributed, which is the case in such conditions as unilateral cholestasis or after portal vein embolization. Imaging-based liver function tests were first developed in nuclear medicine and, compared with laboratory tests, have the advantage of displaying the spatial distribution of liver function. Nuclear medicine scans are obtained using tracers such as 99mTc galactosyl and 99mTc mebrofenin. Liver function is typically assessed using planar scintigraphy. However, three-dimensional volumetry is possible with single-photon emission computed tomography (SPECT-CT). Another technique for image-based liver function estimation is Gd-EOB-enhanced MRI. While metabolization of Gd-EOB in the body is similar to that of ICG and mebrofenin, its distribution in the liver can be displayed by MRI with higher temporal and spatial resolution. Moreover, MRI-based determination of liver function can be integrated into routine preoperative imaging. This makes MRI an ideal candidate for preoperative determination of liver function, though the best pulse sequence and the parameter to be derived from the image information remain to be identified. Another question to be answered is how the results may be affected by renal function and the presence of hyperbilirubinemia. As more results from clinical evaluation including comparison with postoperative liver function data become available, image-based liver function tests, especially with use of Gd-EOB as the contrast medium, have the potential to add another dimension to preoperative imaging.

Key Points:

• Liver function consists of a multitude of subfunctions such as biotransformation, excretion and storage.

• Global liver function tests are score-based tests such as Child-Pugh or MELD as well as the ICG- and LiMAx-test.

• Imaging-based liver function tests add spatial information. Current clinical standard is the 99mTc-Mebrofenin-scintigraphy.

• MRI-based function tests with Gd-EOB-DTPA have the potential to integrate seamlessly into clinical workup, feature a higher temporal and spatial resolution and do not rely on ionizing radiation.

Citation Format:

• Geisel D, Lüdemann L, Hamm B et al. Imaging-Based Liver Function Tests – Past, Present and Future. Fortschr Röntgenstr 2015; 187: 863 – 871

Zusammenfassung

Die Bestimmung der Leberfunktion und die Abschätzung der postoperativen Leberfunktion spielt insbesondere vor leberresezierenden Eingriffen eine große Rolle. Zur Bestimmung der absoluten Funktion werden gegenwärtig überwiegend laborchemische Parameter bzw. klinische Scores angewandt, die Abschätzung der postoperativen Funktion erfolgt dann über eine Volumetrie anhand von CT oder MRT-Daten. Auch in der Intensivmedizin, der Onkologie oder bei diffusen Lebererkrankungen hat die Bestimmung der Leberfunktion eine Relevanz. Als echter globaler Leberfunktionstest konnte sich bisher nur der ICG-Test durchsetzen, neuere Entwicklungen wie beispielsweise der LiMAx-Test können ebenfalls die Gesamtkapazität der Leberfunktion abschätzen. An ihre Grenzen kommen diese Methoden bei einer inhomogenen Funktionsverteilung wie beispielsweise bei einer einseitigen Cholestase oder nach einer Pfortaderembolisation. Bildgestützte Leberfunktionstests stammen ursprünglich aus der Nuklearmedizin und haben gegenüber laborchemischen Tests den Vorteil, dass die räumliche Verteilung der Leberfunktion mitabgebildet werden kann. Als nuklearmedizinische Tracer stehen 99mTc-Galaktosyl und 99mTc-Mebrofenin zur Verfügung, überwiegend erfolgt die Darstellung mittels planarer Szintigraphie, jedoch ist auch eine dreidimensionale Messung mittels SPECT-CT möglich. Eine weitere Möglichkeit zur bildgestützten Leberfunktionsmessung ist das Gd-EOB-verstärkte MRT. Gd-EOB wird vergleichbar zur ICG und Mebrofenin verstoffwechselt, lässt sich aber durch die MRT zeitlich und räumlich höher aufgelöst darstellen und in die präoperative Routinebildgebung integrieren. Dies prädestiniert es zur Evaluation der Leberfunktion, jedoch muss die optimale Sequenz und der hieraus abgeleitete Parameter noch gefunden werden. Offene Fragen bestehen darüber hinaus im Einfluß der Nierenfunktion und einer Hyperbilirubinämie. Mit zunehmender klinischer Evaluierung und dem Vergleich mit postoperativen Funktionsdaten haben bildgestützte Leberfunktionstests, insbesondere mit Gd-EOB, das Potential, die präoperative Bildgebung um eine weitere Dimension zu bereichern.

