Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-17T06:51:45.738Z Has data issue: false hasContentIssue false

Biochemical composition and metabolic pathways of filarial worms Setaria cervi: search for new antifilarial agents

Published online by Cambridge University Press:  01 September 2007

Rumana Ahmad
Affiliation:
Division of Biochemistry, Po Box 173, Central Drug Research Institute, Chattar Manzil Palace, Lucknow-226001, India
Arvind K. Srivastava*
Affiliation:
Division of Biochemistry, Po Box 173, Central Drug Research Institute, Chattar Manzil Palace, Lucknow-226001, India
*
*Fax: +91-522-2623938 E-mail: drarv1955@yahoo.com

Abstract

The main problem regarding the chemotherapy of filariasis is that no safe and effective drug is available yet to combat the adult human filarial worms. Setaria cervi, the causal organism of setariasis and lumbar paralysis in cattle, is routinely employed as a model organism for conducting biochemical and enzymatic studies on filarial parasites. In view of the practical difficulties in procuring human strains of Wuchereria bancrofti and Brugia malayi for drug screening, the bovine filarial parasite S. cervi, resembling the human species in having microfilarial periodicity and chemotherapeutic response to known antifilarial agents, is widely used as a model in such studies. For a rational approach to antifilarial chemotherapy, knowledge of the biochemical composition and metabolic pathways of this helminth parasite may be of paramount importance, so that more potent antifilarial agents based on specific drug targets can be identified in drug discovery programmes. The present review provides an update on the biochemistry of the important metabolic pathways functioning within this potentially important bovine parasite, that have so far been studied, and on those that need to be investigated further so as to identify novel drug targets that can be exploited for designing new antifilarial drugs.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abhilash, K.R., Mohan, S., Jayakumar, K. & Kaleysa, R.R. (2001) Functional importance of the different ubiquinones in the filarial parasite Setaria digitata. Biochemical and Biophysical Research Communications 283, 938942.CrossRefGoogle Scholar
Agarwal, A., Mishra, S.K., Rathaur, S., Chatterjee, R.K., Katiyar, J.C. & Ghatak, S. (1982) Dopamine-β-hydroxylase in parasitic nematodes. Indian Journal of Parasitology 6, 223225.Google Scholar
Agarwal, A., Saxena, J.K. & Ghatak, S. (1986) Enzymes of tricarboxylic acid cycle in microfilarial and adult stages of Setaria cervi. Indian Journal of Medical Research 84, 260263.Google Scholar
Agarwal, A., Tekwani, B.L., Shukla, O.P. & Ghatak, S. (1990a) Effect of anthelmintics and phenothiazines on adenosine-5′-triphosphatases of filarial parasite Setaria cervi. Indian Journal of Experimental Biology 28, 245248.Google ScholarPubMed
Agarwal, A., Shukla, O.P., Ghatak, S. & Tekwani, B.L. (1990b) Biogenic amines, metabolites and monoamine oxidase in the filarial worm Setaria cervi. International Journal for Parasitology 20, 873881.CrossRefGoogle ScholarPubMed
Agarwal, A., Shukla, O.P. & Tekwani, B.L. (1992) Characterization of Ca2+ATPase of Setaria cervi: Effect of phenothiazines and anthelmintics. International Journal of Biochemistry 24, 14471452.CrossRefGoogle ScholarPubMed
Ahmad, R., Mishra, R.C., Tewari, N., Tripathi, R.P., Srivastava, A.K. & Walter, R.D. (2004) Modulation of filarial glutathione-S-transferase(s) activity: A possibility towards the synthesis of new classes of antifilarial agents. Medicinal Chemistry Research 13, 724745.Google Scholar
Almeida, A.J., Bhopale, M.K. & Renapurkar, D.M. (1990) Evaluation of Setaria cervi antigen in the diagnosis of human filariasis. Folia Parasitologica 37, 323329.Google ScholarPubMed
Almeida, A.J., Deobhankar, K.P., Bhopale, M.K., Zaman, V. & Renapurkar, D.M. (1991) Scanning electron microscopy of Setaria cervi adult male worms. International Journal for Parasitology 21, 119121.CrossRefGoogle ScholarPubMed
Ansari, J.A. (1963) Studies on Setaria cervi (Nematoda: Filarioidea). Morphology of the microfilaria. Zeitschrift für Parasitenkunde 23, 245248.CrossRefGoogle ScholarPubMed
Ansari, J.A. (1964) Studies on Setaria cervi: its peritoneal transplant and periodicity of the microfilariae in white rats. Zeitschrift für Parasitenkunde 24, 105111.Google ScholarPubMed
Ansari, J.A., Yusufi, A.N. & Siddiqi, M. (1973) Lipid composition of the filarial parasite Setaria cervi. Journal of Parasitology 59, 939940.Google Scholar
Anwar, N., Ansari, A.A., Ghatak, S. & Murti, C.R. (1977) Setaria cervi: Enzymes of glycolysis and PEP-succinate pathway. Zeitschrift für Parasitenkunde 51, 275283.CrossRefGoogle ScholarPubMed
Anwar, N., Srivastava, A.K. & Ghatak, S. (1978) Effect of antifilarials on the metabolic activity of Setaria cervi. Indian Journal of Parasitology 2, 101105.Google Scholar
Arora, K., Mishra, R.C., Tripathi, R.P., Srivastava, A.K. & Walter, R.D. (2004) Glutathione synthesis in filarial worms: an attractive target for the design and synthesis of new antifilarials. Medicinal Chemistry Research 13, 687706.CrossRefGoogle Scholar
Arrick, B.A., Griffith, O.W. & Cerami, A. (1981) Inhibition of glutathione synthesis as a chemotherapeutic strategy for trypanosomiasis. Journal of Experimental Medicine 153, 720725.CrossRefGoogle ScholarPubMed
