Horm Metab Res 2012; 44(08): 607-618
DOI: 10.1055/s-0032-1312592
Review
© Georg Thieme Verlag KG Stuttgart · New York

Sex, Stress, and Mood Disorders: At the Intersection of Adrenal and Gonadal Hormones

A. Fernández-Guasti
1   Department of Pharmacobiology, Cinvestav, México City, México
,
J. L. Fiedler
2   Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
,
L. Herrera
3   Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
,
R. J. Handa
4   Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
› Author Affiliations
Further Information

Publication History

received 01 December 2011

accepted 03 April 2012

Publication Date:
11 May 2012 (online)

Abstract

The risk for neuropsychiatric illnesses has a strong sex bias, and for major depressive disorder (MDD), females show a more than 2-fold greater risk compared to males. Such mood disorders are commonly associated with a dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis. Thus, sex differences in the incidence of MDD may be related with the levels of gonadal steroid hormone in adulthood or during early development as well as with the sex differences in HPA axis function. In rodents, organizational and activational effects of gonadal steroid hormones have been described for the regulation of HPA axis function and, if consistent with humans, this may underlie the increased risk of mood disorders in women. Other developmental factors, such as prenatal stress and prenatal overexposure to glucocorticoids can also impact behaviors and neuroendocrine responses to stress in adulthood and these effects are also reported to occur with sex differences. Similarly, in humans, the clinical benefits of antidepressants are associated with the normalization of the dysregulated HPA axis, and genetic polymorphisms have been found in some genes involved in controlling the stress response. This review examines some potential factors contributing to the sex difference in the risk of affective disorders with a focus on adrenal and gonadal hormones as potential modulators. Genetic and environmental factors that contribute to individual risk for affective disorders are also described. Ultimately, future treatment strategies for depression should consider all of these biological elements in their design.

 
  • References

  • 1 American Psychiatric Association . Diagnostic and statistical manual of mental disorders. 4th ed. Washington D.C.: American Psychiatry Press Inc; 2000
  • 2 Garcia-Alvarez R. Epidemiology of depression in Latin America. Psychopathlogy 1986; 19 (Suppl. 02) 22-25
  • 3 Willner P, Mitchel PJ. The validity of animal models of predisposition to depression. Behav Pharmacol 2002; 13: 169-188
  • 4 Recamier-Carballo S, Fernández-Guasti A. Forced swimming and chronic mild stress as animal models of depression. In Cruz-Morales SE, Pedro Arriaga-Ramírez JC. (eds.). Behavioral animal models. Kerala, India: Research Signpost; 2012: 123-137
  • 5 de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463-475
  • 6 Chung S, Son GH, Kim K. Adrenal peripheral oscillator in generating the circadian glucocorticoid rhythm. Ann NY Acad Sci 2011; 1220: 71-81
  • 7 Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E. Circadian rhyths in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol 2012; 349: 20-29
  • 8 Szafaraczyk A, Ixart G, Alonso G, Malaval F, Nouguier-Soule J, Assenmacher I. CNS control of the circadian adrenocortical rhythm. J Steroid Biochem 1983; 19: 1009-1015
  • 9 Kalsbeek A, Van Der Vliet J, Buijs RM. Decrease of endogenous vasopressin release necessary for expression of the circadian rise in plasma corticosterone: a reverse microdialysis study. J Neuroendocrinol 1996; 8: 299-307
  • 10 Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 2006; 4: 163-173
