Int J Sports Med 2010; 31(10): 742-746
DOI: 10.1055/s-0030-1261942
Orthopedics & Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

Knee Rotation and Loading during Spin and Step Turn

H. Wang1 , N. Zheng1
  • 1Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering Systems, University of North Carolina at Charlotte, NC, United States
Further Information

Publication History

accepted after revision June 07, 2010

Publication Date:
19 July 2010 (online)

Abstract

The tibia axial rotation and knee joint valgus torque may increase anterior cruciate ligament (ACL) tension in direction changes during daily activities. The purpose of the study was to compare knee joint rotation and torque between step turn and spin turn in direction change following walking downstairs. The knee joint axial rotation and valgus torque were quantified from 20 healthy subjects. Significant differences were found between 2 turn strategies and between 2 legs. Spin turn showed significantly greater internal tibia rotation (13.5°±5.9°), greater tibia rotation range of motion (−15.1°∼13.5°) than step turn (5.1°±5.2° and −11.5°∼5.1°) for both legs. Significantly greater peak valgus torque during spin turn (−0.91±0.33 Nm/kg) was found than that during step turn (−0.25±0.32 Nm/kg) for the left leg, while there was no significant difference between 2 turn strategies for the right leg (spin turn: −0.44±0.23 Nm/kg, and step turn: −0.40±0.27 N/kg). Excessive internal axial rotation combined with higher valgus torque may make the ACL and ACL graft more vulnerable to injury. The study indicated that, for right dominant people, turning with right leg or using step turn might reduce the stress on the ACL or ACL graft after ACL reconstruction.

References

  • 1 Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, Cugat R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors.  Knee Surg Sports Traumatol Arthrosc. 2009;  17 705-729
  • 2 AMTI .Biomechanics Platform Set Instruction Manual. In: Advanced Mechanical Technology Inc:. 11-12
  • 3 Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics.  J Biomech Eng. 1998;  120 743-749
  • 4 Bell AL, Pedersen DR, Brand RA. A comparison of the accuracy of several hip center location prediction methods.  J Biomech. 1990;  23 617-621
  • 5 Bellchamber TL, van den Bogert AJ. Contributions of proximal and distal moments to axial tibial rotation during walking and running.  J Biomech. 2000;  33 1397-1403
  • 6 Cumming RG, Klineberg RJ. Fall frequency and characteristics and the risk of hip fractures.  J Am Geriatr Soc. 1994;  42 774-778
  • 7 Ettlinger CF, Johnson RJ, Shealy JE. A method to help reduce the risk of serious knee sprains incurred in alpine skiing.  Am J Sports Med. 1995;  23 531-537
  • 8 Fukuda Y, Woo SL, Loh JC, Tsuda E, Tang P, McMahon PJ, Debski RE. A quantitative analysis of valgus torque on the ACL: a human cadaveric study.  J Orthop Res. 2003;  21 1107-1112
  • 9 Gao B, Zheng N. Alterations in 3-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking.  Clin Biomech (Bristol, Avon). 2010;  25 222-229
  • 10 Gao B, Zheng NN. Investigation of soft tissue movement during level walking: translations and rotations of skin markers.  J Biomech. 2008;  41 3189-3195
  • 11 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 12 Hase K, Stein RB. Analysis of rapid stopping during human walking.  J Neurophysiol. 1998;  80 255-261
  • 13 Hughes G, Watkins J, Owen N. Gender differences in lower limb frontal plane kinematics during landing.  Sports Biomech. 2008;  7 333-341
  • 14 Leardini A, Chiari L, Della Croce U, Cappozzo A. Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation.  Gait Posture. 2005;  21 212-225
  • 15 Luepongsak N, Amin S, Krebs DE, McGibbon CA, Felson D. The contribution of type of daily activity to loading across the hip and knee joints in the elderly.  Osteoarthritis Cartilage. 2002;  10 353-359
  • 16 Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL. Combined knee loading states that generate high anterior cruciate ligament forces.  J Orthop Res. 1995;  13 930-935
  • 17 McLean SG, Walker KB, van den Bogert AJ. Effect of gender on lower extremity kinematics during rapid direction changes: an integrated analysis of 3 sports movements.  J Sci Med Sport. 2005;  8 411-422
  • 18 Mountcastle SB, Posner M, Kragh Jr JF, Taylor DC. Gender differences in anterior cruciate ligament injury vary with activity: epidemiology of anterior cruciate ligament injuries in a young, athletic population.  Am J Sports Med. 2007;  35 1635-1642
  • 19 Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis.  Am J Sports Med. 2004;  32 1002-1012
  • 20 Patla AE, Prentice SD, Robinson C, Neufeld J. Visual control of locomotion: strategies for changing direction and for going over obstacles.  J Exp Psychol Hum Percept Perform. 1991;  17 603-634
  • 21 Quatman CE, Hewett TE. The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism?.  Br J Sports Med. 2009;  43 328-335
  • 22 Sedgman R, Goldie P, Iansek R. Development of a measure of turning during walking. In: Advancing Rehabilitation Conference Proceedings, La Trobe University, Melbourne, Australia; 1994: 26-31
  • 23 Shimokochi Y, Shultz SJ. Mechanisms of noncontact anterior cruciate ligament injury.  J Athl Train. 2008;  43 396-408
  • 24 Spoor CW, Veldpaus FE. Rigid body motion calculated from spatial co-ordinates of markers.  J Biomech. 1980;  13 391-393
  • 25 Taylor MJ, Dabnichki P, Strike SC. A 3-dimensional biomechanical comparison between turning strategies during the stance phase of walking.  Hum Mov Sci. 2005;  24 558-573
  • 26 Teichtahl AJ, Wluka AE, Morris ME, Davis SR, Cicuttini FM. The associations between the dominant and nondominant peak external knee adductor moments during gait in healthy subjects: evidence for symmetry.  Arch Phys Med Rehabil. 2009;  90 320-324
  • 27 Thigpen MT, Light KE, Creel GL, Flynn SM. Turning difficulty characteristics of adults aged 65 years or older.  Phys Ther. 2000;  80 1174-1187
  • 28 van der Harst JJ, Gokeler A, Hof AL. Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg.  Clin Biomech (Bristol, Avon). 2007;  22 674-680
  • 29 Winter DA. The Biomechanics and Motor Control of Human Movement. John Wiley & Sons; 2004
  • 30 Xu D, Chow JW, Wang YT. Effects of turn angle and pivot foot on lower extremity kinetics during walk and turn actions.  J Appl Biomech. 2006;  22 74-79

Correspondence

Dr. Naiquan Zheng

University of North

Carolina at Charlotte

9201 University City

Blvd. Charlotte, NC

28223

United States

Phone: +1/704/6877 301

Fax: +1/704/6878 345

Email: nzheng@uncc.edu

    >