Bal, M. & Das, M.K. (1996) Glutathione-binding proteins of Setaria digitata: antibody responses in human infected with Wuchereria bancrofti. Parasite Immunology 18, 473477.CrossRefGoogle ScholarPubMed
Bal, M. & Das, M.K. (1999) Antigenicity of a filarial protease from Setaria digitata in Wuchereria bancrofti infection. Annals of Tropical Medicine and Parasitology 93, 279288.Google Scholar
Banu, M.J., Nellaiappan, K. & Dhandayuthapani, S. (1989) Lactate dehydrogenase from adult Setaria digitata. Veterinary Parasitology 32, 311323.CrossRefGoogle ScholarPubMed
Banu, M.J., Kalyani, R. & Nellaiappan, K. (1990) Some properties of β-D-galactosidase from the adult filarial nematode Setaria digitata. Veterinary Parasitology 36, 2736.CrossRefGoogle Scholar
Banu, M.J., Dhandayuthapani, S. & Nellaiappan, K. (1991) Intermediary carbohydrate metabolism in the adult filarial worm Setaria digitata. International Journal for Parasitology 21, 795799.Google Scholar
Banu, M.J., Nellaiappan, K. & Dhandayuthapani, S. (1992) Mitochondrial malate dehydrogenase and malic enzyme of a filarial worm Setaria digitata: Some properties and effects of drugs and herbal extracts. Japanese Journal of Medical Science and Biology 45, 137150.Google Scholar
Barrett, J. (1976) Bioenergetics in helminths. pp. 6780in Van Den Bossche, H. (Ed.) Biochemistry of parasites and host–parasite relationships. Amsterdam, Elsevier North Holland Biomedical Press.Google Scholar
Barrett, J. (1977) Energy metabolism and infection in helminths. pp. 121144in Taylor, A.E. & Müller, R. (Eds) Parasite invasion, Symposia of the British Society for Parasitology. Oxford, Blackwell Scientific Publications.Google Scholar
Barrett, J. (1981) Biochemistry of parasitic helminths. London, Macmillan Press.Google Scholar
Barrett, J. (1983) Biochemistry of filarial worms. Helminthological Abstracts 52, 118.Google Scholar
Batra, S., Chatterjee, R.K. & Srivastava, V.M. (1992) Antioxidant system of Litomosoides carinii and Setaria cervi: Effect of a macrofilaricidal agent. Veterinary Parasitology 43, 93103.Google Scholar
Baylis, H.A. (1936a) The fauna of British India including Ceylon and Burma. Nematoda. 408 pp. 2nd edn. Vol. I., New Delhi, Today & Tomorrow's Printers & Publishers.Google Scholar
Baylis, H.A. (1936b) On the nomenclature and synonymy of the nematode Setaria labiatopapillosa. Annals of Tropical Medicine and Parasitology 30, 293–298.Google Scholar
Behm, C.A. & Bryant, C. (1975) Studies on the regulatory metabolism in Moniezia expansa: The role of phosphofructokinase. International Journal for Parasitology 5, 339346.CrossRefGoogle ScholarPubMed
Benabdelmouna, A., Shi, Y., Abirached-Darmency, M. & Darmency, H. (2001) Genomic in situ hybridization (GISH) discriminates between the A and the B genomes in diploid and tetraploid Setaria species. Genome 44, 685690.CrossRefGoogle Scholar
Beuria, M.K., Bal, M. & Das, M.K. (1995) Allergic reactivity and IgG subclasses to a proteinase fraction of Setaria digitata in filariasis. Journal of Helminthology 69, 181–185.Google Scholar
Bhargava, K.K., LeTrang, N., Cerami, A. & Eaton, J.W. (1983) Effect of arsenical drugs on glutathione metabolism of Litomosoides carinii. Molecular and Biochemical Parasitology 9, 29–35.Google Scholar
Brazier, J.B. & Jaffe, J.J. (1973) Two types of pyruvate kinase in schistosomes and filariae. Comparative Biochemistry and Physiology 44, 145155.Google ScholarPubMed
Bright, J.J. & Raj, R.K. (1990) Cuticle specific antigens from filarial parasite Setaria digitata. Indian Journal of Experimental Biology 28, 6–9.Google Scholar
Bright, J.J. & Raj, R.K. (1991) Isolation and analysis of surface antigens of filarial nematode Setaria digitata. Indian Journal of Experimental Biology 29, 725729.Google ScholarPubMed
Bright, J.J. & Raj, R.K. (1992) Antigenic analysis of purified surface antigens of filarial nematode Setaria digitata. Indian Journal of Experimental Biology 30, 362–366.Google ScholarPubMed
Brophy, P.M. & Pritchard, D.I. (1992) Immunity to helminths: Ready to tip the biochemical balance? Parasitology Today 8, 419422.Google Scholar
Bueding, E. & Saz, H.J. (1968) Pyruvate kinase and phosphoenolpyruvate carboxykinase activities of Ascaris muscle, Hymenolepis diminuta and Schistosoma mansoni. Comparative Biochemistry and Physiology 24, 511518.Google Scholar
Bush, D.L. (1951) Lumbar paralysis of ovine species in Japan reportedly caused by Setaria digitata. Journal of the American Veterinary Medical Association 118, 388–394.Google Scholar
Callahan, H.L., Crouch, R.K. & James, E.R. (1988) Helminth antioxidant enzymes: A protective mechanism against host oxidants? Parasitology Today 4, 218–225.Google Scholar
Carlberg, I. & Mannervik, B. (1985) Glutathione reductase. Methods in Enzymology 1348413490.Google Scholar
Chandra, M., Sahay, A.N., Pandey, D.S., Tripathi, R.P., Saxena, J.K., Reddy, V.J.M., Puerta, M.C. & Valerga, P. (2004) Potential inhibitors of DNA topoisomerases II: Ruthenium (II) poly-pyridyl and pyridyl-azine complexes. Journal of Organometallic Chemistry 689, 2256–2267.Google Scholar
Croll, N.A. (1975) Indolealkylamines in the coordination of nematode behavioral activities. Canadian Journal of Zoology 53, 894–903.Google Scholar
Dalai, S.K., Das, D. & Kar, S.K. (1998) Setaria digitata adult 14 to 20 kDa antigens induce differential Th1/Th2 cytokine responses in the lymphocytes of endemic normals and asymptomatic microfilariae carriers in bancroftian filariasis. Journal of Clinical Immunology 18, 114–123.Google Scholar