  • 11 Dunn AJ, Berridge CW. Is corticotropin-releasing factor a mediator of stress responses?. Ann NY Acad Sci 1990; 579: 183-191
  • 12 Aguilera G, Nikodemova M, Wynn PC, Catt KJ. Corticotropin releasing hormone receptors: two decades later. Peptides 2004; 25: 3319-3329
  • 13 Ratka A, Sutanto W, Bloemers M, de Kloet ER. On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology 1989; 50: 117-123
  • 14 Herman JP, Wiegand SJ, Watson SJ. Regulation of basal corticotropin-releasing hormone and arginine vasopressin messenger ribonucleic acid expression in the paraventricular nucleus: effects of selective hypothalamic deafferentations. Endocrinology 1990; 127: 2408-2417
  • 15 Bondy CA, Whitnall MH, Brady LS, Gainer H. Coexisting peptides in hypothalamic neuroendocrine systems: some functional implications. Cell Mol Neurobiol 1989; 9: 427-446
  • 16 Raadsheer FC, Sluiter AA, Ravid R, Tilders FJ, Swaab DF. Localization of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the human hypothalamus; age-dependent colocalization with vasopressin. Brain Res 1993; 615: 50-62
  • 17 Rivier C, Vale W. Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo. Endocrinology 1983; 11: 939-942
  • 18 Schlosser SF, Almeida OF, Patchev VK, Yassouridis A, Elands J. Oxytocin stimulated release of adrenocorticotropin from the rat pituitary is mediated by arginine vasopressin receptors of the V1b type. Endocrinology 1994; 135: 2058-2063
  • 19 Gillies GE, Linton EA, Lowry PJ. Corticotropin releasing activity of the neew CRF is potentiated several times by vasopressin. Nature 1982; 299: 355-357
  • 20 Neumann ID, Wigger A, Torner L, Holsboer F, Landgraf R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action iwthin the paraventricular nucleus. J Neuroendocrinol 2000; 12: 235-243
  • 21 Windle RJ, Shanks N, Lightman SL, Ingram CD. Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology 1997; 138: 2829-2834
  • 22 Neumann ID. Stimuli and consequences of dendritic release of oxytocin within the brain. Biochem Soc Trans 2007; 35: 1252-1257
  • 23 Deuschle M, Schweiger U, Weber B, Gotthardt U, Korner A, Schmider J, Standhardt H, Lammers CH, Heuser I. Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male depressed patients and healthy controls. J Clin Endocrinol Metab 1997; 82: 234-238
  • 24 Rubin RT, Phillips JJ, McCracken JT, Sadow TF. Adrenal gland volume in major depression: relationship to basal and stimulated pituitary-adrenal cortical axis function. Biol Psychiatry 1996; 40: 89-97
  • 25 Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreacitivty in depressed patients. Science 1984; 226: 21342-21344
  • 26 Feldman S, Weidenfeld J. The excitatory effects of the amygdala on hypothalamo-pituitary-adrenocortical responses are mediated by hypothalamic norepinephrine, serotonin, and CRF-41. Brain Res Bull 1998; 45: 389-393
  • 27 Heuser Il, Yassouridis A, Holsboer F. The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiatr Res 1994; 28: 341-356
  • 28 Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 1994; 60: 436-444
  • 29 Raadsheer FC, van Heerikhuize JJ, Lucassen PJ, Hoogendijk WJ, Tilders FJ, Swaab DF. Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. Am J Psychiatry 1995; 152: 1372-1376
  • 30 Purba JS, Googendijk WJ, Hofman MA, Swaab DF. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 1996; 53: 137-143
  • 31 Dinan TG, Scott LV. Anatomy of melancholia: focus on hypothalamic-pituitary-adrenal axis overactivity and the role of vasopressin. J Anat 2005; 207: 259-264
  • 32 Muller MB, Keck ME, Zimmermann S, Holsboer F, Wurst W. Disruption of feeding behavior in CRH receptor 1-deficient mice is dependent on glucocorticoids. Neuroreport 2000; 11: 1963-1966
