Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-17T06:03:50.144Z Has data issue: false hasContentIssue false

Autoantibodies in Childhood Post-Varicella Acute Cerebellar Ataxia

Published online by Cambridge University Press:  02 December 2014

Coleen Adams
Affiliation:
Alberta Children's Hospital and Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
Paola Diadori
Affiliation:
Alberta Children's Hospital and Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
Leeanne Schoenroth
Affiliation:
Alberta Children's Hospital and Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
Marvin Fritzler
Affiliation:
Alberta Children's Hospital and Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Anti-Purkinje cell antibodies have been reported in cerebellar ataxia following Epstein-Barr virus (EBV) infection. We investigated autoantibody responses, including anti-Purkinje cell antibodies, and the clinical course in eight children who developed post-varicella ataxia, five of their siblings with uncomplicated varicella, one child with post-EBV ataxia, two children with acute disseminated encephalomyelitis (ADEM) and one with neuroblastoma associated ataxia, and in age and gender matched controls.

Methods:

Autoantibodies were tested by indirect immunofluorescence (IIF) on cryopreserved cerebrum and cerebellum sections. Other autoantibodies were measured by conventional IIF protocols using HEp-2 cells as a substrate. Antibodies to myelin associated glycoprotein (MAG), asialo-GM1, b2 glycoprotein 1, cardiolipin and myelin basic protein (MBP) were measured by ELISA.

Results:

Three of eight children with acute post-varicella ataxia, one child with post-EBV ataxia, one child with ADEM and one child with uncomplicated varicella, had high titer autoantibodies (<1/160) that reacted with cerebrum and cerebellar tissue. This reactivity was not seen in one child with ADEM, in one with neuroblastoma and ataxia, in the remainder of the children with uncomplicated varicella or age and gender matched controls. Autoantibodies were not seen in CSF from two children with post-varicella ataxia. The punctate staining seen on cerebrum and cerebellum sections co-localized with rabbit antibodies to the centrosome protein pericentrin. All patients with strong reactivity with cerebrum and cerebellar tissue by IIF had elevated levels of anti-MAG that was not confirmed by absorption assay. No reactivity was seen with asialo-GM1, MBP, b2 glycoprotein 1 or cardiolipin. None of the sera had autoantibodies directed against endosomes, the Golgi complex, or the paraneoplastic autoantigens Hu and Yo.

Conclusion:

Some children with post-viral ataxia develop antibodies that have strong reactivity with cerebral and cerebellar tissue. Some of the antigenic reactivity co-localized with the centrosome protein pericentrin.

Résumé:

RÉSUMÉ:Introduction:

Des anticorps dirigés contre les cellules de Purkinje ont été rapportés dans l'ataxie cérébelleuse suite à une infection par le virus d'Epstein-Barr (EBV). Nous avons évalué la réponse immunitaire, incluant les anticorps dirigés contre les cellules de Purkinje, et l'évolution clinique de huit enfants qui ont développé une ataxie suite à la varicelle, cinq membres de leur fratrie qui présentaient une varicelle sans complication, un présentant une ataxie post-EBV et un ayant une ataxie associée à un neu-roblastome.

Méthodes:

Les autoanticorps ont été détectés par immunofluorescence indirecte (IIF) sur des coupes de cerveau et de cervelet congelées. D'autres antoanticorps ont été mesurés par des protocoles IIF conventionnels utilisant des cellules HEp-2 comme substrat. Les anticorps dirigés contre la glycoprotéine associée à la myéline (MAG), l'asialo-GM1, la [32 glycoprotéine 1, la cardiolipine, les protéines basiques de la myéline (PBM) ont été mesurés par ELISA.

Résultats:

Trois des huit enfants ayant présenté une ataxie aiguë suite à la varicelle, un enfant ayant présenté une ataxie post-EBV, un enfant ayant présenté une encéphalomyélite disséminée aiguë (EMDA) et un enfant ayant présenté une varicelle sans complication avaient des titres élevés d'autoanticorps (>1/160) qui réagissaient avec le tissu cérébral et cérébelleux. Cette réactivité n'était pas observée chez un enfant présentant une EMDA, chez un enfant présentant un neuroblastome et une ataxie, chez les enfants présentant une varicelle sans complication et chez des contrôles appariés pour l'âge et le sexe. Les autoanticorps n'ont pas été observés dans le LCR de deux enfants présentant une ataxie suite à la varicelle. La col-oration ponctiforme observée sur les tissus cérébraux et cérébelleux avait la même localisation que les anticorps de lapin dirigés contre la péricentrine, une protéine du centrosome. Tous les patients ayant une forte réactivité avec les tissus cérébraux et cérébelleux par IIF avaient des niveaux élevés d'an-ti-MAG qui n'ont pas été confirmés par un test d'absorption. Aucune réactivité n'a été observée avec l'asialo-GM1, les PBM, la [32 glycoprotéine 1 ou la cardiolipine. Aucun des sérums ne contenait des autoanticorps dirigés contre l'endosome, le complexe de Golgi ou les autoantigènes paranéoplasiques Hu et Yo.