Deutscher Artikel/German Article

 
  • Literatur

  • 1 Schneider PD. Preoperative assessment of liver function. Surg Clin North Am 2004; 84: 355-373
  • 2 Sakka SG. Assessing liver function. Curr Opin Crit Care 2007; 13: 207-214
  • 3 Kanzler S, Teufel A, Galle PR. Liver function test to predict hepatic failure after liver resection – expensive and without clinical relevance?. Zentralbl Chir 2007; 132: 267-273
  • 4 Shirabe K, Shimada M, Gion T et al. Postoperative liver failure after major hepatic resection for hepatocellular carcinoma in the modern era with special reference to remnant liver volume. J Am Coll Surg 1999; 188: 304-309
  • 5 Seyama Y, Kokudo N. Assessment of liver function for safe hepatic resection. Hepatol Res 2009; 39: 107-116
  • 6 Neuhaus P, Jonas S, Settmacher U et al. Surgical management of proximal bile duct cancer: Extended right lobe resection increases resectability and radicality. Langenbecks Arch Surg 2003; 388: 194-200
  • 7 Neuhaus P, Thelen A, Jonas S et al. Oncological superiority of hilar en bloc resection for the treatment of hilar cholangiocarcinoma. Ann Surg Oncol 2012; 19: 1602-1608
  • 8 Hemming AW, Reed AI, Howard RJ et al. Preoperative portal vein embolization for extended hepatectomy. Ann Surg 2003; 237: 686-691 discussion 691–693
  • 9 de Graaf W, van den Esschert JW, van Lienden KP et al. Induction of tumor growth after preoperative portal vein embolization: Is it a real problem?. Ann Surg Oncol 2009; 16: 423-430
  • 10 Schnitzbauer AA, Lang SA, Goessmann H et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg 2012; 255: 405-414
  • 11 Avritscher R, de Baere T, Murthy R et al. Percutaneous transhepatic portal vein embolization: Rationale, technique, and outcomes. Semin Intervent Radiol 2008; 25: 132-145
  • 12 de Graaf W, van Lienden KP, van den Esschert JW et al. Increase in future remnant liver function after preoperative portal vein embolization. Br J Surg 2011; 98: 825-834
  • 13 Bae KE, Kim SY, Lee SS et al. Assessment of hepatic function with gd-eob-dtpa-enhanced hepatic MRI. Dig Dis 2012; 30: 617-622
  • 14 de Graaf W, Bennink RJ, Veteläinen R et al. Nuclear imaging techniques for the assessment of hepatic function in liver surgery and transplantation. J Nucl Med 2010; 51: 742-752
  • 15 Serafini AN, Smoak WM, Hupf HB et al. Iodine-123-Rose bengal: An improved hepatobiliary imaging agent. J Nucl Med 1975; 16: 629-632
  • 16 Bennink RJ, Tulchinsky M, de Graaf W et al. Liver function testing with nuclear medicine techniques is coming of age. Semin Nucl Med 2012; 42: 124-137
  • 17 Akaki S, Mitsumori A, Kanazawa S et al. Technetium-99m-DTPA-galactosyl human serum albumin liver scintigraphy evaluation of regional CT/MRI attenuation/signal intensity differences. J Nucl Med 1998; 39: 529-532
  • 18 Vera DR, Krohn KA, Stadalnik RC et al. Tc-99m-galactosyl-neoglycoalbumin: In vivo characterization of receptor-mediated binding to hepatocytes. Radiology 1984; 151: 191-196
  • 19 Kokudo N, Vera DR, Makuuchi M. Clinical application of tcgsa. Nucl Med Biol 2003; 30: 845-849
  • 20 Loberg MD, Cooper M, Harvey E et al. Development of new radiopharmaceuticals based on n-substitution of iminodiacetic acid. J Nucl Med 1976; 17: 633-638
  • 21 de Graaf W, Häusler S, Heger M et al. Transporters involved in the hepatic uptake of (99m)tc-mebrofenin and indocyanine green. J Hepatol 2011; 54: 738-745