  • 33 Meynen G, Unmehopa UA, Heerikhuize JJ, Hofman MA, Swaab DF, Hoogendijk WJ. Increased Arginine Vasopressin mRNA Expression in the Human Hypothalamus in Depression: A Preliminary Report. Biol Psychiatry 2006; 60: 892-895
  • 34 Van Londen L, Goekoop JG, van Kempen GM, Frankhuijzen-Sierevogel AC, Wiegant VM, van der Velde EA, De Wied D. Plasma levels of arginine-vasopressin elevated in patients with major depression. Neuropsychopharmacology 1997; 17: 284-292
  • 35 Pariante CM. The glucocorticoid receptor: part of the solution or part of the problem?. J Psychopharmacol 2006; 20: 79-84
  • 36 Boyle MP, Kolber BJ, Vogt SK, Wozniak DF, Muglia LJ. Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness. J Neurosci 2006; 26: 1971-1978
  • 37 Parker KJ, Kenna HA, Zeitzer JM, Kelelr J, Blasey CM, Amico JA, Schatzberg AF. Preliminary evidence that plasma oxytocin levels are elevated in major depression. Psychiatry Res 2010; 178: 359-362
  • 38 Cyranowski JM, Hofkens TL, Frank E, Seltman H, Cai HM, Amico JA. Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosom Med 2008; 70: 965-975
  • 39 Scantamburlo G, Hansenn M, fuchs S, Pitchot W, Marechal P, Pequeux C, Ansseau M, Legros JJ. Plasma oxytocin levels an danxiety in patients with major depression. Psychoneuroendocrinology 2007; 32: 407-410
  • 40 Groeneweg FL, Karst H, de Kloet ER, Joels M. Rapid non-genomic effects of corticosteroids and their role in the central stress response. J Endocrinol 2011; 209: 153-167
  • 41 Kellendonk C, Gass P, Kretz O, Schutz G, Tronche F. Corticosteroid receptors in the brain: gene targeting studies. Brain Res Bull 2002; 57: 73-83
  • 42 Korte SM. Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev 2001; 25: 117-142
  • 43 McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann NY Acad Sci 2010; 1186: 190-222
  • 44 Hinkelmann K, Moritz S, Botzenhardt J, Riedesel K, Wiedemann K, Kellner M, Otte C. Cognitive impairment in major depression: association with salivary cortisol. Biol Psychiatry 2009; 66: 879-885
  • 45 Barden N. Implication of the hypothalamic-pituitary-adrenal axis in the physiopathology of depression. J Psychiatry Neurosci 2004; 29: 185-193
  • 46 Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology 2008; 33: 320-331
  • 47 Gourley SL, Taylor JR. Recapitulation and reversal of a persistent depression-like syndrome in rodents. Curr Protoc Neurosci 2009; Chapter 9: Unit 9 32
  • 48 Bravo JA, Diaz-Veliz G, Mora S, Ulloa JL, Berthoud VM, Morales P, Arancibia S, Fiedler JL. Desipramine prevents stress-induced changes in depressive-like behavior and hippocampal markers of neuroprotection. Behav Pharmacol 2009; 20: 273-285
  • 49 Ulloa JL, Castaneda P, Berrios C, Diaz-Veliz G, Mora S, Bravo JA, Araneda K, Menares C, Morales P, Fiedler JL. Comparison of the antidepressant sertraline on differential depression-like behaviors elicited by restraint stress and repeated corticosterone administration. Pharmacol Biochem Behav 2010; 97: 213-221
  • 50 Mineka S, Watson D, Clark LA. Comorbidity of anxiety and unipolar mood disorders. Annu Rev Psychol 1998; 49: 377-412
  • 51 Cardenas SP, Parra C, Bravo J, Morales P, Lara HE, Herrera-Marschitz M, Fiedler JL. Corticosterone differentially regulates bax, bcl-2 and bcl-x mRNA levels in the rat hippocampus. Neurosci Lett 2002; 331: 9-12
  • 52 Xu H, Steven Richardson J, Li XM. Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 2003; 28: 53-62
  • 53 Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 1995; 69: 89-98
  • 54 Magarinos AM, Deslandes A, McEwen BS. Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol 1999; 371: 113-122
  • 55 Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 2005; 75: 161-205
  • 56 McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci 1999; 22: 295-318