Das, D. & Das, M.K. (1995) Isolation of microfilariae and eggs of Setaria digitata. Journal of Helminthology 69, 89–90.CrossRefGoogle ScholarPubMed
Devi, C.M. & Raj, R.K. (1994) Immune response in mice against hatching associated materials from the filarial parasite Setaria digitata (Von Linstow). Indian Journal of Experimental Biology 32, 848853.Google Scholar
Dissanayake, S. (2000) Upregulation of a raf kinase and a DP-1 family transcription factor in epidermal growth factor (EGF) stimulated filarial parasites. International Journal for Parasitology 30, 10891097.CrossRefGoogle Scholar
Dunn, T.S., Rainess, P.S., Barrett, J. & Butterworth, P.E. (1988) Carbohydrate metabolism in Onchocerca gutturosa and O. lienalis. International Journal for Parasitology 18, 21–26.Google Scholar
Durette-Desset, M.C. (1973) Setaria pujoli, new parasitic filariid of an antelope Neotragus batesi. Annales de Parasitologie Humaine et Comparee 48, 477482.Google Scholar
Fry, M. & Brazeley, E.P. (1983) NADH-fumarate reductase and succinate dehydrogenase activities in mitochondria of Ascaridia galli and Nippostrongylus brasiliensis. Comparative Biochemistry and Physiology 75B, 143–150.Google Scholar
Gainutsos, G. & Bennett, J.L. (1977) The regional distribution of dopamine and norepinephrine in Schistosoma mansoni and Fasciola hepatica. Comparative Biochemistry and Physiology 58, 157159.Google Scholar
Ganguly, B., Awasthi, P.K. & Singhal, K.C. (1996) Regulation of cholinomimetic action of pyrantel pamoate by calcium channels in Setaria cervi. Indian Journal of Physiology and Pharmacology 40, 245248.Google Scholar
Ghosh, M., Babu, S.P., Sukul, N.C. & Mahato, S.B. (1993) Antifilarial effect of two triterpenoid saponins isolated from Acacia auriculiformis. Indian Journal of Experimental Biology 31, 604606.Google Scholar
Gidel, R. & Brengues, J. (1972) Research on Setaria labiapapillosa (Perroncito, 1882) in western Africa. III. Experimental infection of the normal host and of different abnormal hosts. Annales de Parasitologie Humaine et Comparee 47, 613630.Google Scholar
Goyal, N. & Srivastava, V.M. (1990) Mitochondrial NADH oxidase activity of Setaria cervi. Veterinary Parasitology 37, 229–236.CrossRefGoogle ScholarPubMed
Goyal, N. & Srivastava, V.M. (1995) Oxidation and reduction of cytochrome c by mitochondrial enzymes of S. cervi. Journal of Helminthology 69, 13–17.Google Scholar
Gupta, S. & Rathaur, S. (2005) Filarial glutathione-S-transferase: Its induction by xenobiotics and potential as drug target. Acta Biochimica Polonica 52, 493500.Google Scholar
Gupta, S. & Srivastava, A.K. (2005) Biochemical targets in filarial worms for selective antifilarial drug design. Acta Parasitologica 50, 1–18.Google Scholar
Gupta, S. & Srivastava, A.K. (2006) Glutathione metabolism of filarial worms: A vulnerable target for the design and synthesis of new antifilarial agents. Medical Science Monitor 12, 19.Google Scholar
Gupta, S., Tripathi, R., Srivastava, A.K. & Iqbal, J. (2002) Depletion of intracellular glutathione of Setaria cervi by buthionine sulfoximine, carmustine and their analogues. pp. 491496in Callaos, N., He, Y. & Perez-Perez, J.A. (Eds) Proceedings of the International Institute on Systemics and Informatics (IIIS) and the International Federation of Systems Research (IFSR) 17. Orlando, Florida, USA.Google Scholar
Gupta, S., Arora, K., Tiwari, V.K., Katiyar, D., Tripathi, R.P., Srivastava, A.K. & Walter, R.D. (2004) Inhibitors of filarial gamma-glutamyl cycle enzymes as possible macrofilaricidal agent. Medicinal Chemistry Research 13, 707723.Google Scholar
Gupta, S., Srivastava, A.K. & Banu, N. (2005a) γ-Glutamyl transpeptidase activity in adult Setaria cervi. Helminthologia 42, 57–61.Google Scholar
Gupta, S., Srivastava, A.K. & Banu, N. (2005b) Setaria cervi: kinetic studies of filarial glutathione synthetase by high performance liquid chromatography. Experimental Parasitology 111, 137141.Google Scholar
Gupta, S., Bhandari, Y.P., Reddy, M.V., Harinath, B.C. & Rathaur, S. (2005c) Setaria cervi: immunoprophylactic potential of glutathione-S-transferase against filarial parasite Brugia malayi. Experimental Parasitology 109, 252255.Google Scholar
Hussain, H., Shukla, O.P., Ghatak, S. & Kaushal, N.A. (1990) Enzymes of PEP-succinate pathway in Setaria cervi and effect of anthelmintic drugs. Indian Journal of Experimental Biology 28, 871875.Google ScholarPubMed
Innes, J.R. (1951) Necrotizing encephalomyelitis (or encephalomyelomalacia) of unknown aetiology in goats in Ceylon with similarities to setariasis of sheep, horses and goats in Japan. British Veterinary Journal 107, 187–203.Google Scholar
Innes, J.R. & Shoho, C. (1952) Nematodes, nervous disease and neurotropic virus infection; observations in animal pathology of probable significance in medical neurology. British Veterinary Journal 2, 366368.Google ScholarPubMed
Jayasena, S.M., Chandrasekharan, N.V. & Karunanayake, E.H. (1999) Molecular characterisation of a hsp70 gene from the filarial parasite Setaria digitata. International Journal for Parasitology 29, 581591.Google Scholar
Jayasinghe, D.R. & Wijesundera, W.S. (2003) Differentiation of Setaria digitata and Setaria labiatopapillosa using molecular markers. Veterinary Journal 165, 136–142.CrossRefGoogle ScholarPubMed
John, L. & Raj, R.K. (1998) Immune response of electroeluted detergent soluble 29 kDa antigen from Setaria digitata (Von Linstow). Indian Journal of Experimental Biology 36, 862866.Google Scholar
