Int J Sports Med 2009; 30(12): 888-891
DOI: 10.1055/s-0029-1238291
Genetics & Molecular Biology

© Georg Thieme Verlag KG Stuttgart · New York

Is There an ACE IDACTN3 R577X Polymorphisms Interaction that Influences Sprint Performance?

N. Eynon1 , A. J. Alves2 , C. Yamin1 , M. Sagiv1 , J. A. Duarte3 , J. Oliveira2 , M. Ayalon4 , E. Goldhammer5 , M. Sagiv1 , Y. Meckel1
  • 1Zinman College of Physical Education and Sports Sciences at the Wingate Institute, Genetics and Molecular Biology, Netanya, Israel
  • 2Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
  • 3Sport Biology, University of Porto, Porto, Portugal
  • 4Zinman College of Physical Education, Biomechanics, Wingate Institute, Netanya, Israel
  • 5Bnai-Zion Haifa Medical Center, Heart Institute, Haifa, United States
Further Information

Publication History

accepted after revision July 30, 2009

Publication Date:
10 December 2009 (online)

Abstract

Functional R577X (rs.1815739) and ID (rs.5186) polymorphisms in the α-actinin-3 (ACTN3) and the angiotensin converting enzyme (ACE) genes, respectively, have been associated with sprint performance. The aim of this study was to determine their effect on sprint performance among 81 Israeli sprinters and 240 healthy controls. Results revealed that the ACE II genotype+ACTN3 R allele (P=0.003 for sprinters vs. controls), and the ACTN3 RR genotype+ACE I allele (P=0.001 for sprinters vs. controls) might be the genotype for sprinters. In the whole cohort the probability of ACTN3 RR genotype+ ACE I allele being a sprinter (odds ratio 2.67, 95% confidence interval 1.45–4.93) and of ACE II genotype+ACTN3 R allele being a sprinter (odds ratio 3.57, 95% confidence interval 1.78–7.15) was significantly higher than that in the controls. In conclusion, the above data suggest that ACE ID/ACTN3 R577X genotype combination is associated with sprint ability. However, ACE ID/ACTN3 R577X genotype combination is not related to the level of performance.