  • 57 Smith MA, Cizza G. Stress-induced changes in brain-derived neurotrophic factor expression are attenuated in aged Fischer 344/N rats. Neurobiol Aging 1996; 17: 859-864
  • 58 Calabrese F, Molteni R, Racagni G, Riva MA. Neuronal plasticity: A link between stress and mood disorders. Psychoneuroendocrinology 2009; 34S: S208-S216
  • 59 Numakawa T, Kumamaru E, Adachi N, Yagasaki Y, Izumi A, Kunugi H. Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-gamma signaling for glutamate release via a glutamate transporter. Proc Natl Acad Sci USA 2009; 106: 647-652
  • 60 Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251-3261
  • 61 Aydemir O, Deveci A, Taneli F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 261-265
  • 62 Rojas PS, Fritsch R, Rojas RA, Jara P, Fiedler JL. Serum brain-derived neurotrophic factor and glucocorticoid receptor levels in lymphocytes as markers of antidepressant response in major depressive patients: a pilot study. Psychiatry Res 2011; 189: 239-245
  • 63 Heim C, Nemeroff CB. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry 1999; 46: 1509-1522
  • 64 Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386-389
  • 65 Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 2001; 49: 1023-1039
  • 66 Heim C, Newport DJ, Bonsall R, Miller AH, Nemeroff CB. Altered pituitary-adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. Am J Psychiatry 2001; 158: 575-581
  • 67 Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, Plotsky PM. Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res 2000; 122: 81-103
  • 68 Ploj K, Roman E, Nylander I. Long-term effects of maternal separation on ethanol intake and brain opioid and dopamine receptors in male Wistar rats. Neuroscience 2003; 121: 787-799
  • 69 Murgatroyd C, Spengler D. Epigenetics of early child development. Front Psychiatry 2011; 2: 16
  • 70 Heim C, Mletzko T, Purselle D, Musselman DL, Nemeroff CB. The dexamethasone/corticotropin-releasing factor test in men with major depression: role of childhood trauma. Biol Psychiatry 2008; 63: 398-405
  • 71 Brunton PJ, Russell JA. Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: sex-specific effects. J Neuroendocrinol 2010; 22: 258-271
  • 72 Richardson HN, Zorrilla EP, Mandyam CD, Rivier CL. Exposure to repetitive versus varied stress during prenatal development generates two distinct anxiogenic and neuroendocrine profiles in adulthood. Endocrinology 2006; 147: 2506-2517
  • 73 Suzuki K, Miyamoto T, Miyamoto T, Kaji Y, Takekawa H, Hirata K. Circadian variation of core body temperature in Parkinson’s disease patients with depression: a potential biological marker for depression in Parkinson disease. Neuropsychobiology 2007; 56: 172-179
  • 74 Salerian AJ, Saleri NG, Salerian JA. Brain temperature may influence mood: a hypothesis. Med Hypotheses 2008; 70: 497-500
  • 75 Zuloaga DG, Carbone DL, Hiroi R, Chong DL, Handa RJ. Dexamethansone induces apoptosis in the developing rat amygdala in an age-, region-, and sex-specific manner. Neuroscience 2011; 199: 535-547
  • 76 Hossain A, Hajman K, Charitidi K, Erhardt S, Zimmermann U, Knipper M, Canlon B. Prenatal dexamethasone impairs behavior and the activation of the BDNF exon IV promoter in the paravetnricular nucleus in adult offspring. Endocrinology 2008; 149: 6356-6365
  • 77 Barrington KJ. The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs. BMC Pediatr 2001; 1: 1
  • 78 Karemaker R, Kavelaars A, ter Wolbeek M, Tersteeg-Kamperman M, Baerts W, Veen S, Samsom JF, Visser GH, van Bel F, Heijnen CJ. Neonatal dexamethasone treatment for chronic lung disease of prematurity alters the hypothalamo-pituitary-adrenal axis and immune system activity at school age. Pediatrics 2008; 121: e870-e878
  • 79 Swanson LW, Sawchenko PE. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosc 1983; 6: 269-324