  • 22 Hendrikse NH, Kuipers F, Meijer C et al. In vivo imaging of hepatobiliary transport function mediated by multidrug resistance associated protein and p-glycoprotein. Cancer Chemother Pharmacol 2004; 54: 131-138
  • 23 Ghibellini G, Leslie EM, Pollack GM et al. Use of tc-99m mebrofenin as a clinical probe to assess altered hepatobiliary transport: Integration of in vitro, pharmacokinetic modeling, and simulation studies. Pharm Res 2008; 25: 1851-1860
  • 24 Krishnamurthy S, Krishnamurthy GT. Technetium-99m-iminodiacetic acid organic anions: Review of biokinetics and clinical application in hepatology. Hepatology 1989; 9: 139-153
  • 25 Krishnamurthy GT, Turner FE. Pharmacokinetics and clinical application of technetium 99m-labeled hepatobiliary agents. Semin Nucl Med 1990; 20: 130-149
  • 26 de Graaf W, van Lienden KP, van Gulik TM et al. (99m)tc-mebrofenin hepatobiliary scintigraphy with SPECT for the assessment of hepatic function and liver functional volume before partial hepatectomy. J Nucl Med 2010; 51: 229-236
  • 27 Brown PH, Juni JE, Lieberman DA et al. Hepatocyte versus biliary disease: A distinction by deconvolutional analysis of technetium-99m IDA time-activity curves. J Nucl Med 1988; 29: 623-630
  • 28 Erdogan D, Heijnen BH, Bennink RJ et al. Preoperative assessment of liver function: A comparison of 99mtc-mebrofenin scintigraphy with indocyanine green clearance test. Liver Int 2004; 24: 117-123
  • 29 Bennink RJ, Dinant S, Erdogan D et al. Preoperative assessment of postoperative remnant liver function using hepatobiliary scintigraphy. J Nucl Med 2004; 45: 965-971
  • 30 van Lienden KP, van den Esschert JW, de Graaf W et al. Portal vein embolization before liver resection: A systematic review. Cardiovasc Intervent Radiol 2012; 36: 25-34
  • 31 Yumoto Y, Yagi T, Sato S et al. Preoperative estimation of remnant hepatic function using fusion images obtained by (99m)tc-labelled galactosyl-human serum albumin liver scintigraphy and computed tomography. Br J Surg 2010; 97: 934-944
  • 32 Hirai I, Kimura W, Fuse A et al. Evaluation of preoperative portal embolization for safe hepatectomy, with special reference to assessment of nonembolized lobe function with 99mtc-gsa SPECT scintigraphy. Surgery 2003; 133: 495-506
  • 33 Sumiyoshi T, Shima Y, Tokorodani R et al. CT/99mtc-gsa SPECT fusion images demonstrate functional differences between the liver lobes. World J Gastroenterol 2013; 19: 3217-3225
  • 34 Sumiyoshi T, Shima Y, Okabayashi T et al. Functional discrepancy between two liver lobes after hemilobe biliary drainage in patients with jaundice and bile duct cancer: An appraisal using (99m)tc-gsa SPECT/CT fusion imaging. Radiology 2014; 273: 444-451
  • 35 Beppu T, Hayashi H, Okabe H et al. Liver functional volumetry for portal vein embolization using a newly developed 99mtc-galactosyl human serum albumin scintigraphy spect-computed tomography fusion system. J Gastroenterol 2011; 46: 938-943
  • 36 Kaibori M, Ha-Kawa SK, Maehara M et al. Usefulness of tc-99m-gsa scintigraphy for liver surgery. Ann Nucl Med 2011; 25: 593-602
  • 37 Ringe KI, Husarik DB, Sirlin CB et al. Gadoxetate disodium-enhanced MRI of the liver: Part 1, protocol optimization and lesion appearance in the noncirrhotic liver. Am J Roentgenol 2010; 195: 13-28