References

  • 1 Amir O, Amir R, Yamin C, Attias E, Eynon N, Sagiv M, Sagiv M, Meckel Y. The ACE deletion allele is associated with Israeli elite endurance athletes.  Exp Physiol. 2007;  92 881-886
  • 2 Buchner A, Faul F, Erdfelder E. G*Power: A priori, post-hoc, and compromise power analyses for the Macintosh. In. 2.1.2 ed. Trier, Germany: University of Trier 1997
  • 3 Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P, Fraumeni Jr JF, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS. Replicating genotype-phenotype associations.  Nature. 2007;  447 655-660
  • 4 Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, Price TB, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Hoffman EP. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women.  J Appl Physiol. 2005;  99 154-163
  • 5 Coates D. The angiotensin converting enzyme (ACE).  Int J Biochem Cell Biol. 2003;  35 769-773
  • 6 Danser AH, Schalekamp MA, Bax WA, van den Brink AM, Saxena PR, Riegger GA, Schunkert H. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism.  Circulation. 1995;  92 1387-1388
  • 7 Druzhevskaya AM, Ahmetov II, Astratenkova IV, Rogozkin VA. Association of the ACTN3 R577X polymorphism with power athlete status in Russians.  Eur J Appl Physiol. 2008;  103 631-634
  • 8 Eynon N, Duarte JA, Oliveira J, Sagiv M, Yamin C, Meckel Y, Sagiv M, Goldhammer E. ACTN3 R577X polymorphism and Israeli top-level athletes.  Int J Sports Med. 2009;  30 695-698
  • 9 Gomez-Gallego F, Santiago C, Gonzalez-Freire M, Muniesa CA, Fernandez Del Valle M, Perez M, Foster C, Lucia A. Endurance performance: genes or gene combinations?.  Int J Sports Med. 2009;  30 66-72
  • 10 Gonzalez-Freire M, Santiago C, Verde Z, Lao JI, Oiivan J, Gomez-Gallego F, Lucia A. Unique among unique. Is it genetically determined?.  Br J Sports Med. 2009;  43 307-309
  • 11 Jones A, Woods DR. Skeletal muscle RAS and exercise performance.  Int J Biochem Cell Biol. 2003;  35 855-866
  • 12 Juffer P, Furrer R, Gonzalez-Freire M, Santiago C, Verde Z, Serratosa L, Morate FJ, Rubio JC, Martin MA, Ruiz JR, Arenas J, Gomez-Gallego F, Lucia A. Genotype distributions in top-level soccer players: a role for ACE?.  Int J Sports Med. 2009;  30 387-392
  • 13 Lucia A, Olivan J, Gomez-Gallego F, Santiago C, Montil M, Foster C. Citius and longius (faster and longer) with no alpha-actinin-3 in skeletal muscles?.  Br J Sports Med. 2007;  41 616-617
  • 14 MacArthur DG, North KN. ACTN3: A genetic influence on muscle function and athletic performance.  Exerc Sport Sci Rev. 2007;  35 30-34
  • 15 Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, North K. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy.  Hum Mol Genet. 2001;  10 1335-1346
  • 16 Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance.  J Appl Physiol. 1999;  87 1313-1316
  • 17 Nazarov IB, Woods DR, Montgomery HE, Shneider OV, Kazakov VI, Tomilin NV, Rogozkin VA. The angiotensin converting enzyme I/D polymorphism in Russian athletes.  Eur J Hum Genet. 2001;  9 797-801
  • 18 North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population.  Nat Genet. 1999;  21 353-354
  • 19 O’Dell SD, Humphries SE, Day IN. Rapid methods for population-scale analysis for gene polymorphisms: the ACE gene as an example.  Br Heart J. 1995;  73 368-371
  • 20 Ogura Y, Naito H, Kakigi R, Ichinoseki-Sekine N, Kurosaka M, Katamoto S. Alpha-actinin-3 levels increase concomitantly with fast fibers in rat soleus muscle.  Biochem Biophys Res Commun. 2008;  372 584-588
  • 21 Papadimitriou ID, Papadopoulos C, Kouvatsi A, Triantaphyllidis C. The ACTN3 gene in elite Greek track and field athletes.  Int J Sports Med. 2008;  29 352-355
  • 22 Rando OJ, Verstrepen KJ. Timescales of genetic and epigenetic inheritance.  Cell. 2007;  128 655-668
  • 23 Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels.  J Clin Invest. 1990;  86 1343-1346
  • 24 Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. New York: Cold Spring Harbor Laboratory Press 1989
  • 25 Santiago C, Gonzalez-Freire M, Serratosa L, Morate FJ, Meyer T, Gomez-Gallego F, Lucia A. ACTN3 genotype in professional soccer players.  Br J Sports Med. 2008;  42 71-73
  • 26 Sharp NC. The human genome and sport, including epigenetics and athleticogenomics: a brief look at a rapidly changing field.  J Sports Sci. 2008;  26 1127-1133
  • 27 Suminaga R, Matsuo M, Takeshima Y, Nakamura H, Wada H. Nonsense mutation of the alpha-actinin-3 gene is not associated with dystrophinopathy.  Am J Med Genet. 2000;  92 77-78
  • 28 Woods D, Hickman M, Jamshidi Y, Brull D, Vassiliou V, Jones A, Humphries S, Montgomery H. Elite swimmers and the D allele of the ACE I/D polymorphism.  Hum Genet. 2001;  108 230-232
  • 29 Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, North K. ACTN3 genotype is associated with human elite athletic performance.  Am J Hum Genet. 2003;  73 627-631

Correspondence

Dr. N. Eynon

The Zinman College of Physical Education and Sports Sciences at the Wingate Institute,

Genetics and Molecular Biology

Netanya

Israel

Phone: 09/863 96 38

Fax: 09/863 96 35

Email: eynon@wincol.ac.il

    >