  • 80 Lohoff FW. Overview of the genetics of major depressive disorder. Curr Psychiatry Rep 2010; 12: 539-546
  • 81 Horstmann S, Binder EB. Glucocorticoids as predictors of treatment response in depression. Harvard Rev Psychiatry 2011; 19: 125-143
  • 82 Ribeiro SC, Tandon R, Grunhaus L, Greden JF. The DST as a predictor of outcome in depression: a meta-analysis. Am J Psychiatry 1993; 150: 1618-1629
  • 83 Huizenga NA, Koper JW, de Lange P, Pols HA, Stolk RP, Grobbee DE, de Jong FH, Lamberts SW. Interperson variability but intraperson stability of baseline plasma cortisol concentrations, and its relation to feedback sensitivity of the hypothalamo-pituitary-adrenal axis to a low dose of dexamethasone in elderly individuals. J Clin Endocrinol Metab 1998; 83: 47-54
  • 84 Araya AV, Rojas P, Fritsch R, Rojas R, Herrera L, Rojas G, Gatica H, Silva H, Fiedler JL. Early Response to Venlafaxine Antidepressant Correlates with Lower ACTH Levels Prior to Pharmacological Treatment. Endocrine 2006; 30: 289-298
  • 85 DeRijk RH, Schaaf M, de Kloet ER. Glucocorticoid receptor variants: clinical implications. J Steroid Biochem Mol Biol 2002; 81: 103-122
  • 86 Derijk RH, van Leeuwen N, Klok MD, Zitman FG. Corticosteroid receptor-gene variants: Modulators of the stress-response and implications for mental health. Eur J Pharmacol 2008; 585: 492-501
  • 87 van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S, Salyakina D, Lamberts SW, Holsboer F. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry 2006; 59: 681-688
  • 88 van West D, Van Den Eede F, Del-Favero J, Souery D, Norrback KF, Van Duijn C, Sluijs S, Adolfsson R, Mendlewicz J, Deboutte D, Van Broeckhoven C, Claes S. Glucocorticoid receptor gene-based SNP analysis in patients with recurrent major depression. Neuropsychopharmacology 2006; 31: 620-627
  • 89 Stevens A, Ray DW, Zeggini E, John S, Richards HL, Griffiths CE, Donn R. Glucocorticoid sensitivity is determined by a specific glucocorticoid receptor haplotype. J Clin Endocrinol Metab 2004; 89: 892-897
  • 90 Brouwer JP, Appelhof BC, van Rossum EF, Koper JW, Fliers E, Huyser J, Schene AH, Tijssen JG, Van Dyck R, Lamberts SW, Wiersinga WM, Hoogendijk WJ. Prediction of treatment response by HPA-axis and glucocorticoid receptor polymorphisms in major depression. Psychoneuroendocrinology 2006; 31: 1154-1163
  • 91 Bet PM, Penninx BW, Bochdanovits Z, Uitterlinden AG, Beekman AT, van Schoor NM, Deeg DJ, Hoogendijk WJ. Glucocorticoid receptor gene polymorphisms and childhood adversity are associated with depression: New evidence for a gene-environment interaction. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 660-669
  • 92 Steiger H, Bruce K, Gauvin L, Groleau P, Joober R, Israel M, Richardson J, Kin FN. Contributions of the glucocorticoid receptor polymorphism (BclI) and childhood abuse to risk of bulimia nervosa. Psychiatry Res 2011; 187: 193-197
  • 93 Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, Papiol S, Seaman S, Lucae S, Kohli MA, Nickel T, Kunzel HE, Fuchs B, Majer M, Pfennig A, Kern N, Brunner J, Modell S, Baghai T, Deiml T, Zill P, Bondy B, Rupprecht R, Messer T, Köhnlein O, Dabitz H, Brückl T, Müller N, Pfister H, Lieb R, Mueller JC, Lõhmussaar E, Strom TM, Bettecken T, Meitinger T, Uhr M, Rein T, Holsboer F, Müller-Myhsok B. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 2004; 36: 1319-1325
  • 94 Tsai SJ, Hong CJ, Chen TJ, Yu YW. Lack of supporting evidence for a genetic association of the FKBP5 polymorphism and response to antidepressant treatment. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 1097-1098
  • 95 Nemeroff CB, Owens MJ. Pharmacologic differences among the SSRIs: focus on monoamine transporters and the HPA axis. CNS Spectr 2004; 9: 23-31