Conclusion:

Certains enfants qui présentent une ataxie post-virale développent des anticorps qui ont une forte affinité pour le tissu cérébral et cérébelleux. Une partie de la réactivité antigénique avait la même localisation que la péricentrine, une protéine du centrosome.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological Sciences Inc. 2000

References

1. Ito, H, Sayama, S, Kanazawa, N, et al. Antineuronal antibodies in acute cerebellar ataxia following Epstein-Barr virus infection. Neurol 1994; 44:15061507.Google Scholar
2. Connolly, AM, Pestronk, A, Metha, S, Pranzatelli, MR, Noetzel, MJ. Serum autoantibodies in childhood opsoclonus-myoclonus syndrome: an analysis of antigenic targets in neural tissues. J Pediatr 1997; 130:878884.Google Scholar
3. Cimolai, N, Mah, D, Roland, E. Anticentriolar autoantibodies in children with central nervous system manifestations of Mycoplasma pneumoniae infection. J Neurol Neurosurg Psychiatry 1994; 57:638639.Google Scholar
4. Vincent, A, Honnorat, J, Antoine, JC, et al. Autoimmunity in paraneoplastic neurological disorders. J Neuroimmunol 1998; 84:105109.Google Scholar
5. Hida, C, Tsukamoto, T, Wano, H, Yamamoto, T. Ultrastructural localization of anti-Purkinje cell antibody – binding sites in paraneoplastic cerebellar degeneration. Arch Neurol 1994;51:555558.Google Scholar
6. Chan, EKL, Fritzler, MJ. Autoantibodies to Golgi apparatus antigens. In: Conrad, K, Humbel, R-L, Meurer, M, Shoenfeld, Y, Tan, EM, eds. Pathogenic and Diagnostic Relevance of Autoantibodies. Proceedings 4th Dresden Symposium on Autoantibodies. Scottsdale: Pabst Scientific Publishers, 1998; 85110.Google Scholar
7. Selak, S, Chan, EKL, Schoenroth, L, Senecal, J-L, Fritzler, MJ. Early endosome antigen-1 (EEA1): A predominant endosomal antigen in patients with neurological diseases. J Invest Med 1999; 47:311318.Google Scholar
8. Arnett, FC, Reveille, JD, Goldstein, R, et al. Autoantibodies to fibrillarin in systemic sclerosis (scleroderma): an immunogenetic, serological and clinical analysis. Arthritis Rheum 1996; 39:11511160.Google Scholar
9. Fritzler, MJ. Autoantibody testing: Procedures and significance in systemic rheumatic diseases. In: Jasmin, G, Simard, R, eds. Methods and Achievements in Experimental Pathology. New York: S. Karger, 1986; 225260.Google Scholar
10. Kreis, TE, Pepperkok, R. Coat proteins in intracellular membrane transport. Curr Opin Cell Biol 1994; 6:533537.Google Scholar
11. Hawkes, R. Antigenic markers of cerebellar modules in mice. Biochem Soc Trans 1992; 20:391395.Google Scholar
12. Sakai, K, Ogasawara, T, Hirose, G, Jaeckle, KA, Greenlee, JE. Analysis of autoantibody binding to 52-kd paraneoplastic cerebellar degeneration – associated antigen expressed in recombinant proteins. Ann Neurol 1993; 33:373380.Google Scholar
13. Sriram, S, Steinman, L. Postinfectious and postvaccinial encephalomyelitis. Neurol Clin 1984; 2:341353.Google Scholar
14. Straus, SE, Ostrove, JM, Inchauspé, G, et al. Varicella-zoster virus infections: biology, natural history, treatment and prevention. Ann Intern Med 1988; 108:221237.Google Scholar
15. Fieischer, G, Henry, W, McSorley, M, Arbeter, A, Plotkin, S. Life-threatening complications of varicella. Am J Dis Child 1981;135:896899.Google Scholar
16. Connolly, AM, Dodson, WE, Prensky, AL, Rust, RS. Course and outcome of acute cerebellar ataxia. Ann Neurol 1994; 35:673679.Google Scholar
17. Peters, ACB, Versteeg, J, Lindeman, J, Bots, GTAM. Varicella and acute cerebellar ataxia. Arch Neurol 1978; 35:769 771.Google Scholar
18. Anderson, NE, Rosenblum, MK, Graus, F, Wiley, RG, Posner, JB. Autoantibodies in paraneoplastic syndromes associated with small-cell lung cancer. Neurology 1988; 38:13911398.Google Scholar
19. Anderson, NE, Rosenblum, MK, Posner, JB. Paraneoplastic cerebellar degeneration: clinical-immunological correlations. Ann Neurol 1988; 24:559567.Google Scholar
20. Peterson, K, Rosenblum, MK, Kotanides, H, Posner, JB. Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody positive patients. Neurology 1992; 42:19311937.Google Scholar
21. Posner, J. Paraneoplastic cerebellar degeneration. Can J Neurol Sci 1993; 20:S117–S122.Google Scholar
22. Tanaka, K, Tanaka, M, Onodera, O, et al. Passive transfer and active immunization with the recombinant leucine-zipper (Yo) protein as an attempt to establish an animal model of paraneoplastic cerebellar degeneration. J Neurol Sci 1994; 127:153158.Google Scholar
23. Nitschke, M, Hochberg, F, Dropcho, E. Improvement of paraneoplastic opsoclonus-myoclonus after protein A column therapy. N Engl J Med 1995; 332:192(letter).Google Scholar
24. Fritzler, MJ, Salazar, M. The diversity and origin of rheumatologic autoantibodies. Clin Microbiol Rev 1991; 4:256269.Google Scholar
25. Barnett, LA, Fujinami, RS. Molecular mimicry: a mechanism for autoimmune injury. FASEB J 1992; 6:840844.Google Scholar
26. Johnson, RT, Hirsch, RL, Griffin, DE, Wolinsky, JS. Clinical and immunological studies of measles encephalomyelitis. Trans Am Neurol Assoc 1981; 106:4245.Google Scholar
27. Hafler, DA, Benjamin, DS, Burks, J, Weiner, HL. Myelin basic protein and proteolipin protein reactivity of brain and cerebrospinal fluid-derived T cell clones in multiple sclerosis and post-infectious encephalomyelitis. J Immunol 1987; 139:6872.Google Scholar