  • 38 Cruite I, Schroeder M, Merkle EM et al. Gadoxetate disodium-enhanced MRI of the liver: Part 2, protocol optimization and lesion appearance in the cirrhotic liver. Am J Roentgenol 2010; 195: 29-41
  • 39 Hamm B, Staks T, Mühler A et al. Phase I clinical evaluation of gd-eob-dtpa as a hepatobiliary MR contrast agent: Safety, pharmacokinetics, and MR imaging. Radiology 1995; 195: 785-792
  • 40 Van Beers BE, Pastor CM, Hussain HK. Primovist, eovist: What to expect?. J Hepatol 2012; 57: 421-429
  • 41 Narita M, Hatano E, Arizono S et al. Expression of OATP1B3 determines uptake of gd-eob-dtpa in hepatocellular carcinoma. J Gastroenterol 2009; 44: 793-798
  • 42 Pascolo L, Cupelli F, Anelli PL et al. Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem Biophys Res Commun 1999; 257: 746-752
  • 43 Takao H, Akai H, Tajima T et al. MR imaging of the biliary tract with gd-eob-dtpa: Effect of liver function on signal intensity. Eur J Radiol 2011; 77: 325-329
  • 44 Smith AD, Veniero JC. Gd-EOB-DTPA as a functional MR cholangiography contrast agent: Imaging gallbladder filling in patients with and without hepatobiliary dysfunction. J Comput Assist Tomogr 2011; 35: 439-445
  • 45 Lee NK, Kim S, Lee JW et al. Biliary MR imaging with gd-eob-dtpa and its clinical applications. Radiographics 2009; 29: 1707-1724
  • 46 Wibmer A, Aliya Q, Steininger R et al. Liver transplantation: Impaired biliary excretion of gadoxate is associated with an inferior 1-year retransplantation-free survival. Invest Radiol 2012; 47: 353-358
  • 47 Schmitz SA, Mühler A, Wagner S et al. Functional hepatobiliary imaging with gadolinium-eob-dtpa. A comparison of magnetic resonance imaging and 153gadolinium-eob-dtpa scintigraphy in rats. Invest Radiol 1996; 31: 154-160
  • 48 Kim T, Murakami T, Hasuike Y et al. Experimental hepatic dysfunction: Evaluation by MRI with gd-eob-dtpa. J Magn Reson Imaging 1997; 7: 683-688
  • 49 Tajima T, Takao H, Akai H et al. Relationship between liver function and liver signal intensity in hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 2010; 34: 362-366
  • 50 Motosugi U, Ichikawa T, Oguri M et al. Staging liver fibrosis by using liver-enhancement ratio of gadoxetic acid-enhanced MR imaging: Comparison with aspartate aminotransferase-to-platelet ratio index. Magn Reson Imaging 2011; 29: 1047-1052
  • 51 Yamada A, Hara T, Li F et al. Quantitative evaluation of liver function with use of gadoxetate disodium-enhanced MR imaging. Radiology 2011; 260: 727-733
  • 52 Katsube T, Okada M, Kumano S et al. Estimation of liver function using T1 mapping on gd-eob-dtpa-enhanced magnetic resonance imaging. Invest Radiol 2011; 46: 277-283
  • 53 Katsube T, Okada M, Kumano S et al. Estimation of liver function using T2* mapping on gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid enhanced magnetic resonance imaging. Eur J Radiol 2012; 81: 1460-1464
  • 54 Haimerl M, Verloh N, Fellner C et al. MRI-based estimation of liver function: Gd-EOB-DTPA-enhanced T1 relaxometry of 3T vs. The MELD score. Sci Rep 2014; 4: 5621
  • 55 Sommer WH, Sourbron S, Huppertz A et al. Contrast agents as a biological marker in magnetic resonance imaging of the liver: Conventional and new approaches. Abdom Imaging 2012; 37: 164-179