  • 96 Licinio J, O’Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R, Lake S, Tantisira KG, Weiss ST, Wong ML. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry 2004; 9: 1075-1082
  • 97 Liu Z, Zhu F, Wang G, Xiao Z, Tang J, Liu W, Wang H, Liu H, Wang X, Wu Y, Cao Z, Li W. Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci Lett 2007; 414: 155-158
  • 98 Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, Koob GF, Vale WW, Lee KF. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 2000; 24: 410-414
  • 99 Villafuerte SM, Del-Favero J, Adolfsson R, Souery D, Massat I, Mendlewicz J, Van Broeckhoven C, Claes S. Gene-based SNP genetic association study of the corticotropin-releasing hormone receptor-2 (CRHR2) in major depression. Am J Med Genet 2002; 114: 222-226
  • 100 Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord 2007; 104: 83-90
  • 101 Landgraf R, Kessler MS, Bunck M, Murgatroyd C, Spengler D, Zimbelmann M, Nussbaumer M, Czibere L, Turck CW, Singewald N, Rujescu D, Frank E. Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: focus on vasopressin and glyoxalase-I. Neurosci. Biobehav Rev 2007; 31: 89-102
  • 102 Altemus M, Cizza G, Gold PW. Chronic fluoxetine treatment reduces hypothalamic vasopressin secretion in vitro. Brain Res 1992; 593: 311-313
  • 103 Aguilera G, Rabadan-Diehl C. Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul Pept 2000; 96: 23-29
  • 104 Stewart LQ, Roper JA, Young 3rd WS, O’Carroll AM, Lolait SJ. The role of the arginine vasopressin Avp1b receptor in the acute neuroendocrine action of antidepressants. Psychoneuroendocrinology 2008; 33: 405-415
  • 105 Dempster EL, Burcescu I, Wigg K, Kiss E, Baji I, Gadoros J, Tamas Z, Kennedy JL, Vetro A, Kovacs M, Barr CL. Evidence of an association between the vasopressin V1b receptor gene (AVPR1B) and childhood-onset mood disorders. Arch Gen Psychiatry 2007; 64: 1189-1195
  • 106 van West D, Del-Favero J, Aulchenko Y, Oswald P, Souery D, Forsgren T, Sluijs S, Bel-Kacem S, Adolfsson R, Mendlewicz J, Van Duijn C, Deboutte D, Van Broeckhoven C, Claes S. A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol Psychiatry 2004; 9: 287-292
  • 107 Estrada-Camarena E, Martínez-Mota L, Fernández-Guasti A. Sex differences in depression and its treatment. In Psychoneuroendocrinology. de Gortari P. (ed.). Kerala, India: Research Signpost; 2011: 97-113
  • 108 Linzer M, Spitzer R, Kroenke K, Williams JB, Hahn S, Brody D, deGruy F. Gender, quality of life, and mental disorders in primary care: results from the PRIME-MD 1 000 study. Am J Med 1996; 101: 526-533
  • 109 Freeman EW, Sammel MD, Lin H, Nelson DB. Associations of hormones and menopausal status with depressed mood in women with no history of depression. Arch Gen Psychiatry 2006; 63: 375-382
  • 110 Newmann J, Engel R, Jensen J. Age differences in depressive symptom experiences. J Gerontol 1991; 46: 224-235
  • 111 Estrada-Camarena E, Fernández-Guasti A, López-Rubalcava C. Antidepressant like effect of different estrogenic compounds in the forced swimming test. Neuropsychopharmacology 2003; 28: 830-838
  • 112 Romano-Torres M, Fernández-Guasti A. Estradiol valerate elicits antidepressant-like effects in middle-aged female rats under chronic mild stress. Behav Pharmacol 2010; 21: 104-111
  • 113 Soares CN, Almeida OP, Joffe H, Cohen LS. Efficacy of estradiol for the treatment of depressive disorders in perimenopausal women: a double-blind, randomized, placebo-controlled trial. Arch Gen Psychiatry 2001; 58: 529-534
  • 114 Quitkin F, Stewart J, McGrath P, Taylor BP, Tisminetzky MS, Petkova E, Chen Y, Ma G, Klein DF. Are there differences between women’s and men’s antidepressant responses?. Am J Psychiatry 2002; 159: 1848-1854