Kadenatsii, A.N., Sokolov, V.A. & Mamaev, I.S. (1974) Prevention of helminthiases in fur-bearing wild animals. Veterinariia 10, 87–88.Google Scholar
Kapoor, S. & Singhal, K.C. (1998) 5/6/7/8 mono or disubstituted 1H/1-phenyl-9H-pyrido (3,4) indoles–a new class of antifilarial agents and their relationship with voltage sensitive calcium channels in Setaria cervi. Indian Journal of Experimental Biology 36, 887890.Google ScholarPubMed
Katiyar, D., Tiwari, V.K., Tripathi, R.P., Reddy, V.M., Bhattacharya, S.M. & Saxena, J.K. (2003) Synthesis and antifilarial evaluation of 7-O-acetamidyl-4-alkyl-2H-1-benzopyran-2-ones. Arzneimittelforschung 53, 857–863.Google ScholarPubMed
Katiyar, S.B., Bansal, I., Saxena, J.K. & Chauhan, P.M. (2005) Syntheses of 2,4,6-trisubstituted pyrimidine derivatives as a new class of antifilarial topoisomerase II inhibitors. Bioorganic and Medicinal Chemistry Letters 15, 47–50.Google Scholar
Kaushal, N.A., Kaushal, D.C. & Ghatak, S. (1987) Identification of antigenic proteins of Setaria cervi by immunoblotting technique. Immunological Investigations 16, 139149.Google Scholar
Kaushal, N.A., Kaushal, D.C., Ghosh, S. & Talwar, G.P. (1994) Monoclonal antibodies against antigenic epitopes common between Setaria cervi and Brugia malayi. Indian Journal of Experimental Biology 32, 371375.Google ScholarPubMed
Kaushal, N.A., Khan, M.M., Srivastava, N. & Kaushal, D.C. (1996) Characterization of acetylcholinesterase of Setaria cervi. Journal of Parasitic Diseases 20, 75.Google Scholar
Khatoon, H., Baqui, W.A. & Ansari, J.A. (1982) Anthelmintic studies on Setaria cervi: Histochemical alterations in glucose-6-phosphatase, adenosine triphosphatase and malic dehydrogenase. Acta Veterinaria Academiae Scientiarum Hungaricae 30, 271–276.Google Scholar
Khatoon, H., Baqui, A., Ullah, W & Ansari, J.A. (1983) Effect of anthelmintics on the enzyme activities of Setaria cervi. Angewandte Parasitologie 24, 7275.Google Scholar
Khatoon, H., Ullah, W, Baqui, A. & Ansari, J.A. (1984) Histochemical enzyme pattern of microfilaria of Setaria cervi. Acta Morphologica Neerlando-Scandinavica 22, 289295.Google ScholarPubMed
Köhler, P. & Hanselmann, P. (1973) Intermediary metabolism of Dicrocoelium dendriticum. Comparative Biochemistry and Physiology 45B, 825845.Google Scholar
Korting, W. & Barrett, J. (1977) Carbohydrate metabolism in plerocercoids of Schistocephalus solidus. International Journal for Parasitology 7, 411417.Google Scholar
Kumar, R.A. & Raj, R.K. (1998) Presence and formation of heme and occurrence of certain heme proteins in the filarial parasite Setaria digitata. Biochemical and Biophysical Research Communications 253, 49–52.Google Scholar
Kumar, S. (1987a) Setaria cervi: lipid biosynthesis from C14 labelled acetate and glucose in the two sexes and microfilariae. Angewandte Parasitologie 28, 85–90.Google Scholar
Kumar, S. (1987b) Gross chemical composition of the two sexes and microfilariae of Setaria cervi. Acta Veterinaria Hungarica 35, 267271.Google Scholar
Kumar, S. (1987c) Setaria cervi: Metabolism IV. Ribonucleotide biosynthesis from 14C labelled glucose in microfilariae. Acta Veterinaria Hungarica 35, 273279.Google Scholar
Kumar, S. (1987d) Somatic antigens from male and female adults of Setaria cervi: immune reactions in guinea pigs. Revista de Biologia Tropical 35, 69–71.Google ScholarPubMed
Kumari, G.A., Santhamma, K.R. & Raj, R.K. (1994) Biosynthesis of isoprenoid compounds in cattle filarial parasite Setaria digitata. Biochemical and Biophysical Research Communications 205, 24–29.Google Scholar
Lazdins, J. & Kron, M. (1999) New molecular targets for filariasis drug discovery. Parasitology Today 15, 305306.Google Scholar
Li, Z.X. & Yu, L.R. (1990) Morphological studies on the larval stages of three species of Setaria and Dirofilaria repens. Southeast Asian Journal of Tropical Medicine and Public Health 21, 95102.Google Scholar
Lomaestro, B.M. & Malone, M. (1995) Glutathione in health and disease: Pharmacotherapeutic issues. Annals of Pharmacotherapy 29, 12631273.Google Scholar
Malhotra, A., Kaushal, N.A. & Ghatak, S. (1986) Protein and antigenic composition of adult and microfilarial stages of Setaria cervi. Immunological Investigations 15, 505519.Google Scholar
Malhotra, A., Kaushal, N.A., Kaushal, D.C. & Ghatak, S. (1987) Antigenic characterization of excretory-secretory products of Setaria cervi. Tropenmedizin und Parasitologie 38, 106–110.Google ScholarPubMed
McManus, D.P. (1987) Intermediary metabolism in parasitic helminths. International Journal for Parasitology 17, 79–95.Google Scholar
McManus, D.P. & Smyth, J.D. (1982) Intermediary carbohydrate metabolism in protoscoleces of Echinococcus granulosus (horse and sheep strains) and E. multilocularis. Parasitology 84, 351366.Google Scholar
Minning, W. & Mcfadzean, J.A. (1956) Serological studies on animal and human filariasis with antigens from Dirofilaria immitis and Setaria cervi. Tropenmedizin und Parasitologie 7, 419434.Google ScholarPubMed
Mishra, R.C., Tewari, N., Arora, K., Ahmad, R., Tripathi, R.P., Tiwari, V.K., Walter, R.D. & Srivastava, A.K. (2003) DBU assisted cyclotransferase elimination: Combinatorial synthesis and γ-glutamyl cysteine synthetase and glutathione-S-transferase(s) modulatory effect of C-nucleoside analogs. Combinatorial Chemistry and High Throughput Screening 6, 37–50.Google Scholar
