Semin Neurol 2008; 28(4): 453-466
DOI: 10.1055/s-0028-1083689
© Thieme Medical Publishers

Picturing Multiple Sclerosis: Conventional and Diffusion Tensor Imaging

Robert J. Fox1
  • 1Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, Ohio
Further Information

Publication History

Publication Date:
08 October 2008 (online)

ABSTRACT

Magnetic resonance imaging (MRI) has provided an unparalleled window into understanding multiple sclerosis (MS). Through recognition of relatively specific characteristics of MS, MRI has become an integral part of patient initial evaluation and long-term management. MRI has now been integrated into the formal diagnostic criteria, whereby new lesions can fulfill either dissemination in space or dissemination in time criteria. Long-term MS therapies significantly reduce the development of new lesions as measured by MRI, and clinical trial methodology now routinely uses MRI as the primary outcome in Phase I/II MS trials. Despite the advantages provided by MRI, conventional imaging indicates only the presence of injury to the central nervous system, providing little information on either the severity of injury or its later recovery. Several advanced imaging methodologies such as diffusion tensor imaging (DTI) provide a greater dynamic range for evaluating tissue integrity. DTI has provided useful insights into the pathogenesis of MS, both within lesions as well as within the white matter which appears normal on conventional imaging. Evidence from animal models suggests that DTI may differentiate axonal injury from demyelination and therefore may be useful in the evaluation of neuroprotective therapies.