  • 115 Khan A, Brodhead AE, Schwartz KA, Kolts RL, Brown WA. Sex differences in antidepressant response in recent antidepressant clinical trials. J Clin Psychopharmacol 2005; 25: 318-324
  • 116 Herrera-Pérez JJ, Martínez-Mota L, Fernández-Guasti A. Aging impairs the antidepressant-like response to citalopram in male rats. Eur J Pharmacol 2010; 633: 39-43
  • 117 Reynolds 3rd CF, Kupfer DJ. Depression and aging: a look to the future. Psychiatry Serv 1999; 50: 1167-1172
  • 118 Dalla C, Pitychoutis PM, Kokras N, Papadopoulou-Daifoti Z. Sex differences in response to stress and expression of depressive-like behaviours in the rat. Curr Top Behav Neurosci 2011; 8: 97-118
  • 119 Dalla C, Pitychoutis PM, Kokras N, Papadopoulou-Daifoti Z. Sex differences in animal models of depression and antidepressant response. Basic Clin Pharmacol Toxicol 2010; 106: 226-233
  • 120 Alonso SJ, Castellano MA, Afonso D, Rodriguez M. Sex differences in behavioral despair: relationships between behavioral despair and open field activity. Physiol Behav 1991; 49: 69-72
  • 121 Martínez-Mota L, Cruz-Martínez JJ, Márquez-Baltazar S, Fernández-Guasti A. Estrogens participate in the antidepressant-like effect of desipramine and fluoxetine in male rats. Pharmacol Biochem Behav 2008; 88: 332-340
  • 122 Dalla C, Antoniou K, Drossopoulou G, Xagoraris M, Kokras Sfikakis A, Papadopoulou-Daifot Z. Chronic mild stress impact: are females more vulnerable?. Neuroscience 2005; 135: 703-714
  • 123 David DJ, Nic Dhonnchadha BA, Jolliet P, Hascoët M, Bourin M. Are there gender differences in the temperature profile of mice after acute antidepressant administration and exposure to two animal models of depression?. Behav Brain Res 2001; 119: 203-211
  • 124 Wilson CA, Davies DC. The control of sexual differentiation of the reproductive system and brain. Reproduction 2007; 133: 331-359
  • 125 Martínez-Mota L, Fernández-Guasti A. Testosterone-dependent antidepressant like effect of noradrenergic, but not of serotonergic drugs. Pharmacol Biochem Behav 2004; 78: 711-718
  • 126 Angold A, Worthman CS. Puberty onset of gender differences in rates of depression: a developmental, epidemiologic and neuroendocrine perspective. J Affect Disord 1993; 29: 145-158
  • 127 Angold A, Costello EJ, Erkanli A, Worthman CM. Pubertal changes in hormone levels and depression in girls. Psychol Med 1999; 29: 1043-1053
  • 128 Spear LP. Heightened stress responsivity and emotional reactivity during pubertal maturation: implications for psychopathology. Dev Psychopathol 2009; 21: 87-97
  • 129 Gaskin JH, Kitay JI. Adrenocortical function in the hamster. Sex differences and effects of gonadal hormones. Endocrinology 1970; 87: 779-786
  • 130 Martínez-Mota L, Ulloa RE, Herrera-Pérez J, Chavira R, Fernández-Guasti A. Sex and age differences in the impact of the forced swimming test on the levels of steroid hormones. Physiol Behav 2011; 104: 900-905
  • 131 Viau V, Lee P, Sampson J, Wu J. A testicular influence on restraint-induced activation of medial parvocellular neurons in the paraventricular nucleus in the male rat. Endocrinology 2003; 144: 3067-3075
  • 132 Lund TD, Munson DJ, Haldy ME, Handa RJ. Androgen inhibits, while oestrogen enhances, restraint-induced activation of neuropeptide neurons in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2004; 16: 272-278
  • 133 Viau V. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J Neuroendocrinology 2002; 14: 506-513
  • 134 Bingaman EW, Magnuson DJ, Gray TS, Handa RJ. Androgen inhibits the increases in hypothalamic corticotropin-releasing hormone (CRH) and CHR-immunoreactivity following gonadectomy. Neuroendocrinology 1994; 59: 228-234
  • 135 Bingaman EW, Baeckman LM, Yracheta JM, Handa RJ, Gray TS. Localization of androgen receptor within peptidergic neurons of the rat forebrain. Brain Res bull 1994; 35: 379-382