Mishra, V., Khan, N.U. & Singhal, K.C. (2005a) Potential antifilarial activity of fruit extracts of Ficus racemosa Linn. against Setaria cervi in vitro. Indian Journal of Experimental Biology 43, 346–350.Google Scholar
Mishra, V., Parveen, N., Singhal, K.C. & Khan, N.U. (2005b) Antifilarial activity of Azadirachta indica on cattle filarial parasite Setaria cervi. Fitoterapia 76, 5461.Google Scholar
Mohan, S., Pradeep, C.G., Abhilash, K.R., Jayakumar, K. & Kaleysa, R.R. (2001) The adult-specific ubiquinone Q8 functions as an antioxidant in the filarial parasite, Setaria digitata. Biochemical and Biophysical Research Communications 288, 949953.Google Scholar
Mukhopadhyay, S. & Ravindran, B. (1997) Antibodies to diethylcarbamazine potentiate the antifilarial activity of the drug. Parasite Immunology 19, 191195.Google Scholar
Mukhopadhyay, S., Dash, A.P. & Ravindran, B. (1996) Setaria digitata microfilaraemia in Mastomys coucha: An animal model for chemotherapeutic and immunobiological studies. Parasitology 113, 323–330.Google Scholar
Müller, S., Walter, R.D. & Fairlamb, A.H. (1995) Differential susceptibility of filarial and human erythrocyte glutathione reductase to inhibition by the trivalent organic arsenical melarsen oxide. Molecular and Biochemical Parasitology 71, 211219.CrossRefGoogle ScholarPubMed
Murugan, A. & Raj, R.K. (1991) In vitro release of biologically active materials from the bovine filarial parasite Setaria digitata. Indian Journal Experimental Biology 29, 10471050.Google Scholar
Murugan, A. & Raj, R.K. (1995) Effect of acetylcholine, L-glutamine and diethyl carbamazine citrate on the release of microfilariae from Setaria digitata. Indian Journal of Experimental Biology 33, 128–130.Google Scholar
Murugan, A. & Raj, R.K. (1997) Partial characterization of affinity purified excretory-secretory protease from Setaria digitata. Indian Journal of Experimental Biology 35, 538–540.Google Scholar
Mustafa, H., Srivastava, N., Kaushal, D.C. & Kaushal, N.A. (1996) Analysis and potential of excretory-secretory antigens of Setaria cervi for immunodiagnosis of human filariasis. Indian Journal Experimental Biology 34, 508512.Google Scholar
Nelson, G.S. (1965) Filarial infections as zoonoses. Journal of Helminthology 39, 229–250.Google Scholar
Pandya, G.T. (1961) Physiological studies on nematodes Setaria cervi: Carbohydrate metabolism. Zeitschrift für Parasitenkunde 20, 466–469.Google Scholar
Pandya, U., Saxena, J.K. & Shukla, O.P. (1997) Filarial DNA and its interaction with polyamines and antifilarial drugs. Journal of Helminthology 71, 325332.Google Scholar
Parveen, N., Singhal, K.C., Khan, N.U. & Singhal, P. (1989) Potential antifilarial activity of Streblus asper against Setaria cervi. Indian Journal of Pharmacology 21, 16–21.Google Scholar
Pegg, A.E., Kameji, T., Shirahata, A., Stanley, B., Madhubala, R. & Pajunen, A. (1988) Regulation of mammalian S-adenosylmethionine decarboxylase. Advances in Enzyme Regulation 27, 43–55.Google Scholar
Plummer, J.L., Smith, B.R., Sies, H. & Bend, J.R. (1981) Chemical depletion of glutathione in vivo. Methods in Enzymology 77, 5059.Google Scholar
Prichard, R.K. (1976) Regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase activity in adult Fasciola hepatica. International Journal for Parasitology 6, 227233.CrossRefGoogle ScholarPubMed
Purvis, G.B. (1938) Setaria labiato-papillosa (Alessandrini 1938) or Setaria digitata (Von Linstow, 1906). Veterinary Record 11, 528529.Google Scholar
Raj, R.K., Puranam, R.S., Kurup, C.K. & Ramasarma, T. (1989) Oxidative activities in mitochondria-like particles from Setaria digitata, a filarial parasite. Biochemical Journal 256, 559564.Google Scholar
Rathaur, S. (1980) Study of intermediary metabolism in microfilarial and adult stages of bovine filarial parasite Setaria cervi. Unpublished PhD thesis, Banaras Hindu University, Varanasi, India.Google Scholar
Rathaur, S., Anwar, N. & Ghatak, S. (1980) Biochemical composition of microfiliarial and adult stages of Setaria cervi. Zeitschrift für Parasitenkunde 62, 85–93.Google Scholar
Rathaur, S., Anwar, N., Saxena, J.K. & Ghatak, S. (1982) Setaria cervi: Enzymes in microfilariae and in vitro action of antifilarials. Zeitschrift für Parasitenkunde 68, 331–338.Google Scholar
Rathaur, S., Kaushal, N.A. & Ghatak, S. (1985) Biogenic amines and their metabolites in microfilariae and adults of Setaria cervi. Indian Journal of Parasitology 9, 203205.Google Scholar
Rathaur, S., Misra, S., Mohapatra, T.M. & Taneja, V. (1992) A comparative study of acetylcholinesterase activity in bovine (S. cervi) and human (B. malayi, W. bancrofti) filaria. Lymphology 25, 159–165.Google ScholarPubMed
Rhee, J.K., Choi, E.Y., Park, B.K. & Jang, B.G. (1994) Application of scanning electron microscopy in assessing the prevalence of some Setaria species in Korean cattle. Korean Journal of Parasitology 32, 1–6.Google Scholar
Rossi, L. & Abate, O. (1990) Acid phosphatase activity in microfilariae of Setaria labiatopapillosa and comparison with other blood microfilariae of dog and horse origin. Parassitologia 32, 339342.Google Scholar
Roy, T.K., Masood, K. & Srivastava, V.M. (1983) Transcuticular uptake of methyl glucose by Setaria cervi. Indian Journal of Experimental Biology 21, 280284.Google Scholar
Santhamma, K.R. & Raj, R.K. (1990) Quinone mediated ATP production in the filarial parasite Setaria digitata. Biochemical and Biophysical Research Communications 167, 568574.Google Scholar