  • 56 Nilsson H, Nordell A, Vargas R et al. Assessment of hepatic extraction fraction and input relative blood flow using dynamic hepatocyte-specific contrast-enhanced MRI. J Magn Reson Imaging 2009; 29: 1323-1331
  • 57 Forsgren MF, Dahlqvist Leinhard O, Dahlström N et al. Physiologically realistic and validated mathematical liver model revels hepatobiliary transfer rates for gd-eob-dtpa using human DCE-MRI data. PLoS One 2014; 9: e95700
  • 58 Nilsson H, Blomqvist L, Douglas L et al. Dynamic gadoxetate-enhanced MRI for the assessment of total and segmental liver function and volume in primary sclerosing cholangitis. J Magn Reson Imaging 2014; 39: 879-886
  • 59 Nilsson H, Blomqvist L, Douglas L et al. Assessment of liver function in primary biliary cirrhosis using gd-eob-dtpa-enhanced liver MRI. HPB (Oxford) 2010; 12: 567-576
  • 60 Michaely HJ, Morelli JN, Budjan J et al. CAIPIRINHA-Dixon-TWIST (CDT)-volume-interpolated breath-hold examination (VIBE): A new technique for fast time-resolved dynamic 3-dimensional imaging of the abdomen with high spatial resolution. Invest Radiol 2013; 48: 590-597
  • 61 Li KL, Zhu XP, Waterton J et al. Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 2000; 12: 347-357
  • 62 Hamy V, Dikaios N, Punwani S et al. Respiratory motion correction in dynamic MRI using robust data decomposition registration – application to DCE-MRI. Med Image Anal 2014; 18: 301-313
  • 63 Lin W, Guo J, Rosen MA et al. Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med 2008; 60: 1135-1146
  • 64 Wybranski C, Seidensticker M, Mohnike K et al. In vivo assessment of dose volume and dose gradient effects on the tolerance dose of small liver volumes after single-fraction high-dose-rate 192ir irradiation. Radiat Res 2009; 172: 598-606
  • 65 Zylka P, Denecke T, Geisel D et al. Pharmakokinetic modeling and quantification of the liver function using DCE-MRI with contrast agent gd-eob-dtpa. Joint Conference of the SSRMP, DGMP, ÖGMP 2014; 128: 236-237
  • 66 Nilsson H, Blomqvist L, Douglas L et al. Gd-EOB-DTPA-enhanced MRI for the assessment of liver function and volume in liver cirrhosis. Br J Radiol 2013; 86: 20120653
  • 67 Sourbron S, Sommer WH, Reiser MF et al. Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology 2012; 263: 874-883
  • 68 Reeder SB, Cruite I, Hamilton G et al. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011; 34: 729-749
  • 69 Hernando D, Levin YS, Sirlin CB et al. Quantification of liver iron with MRI: State of the art and remaining challenges. J Magn Reson Imaging 2014; 40: 1003-1021
  • 70 Bonekamp S, Kamel I, Solga S et al. Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately?. J Hepatol 2009; 50: 17-35
  • 71 Salameh N, Larrat B, Abarca-Quinones J et al. Early detection of steatohepatitis in fatty rat liver by using MR elastography. Radiology 2009; 253: 90-97
  • 72 Allkemper T, Sagmeister F, Cicinnati V et al. Evaluation of fibrotic liver disease with whole-liver t1ρ MR imaging: A feasibility study at 1.5 T. Radiology 2014; 271: 408-415
  • 73 Rauscher I, Eiber M, Ganter C et al. Evaluation of t1ρ as a potential MR biomarker for liver cirrhosis: Comparison of healthy control subjects and patients with liver cirrhosis. Eur J Radiol 2014; 83: 900-904
  • 74 Faria SC, Ganesan K, Mwangi I et al. MR imaging of liver fibrosis: Current state of the art. Radiographics 2009; 29: 1615-1635