  • 136 Bingham B, Williamson M, Viau V. Androgen and estrogen receptor-beta distribution within spinal-projecting and neurosecretory neurons in the paraventricular nucleus of the male rat. J Comp Neurol 2006; 499: 911-923
  • 137 Williamson M, Bingham B, Gray M, Innala L, Viau V. The medial preoptic nucleus integrates the central influences of testosterone on the paraventriculara nucleus of the hypothalamus and its extended circuitries. J Neurosc 2010; 30: 11762-11770
  • 138 Bingham B, Myung C, Innala L, Gray M, Anonuevo A, Viau V. Androgen receptors in the posterior bed nucleus of the stria terminalis increase neuropeptide expression and the stress-induced activation of the paraventricular nucleus of the hypothalamus. Neuropsychopharmacology 2011; 36: 1433-1443
  • 139 Viau V, Meaney MJ. Variations in the hypothalamic-pituitary-adrenal response to stress during trhe estrous cycle in the rat. Endocrinology 1991; 129: 2503-2511
  • 140 Viau V, Meaney MJ. The inhibitory effect of testosterone on hypothalamic-pituitary-adrenal responses to stress is mediated by the medial preoptic area. J Neurosci 1996; 16: 1866-1876
  • 141 Handa RJ, Burgess LH, Kerr JE, O’Keefe JA. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 1994; 28: 464-476
  • 142 Isgor C, Cecchi M, Kabbaj M, Akil H, Watson SJ. Estrogen receptor beta in the paraventricular nucleus of the hypothalamus regulates the neuroendocrine response to stress and is regulated by corticosterone. Neuroscience 2003; 121: 837-845
  • 143 Ochedalski T, Subburaju S, Wynn PC, Aguilera G. Interaction between oestrogen and oxytocin on hypothalamic-pituitary-adrenal axis activity. J Neuroendocrinology 2007; 19: 189-197
  • 144 Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996; 93: 5925-5930
  • 145 Shughrue PJ, Lane MV, Merchenthaler I. Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 1997; 388: 507-525
  • 146 Laflamme N, Nappi RE, Drolet G, Labrie C, Rivest S. Expression and neuropeptidergic characterization of estrogen receptors (ERalpha and ERbeta) throughout the rat brain: anatomical evidence of distinct roles of each subtype. J Neurbiol 1998; 36: 357-378
  • 147 Hrabovszky E, Kallo I, Hajszan T, Shughrue PJ, Merchenthaler I, Liposits Z. Expression of estrogen receptor-beta messenger ribonucleic acid in oxytocin and vasopressin neurons of the rat supraoptic and paraventricular nuclei. Endocrinology 1998; 139: 2600-2604
  • 148 Suzuki S, Handa RJ. Estrogen receptor-beta, but not estrogen receptor-alpha, is expressed in prolactin neurons of the female rat paraventricular and supraoptic nuclei: comparison with other neuropeptides. J Comp Neurol 2005; 484: 28-42
  • 149 Lund TD, Hinds LR, Handa RJ. The androgen 5alpha-dihydrotestosterone and its metabolite 5alpha-androstan-3beta, 17beta-diol inhibit the hypothalamo-pituitary-adrenal response to stress by acting through estrogen receptor beta-expressing neurons in the hypothalamus. J Neurosci 2006; 26: 1448-1456
  • 150 Weiser MJ, Wu TJ, Handa RJ. Estrogen receptor-beta agonist diarylpropionitrile: biological activities of R- and S-enantiomers on behavior and hormonal response to stress. Endocrinology 2009; 150: 1817-1825
  • 151 Weiser MJ, Handa RJ. Estrogen impairs glucocorticoid dependent negative feedback on the hypothalamic-pituitary-adrenal axis via estrogen receptor alpha within the hypothalamus. Neuroscience 2009; 159: 883-895
  • 152 Seale JV, Wood SA, Atkinson HC, Harbuz MS, Lightma SL. Postnatal masculinization alters the HPA axis phenotype in the adult female rat. J Physiol 2005; 563: 265-274
  • 153 Seale JV, Wood SA, Atkinson HC, Lightman SL, Harbuz MS. Organizational role for testosterone and estrogen on adult hypothalamic-pituitary-adrenal axis activity in the male rat. Endocrinology 2005; 146: 1973-1982