Santhamma, K.R. & Raj, R.K. (1991a) Oxidative phosphorylation coupled to electron transfer in the filarial parasite Setaria digitata. Biochemical and Biophysical Research Communications 177, 318323.Google Scholar
Santhamma, K.R. & Raj, R.K. (1991b) Quinone mediated electron transport system in the filarial parasite Setaria digitata. Biochemical and Biophysical Research Communications 174, 386–392.Google Scholar
Santhamma, K.R. & Raj, R.K. (1993) Quinone analogues: A drug of choice for the control of filariasis. Biochemical and Biophysical Research Communications 190, 201–206.Google Scholar
Sarwar, A.M. (1946) Two species of the nematode genus Setaria Viborg. Indian Veterinary Journal 22, 405409.Google Scholar
Sasisekhar, B., Suba, N., Sindhuja, S., Sofi, G.M. & Narayanan, R.B. (2005) Setaria digitata: Identification and characterization of a hypodermally expressed SXP/RAL2 protein. Experimental Parasitology 111, 121–125.CrossRefGoogle ScholarPubMed
Saxena, J.K., Srivastava, A.K., Kalpana Murti, P., Chatterjee, R.K., Ghatak, S. & Walter, R.D. (1984) Protein kinases in different life stages of Brugia malayi and other filarial worms. Tropenmedizin und Parasitologie 35, 174–176.Google ScholarPubMed
Saxena, J.K., Bharadwaj, N., Rathaur, S. & Ghatak, S. (1986) Purification and characterization of lactate dehydrogenase from Setaria cervi. Indian Journal of Medical Research 84, 264269.Google Scholar
Saz, H.J. (1981) Biochemistry of parasites: Helminths. In Braude, A.T. (Ed.) Medical microbiology and infectious diseases. Philadelphia, USA, W.B. Saunders.Google Scholar
Saz, H.J. & Dunbar, G.A. (1975) The effects of stibophen on phosphofructokinases and aldolases of adult filariids. Journal of Parasitology 61, 794801.Google Scholar
Schirmer, R.H., Schollhammer, T., Eisenbrand, G. & Krauth-Siegel, R.L. (1987) Oxidative stress as a defence mechanism against parasitic infections. Free Radical Research Communications 3, 3–12.Google Scholar
Scott, A.L. (2000) Lymphatic-dwelling filariae. pp. 5–39 in Nutman, T.B. & Pasuol, G. (Eds) Lymphatic filariasis. London, Imperial College Press.Google Scholar
Sharma, A. & Upadhyay, S.N. (1993) Cellular immune responsiveness in rabbits with Setaria digitata filarial antigen and TDM adjuvant. International Journal Immunopharmacology 15, 395400.Google Scholar
Sharma, S. & Singh, K. (1985) Distribution of acid and alkaline phosphomonoesterases in the parasitic nematode Setaria cervi. Angewandte Parasitologie 26, 237240.Google Scholar
Sharma, S., Misra, S. & Rathaur, S. (1998) Secretory acetylcholinesterase of Setaria cervi microfilariae and its antigenic cross-reactivity with Wuchereria bancrofti. Tropical Medicine and International Health 3, 46–51.Google Scholar
Sharma, V., Tekwani, B.L., Saxena, J.K., Gupta, S., Katiyar, J.C., Chatterjee, R.K., Ghatak, S. & Shukla, O.P. (1991) Polyamine metabolism in some helminth parasites. Experimental Parasitology 72, 15–23.Google Scholar
Shin, S.S., Cho, K.O. & Wee, S.H. (2002) Ocular infection of cattle with Setaria digitata. Journal of Veterinary Medical Science 64, 7–10.Google Scholar
Shoho, C. (1976) Setaria species from water buffalo of Southeast Asia and from Caffer Buffalo of Africa: Comparative study with Setaria sp. from cattle of the respective areas. Annales de Parasitologie Humaine et Comparee 51, 577588.Google Scholar
Shoho, C. & Sachs, R. (1975) On two filarioid worms, Setaria labiatopapillosa and Pseudofilaria giraffae, from the East African giraffe. Tropenmedizin und Parasitologie 26, 489493.Google Scholar
Shoho, C. & Uni, S. (1977) Scanning electron microscopy of some Setaria species. Zeitschrift für Parasitenkunde 53, 93–104.Google Scholar
Singh, A. & Rathaur, S. (2005) Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi. Biochemical and Biophysical Research Communications 331, 10691074.Google Scholar
Singh, K. & Sharma, S. (1984) Osmoregulation in a parasitic nematode, Setaria cervi. Angewandte Parasitologie 25, 32–35.Google Scholar
Singh, R., Khan, N.U. & Singhal, K.C. (1996) In vitro antifilarial activity of Sencio nudicaulis Buch. Ham. Effect on Setaria cervi. Indian Journal of Physiology and Pharmacology 40, 231–236.Google Scholar
Singh, R., Singhal, K.C. & Khan, N.U. (1997b) Antifilarial activity of Mallotus philippensis Lam. on Setaria cervi in vitro. Indian Journal of Physiology and Pharmacology 41, 397403.Google Scholar
Singh, R., Khan, N.U. & Singhal, K.C. (1997c) Potential antifilarial activity of roots of Asparagus adscendens Roxb., against Setaria cervi in vitro. Indian Journal of Experimental Biology 35, 168–172.Google Scholar
Singh, R., Singhal, K.C. & Khan, N.U. (2000) Exploration of antifilarial potential and possible mechanism of action of the root extracts of Saxifraga stracheyion on cattle filarial parasite Setaria cervi. Phytotherapy Research 14, 63–66.Google Scholar
Singh, R.N. & Rathaur, S. (2003) Setaria cervi: In vitro released collagenases and their inhibition by Wuchereria bancrofti infected sera. Journal of Helminthology 77, 77–81.Google Scholar
Singh, R.P., Saxena, J.K., Ghatak, S., Shukla, O.P., Wittich, R.M. & Walter, R.D. (1989) Polyamine metabolism in Setaria cervi, the bovine filarial worms. Parasitology Research 75, 311315.Google Scholar
Singh, S.N., Chatterjee, R.K. & Srivastava, A.K. (1994) Effect of glycosides of Streblus asper on motility, glucose uptake and enzymes of carbohydrate metabolism of Setaria cervi females. Drug Development Research 32, 191.Google Scholar