  • 75 Wang YX, Yuan J, Chu ES et al. T1rho MR imaging is sensitive to evaluate liver fibrosis: An experimental study in a rat biliary duct ligation model. Radiology 2011; 259: 712-719
  • 76 Asbach P, Klatt D, Schlosser B et al. Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography. Radiology 2010; 257: 80-86
  • 77 Ding Y, Rao S, Chen C et al. Assessing liver function in patients with hbv-related HCC: A comparison of T1 mapping on gd-eob-dtpa-enhanced MR imaging with DWI. Eur Radiol 2015; 25: 1392-1398
  • 78 Bülow R, Mensel B, Meffert P et al. Diffusion-weighted magnetic resonance imaging for staging liver fibrosis is less reliable in the presence of fat and iron. Eur Radiol 2013; 23: 1281-1287
  • 79 Chung SR, Lee SS, Kim N et al. Intravoxel incoherent motion MRI for liver fibrosis assessment: A pilot study. Acta Radiol 2014; DOI: 10.1177/0284185114559763.
  • 80 Ichikawa S, Motosugi U, Morisaka H et al. MRI-based staging of hepatic fibrosis: Comparison of intravoxel incoherent motion diffusion-weighted imaging with magnetic resonance elastography. J Magn Reson Imaging 2014; 42: 204-210
  • 81 Winant CD, Aparici CM, Zelnik YR et al. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies. Phys Med Biol 2012; 57: 375-393
  • 82 Kashiwagi T, Yutani K, Fukuchi M et al. Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate x-ray CT. Ann Nucl Med 2002; 16: 255-261
  • 83 Stockmann M, Lock JF, Malinowski M et al. The limax test: A new liver function test for predicting postoperative outcome in liver surgery. HPB (Oxford) 2010; 12: 139-146
  • 84 Lan JA, Chervu LR, Johansen KL et al. Uptake of technetium 99m hepatobiliary imaging agents by cultured rat hepatocytes. Gastroenterology 1988; 95: 1625-1631
  • 85 Salem R, Thurston KG. Radioembolization with 90yttrium microspheres: A state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: Technical and methodologic considerations. J Vasc Interv Radiol 2006; 17: 1251-1278
  • 86 Lewandowski RJ, Sato KT, Atassi B et al. Radioembolization with 90Y microspheres: Angiographic and technical considerations. Cardiovasc Intervent Radiol 2007; 30: 571-592
  • 87 Sangro B, Gil-Alzugaray B, Rodriguez J et al. Liver disease induced by radioembolization of liver tumors: Description and possible risk factors. Cancer 2008; 112: 1538-1546
  • 88 Gil-Alzugaray B, Chopitea A, Iñarrairaegui M et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 2012; 57: 1078-1087
  • 89 Seidensticker R, Seidensticker M, Damm R et al. Hepatic toxicity after radioembolization of the liver using (90)y-microspheres: Sequential lobar versus whole liver approach. Cardiovasc Intervent Radiol 2012; 35: 1109-1118
  • 90 Hope TA, Ohliger MA, Qayyum A. MR imaging of diffuse liver disease: From technique to diagnosis. Radiol Clin North Am 2014; 52: 709-724
  • 91 Nolz R, Asenbaum U, Schoder M et al. Diagnostic workup of primary sclerosing cholangitis: The benefit of adding gadoxetic acid-enhanced t1-weighted magnetic resonance cholangiography to conventional t2-weighted magnetic resonance cholangiography. Clin Radiol 2014; 69: 499-508
  • 92 Ruiz A, Lemoinne S, Carrat F et al. Radiologic course of primary sclerosing cholangitis: Assessment by three-dimensional magnetic resonance cholangiography and predictive features of progression. Hepatology 2014; 59: 242-250