Am J Perinatol 2009; 26(3): 191-198
DOI: 10.1055/s-0028-1103027
© Thieme Medical Publishers

Fetal and Neonatal Programming: Evidence and Clinical Implications

Tetyana H. Nesterenko1 , Hany Aly1
  • 1Department of Neonatology, Children's National Medical Center, and the George Washington University Hospital, Washington, DC
Further Information

Publication History

Publication Date:
21 November 2008 (online)

ABSTRACT

Fetal and neonatal programming is the phenomenon describing deviations from normal developmental patterns. These deviations can increase risks for diseases later in life and are an example of phenotypic plasticity seen throughout nature. For instance, infants born with low birth weight, as a marker of an unfavorable intrauterine environment, are programmed differently and may have an increased risk for multiple diseases in adulthood. These risks include coronary heart disease, increased insulin resistance, hypertension, and imbalances in the immune system. This article discusses mechanisms responsible for fetal and neonatal programming. We also introduce possible changes to current clinical management and practices that reflect the current findings of fetal and neonatal programming.

REFERENCES

  • 1 Barker D J, Winter P D, Osmond C, Margetts B, Simmonds S J. Weight in infancy and death from ischaemic heart disease.  Lancet. 1989;  2 577-580
  • 2 Kajantie E, Osmond C, Barker D J, Forsen T, Phillips D I, Eriksson J G. Size at birth as a predictor of mortality in adulthood: a follow-up of 350 000 person-years.  Int J Epidemiol. 2005;  34 655-663
  • 3 Barker D J. Fetal origin of coronary heart disease.  BMJ. 1995;  311 171-174
  • 4 Thornburg K L. Fetal origin of cardiovascular diseases.  Neoreview. 2004;  5 527-532
  • 5 Nathanielsz P W. Life in Womb: The Origin of Health and Disease. Ithaca, NY; Promethean Press 1999
  • 6 Cheung Y F, Wong K Y, Lam B C, Tsoi N S. Relation of arterial stiffness with gestational age and birth weight.  Arch Dis Child. 2004;  89 217-221
  • 7 Simmons R. Fetal origin of adult disease: concepts and controversies.  Neoreview.. 2004;  5 511-515
  • 8 Hovi P, Andersson S, Ericsson J G et al.. Glucose regulation in young adults with very low birth weight.  N Engl J Med. 2007;  356 2053-2063
  • 9 DesRobert C, Lane R, Li N, Neu J. Neonatal nutrition and consequences of adult health.  Neoreview. 2005;  6 211-219
  • 10 Wells J C, Chomtho S, Fewtrell M S. Programming of body composition by early growth and nutrition.  Proc Nutr Soc. 2007;  66 423-434
  • 11 Zandi-Nejad K, Luyckx V A, Brenner B M. Adult hypertension and kidney disease: the role of fetal programming.  Hypertension. 2006;  47 502-508
  • 12 Luyckx V A, Brenner B M. Low birth weight, nephron number, and kidney disease.  Kidney Int Suppl. 2005;  97 S68-S77
  • 13 Bursztyn M, Gross M-L, Goltser-Dubner T et al.. Adult hypertension in intrauterine growth-restricted offspring of hyperinsulinemic rats: evidence of subtle renal damage.  Hypertension. 2006;  48 717-723
  • 14 Knackstedt M K, Hamelmann E, Arck P C. Mothers in stress: consequences for the offspring.  Am J Reprod Immunol. 2005;  54 63-69
  • 15 Raqib R, Alam D S, Sarker P et al.. Low birth weight is associated with altered immune function in rural Bangladeshi children: a birth cohort study.  Am J Clin Nutr. 2007;  85 845-852
  • 16 Bedford Russell A R, Murch S H. Could peripartum antibiotics have delayed health consequences for the infants?.  BJOG. 2006;  113 758-765
  • 17 Herz U, Petschow B. Perinatal events affecting the onset of allergic diseases.  Curr Drug Targets Inflamm Allergy. 2005;  4 523-529
  • 18 Stoll B J, Hansen N, Fanaroff A A et al.. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants.  N Engl J Med. 2002;  347 240-247
  • 19 Eggesbo M, Botten G, Stigum H, Nafstad P, Magnus P. Is delivery by cesarean section a risk factor for food allergy?.  J Allergy Clin Immunol. 2003;  112 420-426
  • 20 Halvorsen T, Skadberg B T, Eide G E, Roksung O D, Carlsen K H, Bakke P. Pulmonary outcome in adolescents of extreme preterm birth: a regional cohort study.  Acta Paediatr. 2004;  93 1294-1300
  • 21 Chatkin M N, Menezes A M. The association between low birthweight and asthma: a systematic literature review.  Rev Panam Salud Publica. 2005;  17 102-109
  • 22 Phillips D I. Programming of the stress response: a fundamental mechanism underlying the long-term effect of the fetal environment?.  J Intern Med. 2007;  261 453-460
  • 23 Jennings B J, Ozanne S E, Dorling M W, Hales C N. Early growth determines longevity in male rats and may be related to telomere shortening in the kidney.  FEBS Lett. 1999;  448 4-8
  • 24 Hales C N, Ozanne S E. The dangerous road of catch-up growth.  J Physiol. 2003;  547 5-10