Singh, S.N., Srivastava, A.K. & Chatterjee, R.K. (1996) γ-Glutamyl transpeptidase activity in adult Setaria cervi and Acanthocheilonema viteae and the effect of inhibitors. Journal of Parasitic Diseases 20, 163166.Google Scholar
Singh, S.N., Srivastava, A.K. & Chatterjee, R.K. (1997a) Presence of glutathione, glutathione reductase and glutathione peroxidase in filarial parasites. Helminthologia 34, 70–73.Google Scholar
Singh, S.N., Raina, D., Chatterjee, R.K. & Srivastava, A.K. (1998) Antifilarial glycosides of Streblus asper: Effect on metabolism of adult Setaria cervi females. Helminthologia 35, 173–177.Google Scholar
Singhal, K.C., Chandra, O., Chawla, S.N., Gupta, K.P. & Saxena, P.N. (1969) Setaria cervi, a test organism for screening antifilarial agents. Journal of Pharmacy and Pharmacology 21, 118.Google Scholar
Singhal, K.C., Chandra, O. & Saxena, P.N. (1972a) Secondary antifilarial screening in dogs using Setaria cervi as test organism. Japanese Journal of Pharmacology 22, 726727.Google Scholar
Singhal, K.C., Chandra, O. & Saxena, P.N. (1972b) An in vivo method for the screening of antifilarial agents using Setaria cervi as test organism. Japanese Journal of Pharmacology 22, 175179.CrossRefGoogle Scholar
Singhal, K.C., Saxena, P.N. & Johri, M.B. (1973) Studies on the use of Setaria cervi for in vitro antifilarial screening. Japanese Journal of Pharmacology 23, 793797.Google Scholar
Singhal, K.C., Madan, B.R. & Saxena, P.N. (1977) Effect of drugs on the nerve-muscle complex of Setaria cervi. Indian Journal of Medical Research 66, 517521.Google Scholar
Singhal, K.C., Zehra, N., Singhal, U. & Saxena, P.N. (1978a) Acetylcholine: A possible neurotransmitter in Setaria cervi. Indian Journal of Physiology and Pharmacology 22, 71–74.Google Scholar
Singhal, K.C., Madan, B.R. & Saxena, P.N. (1978b) Effect of diethylcarbamazine on Setaria cervi in vitro. Indian Journal of Physiology and Pharmacology 22, 93–97.Google Scholar
Singhal, K.C., Sharma, S. & Mehta, B.K. (1992) Antifilarial activity of Centratherum anthelminticum seed extracts on Setaria cervi. Indian Journal of Experimental Biology 30, 546–548.Google Scholar
Singhal, K.C., Ganguly, B. & Awasthi, P.K. (1995) Identification of voltage-sensitive calcium channels in Setaria cervi (Nematoda: Filarioidea) and their role in regulation of spontaneous motility. Indian Journal of Physiology and Pharmacology 39, 117–121.Google Scholar
Singhal, U. & Singhal, K.C. (2001) Voltage activated calcium channels in somatic muscle of filarial nematode Setaria cervi. Indian Journal of Experimental Biology 39, 542545.Google Scholar
Sivan, V.M. & Raj, R.K. (1992) Quinone dependent NADH dehydrogenation in mitochondria-like particles from Setaria digitata, a filarial parasite. Biochemical and Biophysical Research Communications 186, 698705.Google Scholar
Sivan, V.M. & Raj, R.K. (1994) Lactate oxidation coupled to energy production in mitochondria like particles from Setaria digitata, a filarial parasite. Biochemical and Biophysical Research Communications 204, 17–22.CrossRefGoogle ScholarPubMed
Sivan, V.M. & Raj, R.K. (1999) Quinone analog irrecoverably paralyses the filarial parasites in vitro. Biochemical and Biophysical Research Communications 256, 81–83.CrossRefGoogle ScholarPubMed
Skrjabin, K.I. & Shikhobalova, N.P. (1945) A new rearrangement of the taxonomy of the nematodes belonging to the family Filariidae (Cobbold, 1864). Doklady Akademii Nauk SSSR 49, 690692.Google Scholar
Srivastava, A.K. & Ghatak, S. (1983a) In vitro action of antifilarials on synthesis of macromolecules by Setaria cervi adults. Current Science 52, 303–304.Google Scholar
Srivastava, A.K. & Ghatak, S. (1983b) Comparative susceptibility of rodents to Setaria cervi infection. Indian Veterinary Journal 60, 421.Google Scholar
Srivastava, A.K. & Ghatak, S. (1990) Amino acid carbohydrate transformations in adult Setaria cervi females. Current Science 59, 168170.Google Scholar
Srivastava, A.K., Sethi, N. & Ghatak, S. (1983) Pathophysiological effects of Setaria cervi parasitization in Mastomys natalensis. Indian Veterinary Journal 60, 700.Google Scholar
Srivastava, A.K., Saxena, J.K. & Ghatak, S. (1984) Pattern of certain marker enzymes of hepatic tissue of Mastomys natalensis parasitized with Setaria cervi. Indian Journal of Animal Health 23, 13.Google Scholar
Srivastava, A.K., Maitra, S.C., Shipstone, A.C. & Ghatak, S. (1985) Surface topography of the adults of Setaria cervi. Indian Veterinary Journal 62, 656.Google Scholar
Srivastava, A.K., Saxena, J.K., Singh, S.N., Singh, R.P., Chatterjee, R.K. & Ghatak, S. (1994a) Isolation, partial purification and some properties of protein kinase 1, protein kinase II and protein kinase III from Setaria cervi females. Indian Journal of Parasitology 18, 39.Google Scholar
Srivastava, A.K., Tripathi, R.P., Khan, A.R., Bhaduri, A.P. & Singh, S.N. (1994b) Glutathione-S-transferase activity in Setaria cervi females and effect of new antifilarial compounds. Indian Journal of Parasitology 18, 127133.Google Scholar
Srivastava, A.K., Tripathi, R.P., Khan, A.R., Bhaduri, A.P., Singh, S.N. & Chatterjee, R.K. (1995) Effect of 3-0-(aminoalkyl) a-D-gluco (xylo) furanoses on glutathione metabolism of bovine filarial parasites. Helminthologia 32, 25.Google Scholar
Srivastava, D.K., Roy, T.K. & Shukla, O.P. (1980) Polyamines of helminths. Indian Journal of Parasitology 4, 187–189.Google Scholar