REFERENCES

  • 1 Susac J O, Murtagh F R, Egan R A et al.. MRI findings in Susac's syndrome.  Neurology. 2003;  61 1783-1787
  • 2 Bakshi R, Ariyaratana S, Benedict R H, Jacobs L. Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions.  Arch Neurol. 2001;  58 742-748
  • 3 Fisher E, Chang A, Fox R J et al.. Imaging correlates of axonal swelling in chronic multiple sclerosis brains.  Ann Neurol. 2007;  62 219-228
  • 4 van Waesberghe J H, Kamphorst W, De Groot C J et al.. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability.  Ann Neurol. 1999;  46 747-754
  • 5 Minneboo A, Uitdehaag B M, Ader H J et al.. Patterns of enhancing lesion evolution in multiple sclerosis are uniform within patients.  Neurology. 2005;  65 56-61
  • 6 Miller D H, Barkhof F, Nauta J J. Gadolinium enhancement increases the sensitivity of MRI in detecting disease activity in multiple sclerosis.  Brain. 1993;  116 1077-1094
  • 7 Silver N C, Good C D, Sormani M P et al.. A modified protocol to improve the detection of enhancing brain and spinal cord lesions in multiple sclerosis.  J Neurol. 2001;  248 215-224
  • 8 Gasperini C, Paolillo A, Rovaris M et al.. A comparison of the sensitivity of MRI after double- and triple-dose Gd-DTPA for detecting enhancing lesions in multiple sclerosis.  Magn Reson Imaging. 2000;  18 761-763
  • 9 Adams R D, Kubik C S. The morbid anatomy of the demyelinative diseases.  Am J Med. 1952;  12 510-546
  • 10 Bergers E, Bot J C, van der Valk P et al.. Diffuse signal abnormalities in the spinal cord in multiple sclerosis: direct postmortem in situ magnetic resonance imaging correlated with in vitro high-resolution magnetic resonance imaging and histopathology.  Ann Neurol. 2002;  51 652-656
  • 11 Hickman S J. Optic nerve imaging in multiple sclerosis.  J Neuroimaging. 2007;  17(S1) 42S-45S
  • 12 Trapp B D, Peterson J, Ransohoff R M et al.. Axonal transection in the lesions of multiple sclerosis.  N Engl J Med. 1998;  338 278-285
  • 13 Losseff N A, Wang L, Lai H M et al.. Progressive cerebral atrophy in multiple sclerosis. A serial MRI study.  Brain. 1996;  119 2009-2019
  • 14 Nijeholt G J, van Walderveen M A, Castelijns J A et al.. Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms.  Brain. 1998;  121 687-697
  • 15 Kidd D, Thorpe J W, Thompson A J et al.. Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis.  Neurology. 1993;  43 2632-2637
  • 16 Paolillo A, Pozzilli C, Gasperini C et al.. Brain atrophy in relapsing-remitting multiple sclerosis: relationship with “black holes,” disease duration and clinical disability.  J Neurol Sci. 2000;  174 85-91
  • 17 Sailer M, Losseff N A, Wang L et al.. T1 lesion load and cerebral atrophy as a marker for clinical progression in patients with multiple sclerosis. A prospective 18 months follow-up study.  Eur J Neurol. 2001;  8 37-42
  • 18 Richert N D, Howard T, Frank J A et al.. Relationship between inflammatory lesions and cerebral atrophy in multiple sclerosis.  Neurology. 2006;  66 551-556
  • 19 Leist T P, Gobbini M I, Frank J A, McFarland H F. Enhancing magnetic resonance imaging lesions and cerebral atrophy in patients with relapsing multiple sclerosis.  Arch Neurol. 2001;  58 57-60
  • 20 Rudick R A, Fisher E, Lee J C, Duda J T, Simon J. Brain atrophy in relapsing multiple sclerosis: relationship to relapses, EDSS, and treatment with interferon beta-1a.  Mult Scler. 2000;  6 365-372
  • 21 Fisher E, Rudick R A, Simon J H et al.. Eight-year follow-up study of brain atrophy in patients with MS.  Neurology. 2002;  59 1412-1420
  • 22 Rudick R A, Fisher E, Lee J C, Simon J, Jacobs L. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group.  Neurology. 1999;  53 1698-1704
  • 23 Sormani M P, Rovaris M, Valsasina P et al.. Measurement error of two different techniques for brain atrophy assessment in multiple sclerosis.  Neurology. 2004;  62 1432-1434
  • 24 Filippi M, Rovaris M, Inglese M et al.. Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial.  Lancet. 2004;  364 1489-1496
  • 25 Poser C, Paty D, Scheinberg L et al.. New diagnostic criteria for multiple sclerosis: guidelines for research protocols.  Ann Neurol. 1983;  13 227-231
  • 26 McDonald W I, Compston A, Edan G et al.. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis.  Ann Neurol. 2001;  50 121-127
  • 27 Polman C H, Reingold S C, Edan G et al.. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”.  Ann Neurol. 2005;  58 840-846
  • 28 Simon J H, Li D, Traboulsee A et al.. Standardized MR imaging protocol for multiple sclerosis: Consortium of MS Centers consensus guidelines.  AJNR Am J Neuroradiol. 2006;  27 455-461
  • 29 Barkhof F, Hommes O R, Scheltens P, Valk J. Quantitative MRI changes in gadolinium-DPTA enhancement after high-dose intravenous methylprednisolone in multiple sclerosis.  Neurology. 1991;  41 1219-1222
  • 30 Gasperini C, Pozzilli C, Bastianello S et al.. Effects of steroids on Gd-enhancing lesions before and during recombinant beta interferon 1a treatment in relapsing remitting multiple sclerosis.  Neurology. 1998;  50 403-406
  • 31 Charil A, Yousry T A, Rovaris M et al.. MRI and the diagnosis of multiple sclerosis: expanding the concept of “no better explanation”.  Lancet Neurol. 2006;  5 841-852
  • 32 Jacobs L D, Beck R W, Simon J H et al.. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group.  N Engl J Med. 2000;  343 898-904
  • 33 Wingerchuk D M, Lennon V A, Pittock S J, Lucchinetti C F, Weinshenker B G. Revised diagnostic criteria for neuromyelitis optica.  Neurology. 2006;  66 1485-1489
  • 34 Lennon V A, Wingerchuk D M, Kryzer T J et al.. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.  Lancet. 2004;  364 2106-2112
  • 35 Li D K, Held U, Petkau J et al.. MRI T2 lesion burden in multiple sclerosis: a plateauing relationship with clinical disability.  Neurology. 2006;  66 1384-1389
  • 36 Filippi M, Paty D W, Kappos L et al.. Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study.  Neurology. 1995;  45 255-260
  • 37 Mammi S, Filippi M, Martinelli V et al.. Correlation between brain MRI lesion volume and disability in patients with multiple sclerosis.  Acta Neurol Scand. 1996;  94 93-96
  • 38 Zivadinov R, Leist T P. Clinical-magnetic resonance imaging correlations in multiple sclerosis.  J Neuroimaging. 2005;  15 10S-21S
  • 39 Rudick R A, Lee J C, Simon J, Fisher E. Significance of T2 lesions in multiple sclerosis: a 13-year longitudinal study.  Ann Neurol. 2006;  60 236-242
  • 40 Rudick R A, Lee J C, Simon J, Ransohoff R M, Fisher E. Defining interferon beta response status in multiple sclerosis patients.  Ann Neurol. 2004;  56 548-555
  • 41 Basser P J, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI.  J Magn Reson B. 1996;  111 209-219
  • 42 Pierpaoli C, Basser P J. Toward a quantitative assessment of diffusion anisotropy.  Magn Reson Med. 1996;  36 893-906
  • 43 Kim J H, Budde M D, Liang H F et al.. Detecting axon damage in spinal cord from a mouse model of multiple sclerosis.  Neurobiol Dis. 2006;  21 626-632
  • 44 Song S K, Sun S W, Ju W K et al.. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia.  Neuroimage. 2003;  20 1714-1722
  • 45 Song S K, Yoshino J, Le T Q et al.. Demyelination increases radial diffusivity in corpus callosum of mouse brain.  Neuroimage. 2005;  26 132-140
  • 46 Song S K, Sun S W, Ramsbottom M J et al.. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water.  Neuroimage. 2002;  17 1429-1436
  • 47 Droogan A G, Clark C A, Werring D J et al.. Comparison of multiple sclerosis clinical subgroups using navigated spin echo diffusion-weighted imaging.  Magn Reson Imaging. 1999;  17 653-661
  • 48 Filippi M, Cercignani M, Inglese M, Horsfield M A, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis.  Neurology. 2001;  56 304-311
  • 49 Filippi M, Iannucci G, Cercignani M et al.. A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging.  Arch Neurol. 2000;  57 1017-1021
  • 50 Ciccarelli O, Werring D J, Wheeler-Kingshott C A et al.. Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations.  Neurology. 2001;  56 926-933
  • 51 Fox R J, McColl R, Lee J C, Frohman T C, Sakaie K, Frohman E M. A preliminary validation study of diffusion tensor imaging as a measure of functional brain injury.  Arch Neurol. 2008;  , In press
  • 52 Oreja-Guevara C, Rovaris M, Iannucci G et al.. Progressive gray matter damage in patients with relapsing-remitting multiple sclerosis: a longitudinal diffusion tensor magnetic resonance imaging study.  Arch Neurol. 2005;  62 578-584
  • 53 Rovaris M, Gallo A, Valsasina P et al.. Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI.  Neuroimage. 2005;  24 1139-1146
  • 54 Werring D J, Brassat D, Droogan A G et al.. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study.  Brain. 2000;  123 1667-1676
  • 55 Graham J M, Papadakis N, Evans J et al.. Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS.  Neurology. 2004;  63 2111-2119

Robert J FoxM.D. 

Mellen Center for Multiple Sclerosis, Cleveland Clinic

U-10, 9500 Euclid Avenue, Cleveland, OH 44195

Email: foxr@ccf.org

    >