  • 25 De Rooij S R, Painter R C, Holleman F, Bossuyt P M, Roseboom T J. The metabolic syndrome in adults prenatally exposed to the Dutch famine.  Am J Clin Nutr. 2007;  86 1219-1224
  • 26 Salihu H M, Mbah A K, Alio A P, Kirby R S. AGA-primed uteri compared with SGA-primed uteri and the success of subsequent in utero fetal programming.  Obstet Gynecol. 2008;  111 935-943
  • 27 Selling K E, Carstensen J, Finstrom O, Sydsjo G. Intergenerational effects of preterm birth and reduced intrauterine growth: a population-based study of Swedish mother-offspring pairs.  BJOG. 2006;  113 430-440
  • 28 Ehrenkranz R A, Dusick A M, Vohr B R, Wright L L, Wrage L A, Poole W K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants.  Pediatrics. 2006;  117 1253-1261
  • 29 Stettler N, Zemel B S, Kumanyika S, Stalling V A. Infant weight gain and childhood overweight status in a multicenter, cohort study.  Pediatrics. 2002;  109 194-199
  • 30 Singhal A, Cole T J, Fewtrell M et al.. Promotion of faster weight gain in infants born small for gestational age: is there and adverse effect on later blood pressure?.  Circulation. 2007;  115 213-220
  • 31 Singhal A, Fewtrell M, Cole T J, Lucas A. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm.  Lancet. 2003;  361 1089-1097
  • 32 Poindexter B B, Langer J C, Dusick A M, Ehrenkranz R A. Early provision of parenteral amino acids in extremely low birth weight infants: relation to growth and neurodevelopmental outcome.  J Pediatr. 2006;  148 300-305
  • 33 Thureen P J. The neonatologist's dilemma: catch-up growth or beneficial undernutrition in very low birth weight infants—what are optimal growth rates?.  J Pediatr Gastroenterol Nutr. 2007;  45 s152-s154
  • 34 Hanson M, Gluckman P, Bier D et al.. Report on the 2nd World Congress on fetal origins of adult disease.  Pediatr Res. 2004;  55 894-897
  • 35 Giaffer M H, Holdsworth C D, Duerden B I. The assessment of feacal flora in patients with inflammatory bowel disease by a simplified bacteriological technique.  J Med Microbiol. 1991;  35 238-243
  • 36 Fabia R, Ar'Rajab A, Johanson M L et al.. Impairment of bacterial flora in human ulcerative colitis and experimental colitis in rats.  Digestion. 1993;  54 248-255
  • 37 Bach J F. The effect of infections on susceptibility to autoimmune and allergic diseases.  N Engl J Med. 2002;  347 911-920
  • 38 Saavedra J M. Use of probiotics in pediatrics: rationale, mechanisms of action, and practical aspects.  Nutr Clin Pract. 2007;  22 351-353
  • 39 Marini A, Agosti M, Motta G, Mosca F. Effects of a dietary and environmental prevention programme on the incidence of allergic symptoms in high atopic risk infants: three years' follow up.  Acta Paediatr Suppl. 1996;  414 1-21
  • 40 Björksten B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life.  J Allergy Clin Immunol. 2001;  108 516-520
  • 41 Farooqi I S, Hopkin J M. Early childhood infection and atopic disorder.  Thorax. 1998;  53 927-932
  • 42 Wickens K, Pearce N, Crane J, Beasley R. Antibiotic use in early childhood and the development of asthma.  Clin Exp Allergy. 1999;  29 766-771
  • 43 Von Mutius E, Illi S, Hirsch T, Leupold W, Keil U, Weiland S K. Frequency of infections and risk of asthma, atopy and airway hyperresponsiveness in children.  Eur Respir J. 1999;  14 4-11
  • 44 Barclay A R, Stenson B, Simpson J H, Weaver L T, Wilson D C. Probiotics for necrotizing enterocolitis: a systematic review.  J Pediatr Gastroenterol Nutr. 2007;  45 569-576
  • 45 Chiang B L, Sheih Y H, Wang L H, Liao C K, Gill H S. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses.  Eur J Clin Nutr. 2000;  54 849-855
  • 46 Fukushima Y, Kawata Y, Hara H, Terada A, Mitsuoka T. Effect of probiotic formula on intestinal immunoglobulin A production in healthy children.  Int J Food Microbiol. 1998;  42 39-44
  • 47 Link-Amster H, Rochat F, Saudan K Y, Mignot O, Aeschlimann J M. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake.  FEMS Immunol Med Microbiol. 1994;  10 55-63
  • 48 Butel M-J, Suau A, Campeotto F et al.. Conditions of bifidobacterial colonization in preterm infants: a prospective analysis.  J Pediatr Gastroenterol Nutr. 2007;  44 577-582
  • 49 Fukushima Y, Li S-T, Hara H, Terada A, Mitsuoka T. Effect of follow-up formula containing bifidobacteria (NAN BF) on fecal flora and fecal metabolites in healthy children.  Bioscience Microflora. 1997;  16 65-72
  • 50 Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial.  Lancet. 2001;  357 1076-1079
  • 51 Kalliomäki M, Salminen S, Poussa T, Arvilommi H, Isolauri E. Probiotics and prevention of atopic disease: 4-year follow-up of a randomized placebo-controlled trial.  Lancet. 2003;  361 1869-1871

Hany AlyM.D. 

900 23rd Street, NW Suite G2092

Washington, DC 20037

Email: haly@mfa.gwu.edu

    >