Srivastava, Y., Rathaur, S., Bhandari, Y.P., Reddy, M.V. & Harinath, B.C. (2004) Adult 175 kDa collagenase antigen of Setaria cervi in immunoprophylaxis against Brugia malayi in jirds. Journal of Helminthology 78, 347352.Google Scholar
Subhachalat, P. & Adachi, Y. (1997) Classification of Setaria worms from calves and adult cattle into Setaria digitata and Setaria marshalli by polyacrylamide gel electrophoresis. Zentralblatt für Bakteriologie 286, 527533.Google Scholar
Sugunan, V.S. & Raj, R.K. (1990) Excretory/secretory antigens from a bovine filarial parasite cross react with human antifilarial antibodies. Indian Journal of Experimental Biology 28, 11241127.Google Scholar
Svensson, F., Kockum, I. & Persson, L. (1993) Diethylglyoxal bis-(guanylhydrazone); a potent inhibitor of mammalian S-adenosylmethionine decarboxylase: Effects on cell proliferation and polyamine metabolism in L1210 leukemia cells. Molecular and Cellular Biochemistry 124, 141–147.Google Scholar
Tabor, C.W. & Tabor, H. (1984) Polyamines. Annual Review of Biochemistry 53, 749790.Google Scholar
Tandon, A., Srivastava, A.K., Saxena, R.P., Saxena, R.K. & Saxena, K.C. (1983) Immunodiagnosis of bancroftian filariasis by enzyme linked immunosorbent assay using Litomosoides carinii and Setaria cervi antigens. Transactions of Royal Society of Tropical and Medical Hygiene 77, 439–441.Google Scholar
Tekwani, B.L., Tripathi, L.M., Shukla, O.P. & Ghatak, S. (1988) Suppression of release of microfilariae in vitro from Setaria cervi by chlorpromazine. Journal of Parasitology 74, 893895.Google Scholar
Theodore, J.G. & Kaliraj, P. (1990) Isolation, purification and characterization of surface antigens of the bovine filarial parasite Setaria digitata for the immunodiagnosis of bancroftian filariasis. Journal of Helminthology 64, 105–114.CrossRefGoogle ScholarPubMed
Thilagavathy, A.H., Prabha, B. & Raj, R.K. (1990) Excretory secretory antigens of filarial parasite Setaria digitata. Indian Journal Experimental Biology 28, 291292.Google Scholar
Tiwari, V.K., Tewari, N., Katiyar, D., Tripathi, R.P., Arora, K., Gupta, S., Ahmad, R., Srivastava, A.K., Khan, A. & Murthy, P.K. (2003) Synthesis and antifilarial evaluation of N1, Nn xylofuranosylated diaminoalkanes. Bioorganic and Medicinal Chemistry 11, 17891800.CrossRefGoogle ScholarPubMed
Tripathi, R.P., Tripathi, R., Bhaduri, A.P., Singh, S.N., Chatterjee, R.K. & Murthy, P.K. (2000) Antifilarial activity of some 2H-1-benzopyran-2-ones (coumarins). Acta Tropica 76, 101–106.Google Scholar
Tripathi, R.P., Rastogi, S.K., Kundu, B., Saxena, J.K., Reddy, V.J.M., Srivastava, S., Chandra, S. & Bhaduri, A.P. (2001) Identification of inhibitors of DNA topoisomerases II from a synthetic library of glycoconjugates. Combinatorial Chemistry and High Throughput Screening 4, 237–244.Google Scholar
Tripathi, R.P., Tiwari, V.K., Misra-Bhattacharya, S., Tyagi, K., Srivastava, V.M. & Murthy, P.K. (2003) 7-O-[4-methyl piperazine-1-(2-acetyl)]-2H-1-benzopyan-2-one: A novel antifilarial lead compound. Acta Tropica 87, 215–224.CrossRefGoogle ScholarPubMed
Tung, K.C., Lai, C.H., Ooi, H.K., Yang, C.H. & Wang, J.S. (2003) Cerebrospinal setariosis with Setaria marshalli and Setaria digitata infection in cattle. Journal of Veterinary Medical Science 65, 977983.Google Scholar
Uddin, Q, Parveen, N., Khan, N.U. & Singhal, K.C. (2003a) Potential antifilarial activity of the leaves and seeds extracts of Psoralea corylifolia on cattle filarial parasite Setaria cervi. Journal of Ethnopharmacology 84, 313.Google Scholar
Uddin, Q, Parveen, N., Khan, N.U. & Singhal, K.C. (2003b) Antifilarial potential of the fruits and leaves extracts of Pongamia pinnata on cattle filarial parasite Setaria cervi. Phytotherapy Research 17, 11041107.Google Scholar
Unnikrishnan, L.S. & Raj, R.K. (1992) Fumarate reductase system of filarial parasite Setaria digitata. Biochemical and Biophysical Research Communications 184, 448453.Google Scholar
Unnikrishnan, L.S. & Raj, R.K. (1995) Transhydrogenase activities and malate dismutation linked to fumarate reductase system in the filarial parasite Setaria digitata. International Journal for Parasitology 25, 779–785.Google Scholar
Unnikrishnan, L.S. & Raj, R.K. (2000) Succinate oxidase and fumarate reductase systems of filarial parasite Setaria digitata. Indian Journal of Biochemistry and Biophysics 37, 130134.Google Scholar
Vijayanathan, L. & Raj, R.K. (1991) Effect of diethylcarbamazine on neurotransmitter amino acids, biogenic amines and certain related enzymes in Setaria digitata. Indian Journal of Experimental Biology 29, 169–172.Google Scholar
Vijayanathan, L. & Raj, R.K. (1992) Effect of diethylcarbamazine on acetylcholine and gamma amino butyric acid in Setaria digitata. Indian Journal of Experimental Biology 30, 920–922.Google Scholar
Wani, J.H. & Srivastava, V.M. (1993) Effect of antibiotics on protein synthesis in filarial parasites. Journal of Helminthology 67, 265270.Google Scholar
Ward, P.F.V. (1982) Aspects of helminth metabolism. Parasitology 84, 177–194.CrossRefGoogle ScholarPubMed
Watermeyer, R., Boomker, J. & Putteril, J.F. (2003) Studies on the genus Setaria Viborg, 1795 in South Africa. II. Setaria scalprum (Von Linstow, 1908) and Setaria saegeri (Le Van Hoa, 1961). Onderstepoort Journal of Veterinary Research 70, 7–13.Google Scholar
Wijesundera, W.S., Chandrasekharan, N.V., Karunanayake, E.H. & Dharmasena, S.P. (1996) Development of a diagnostic DNA probe to detect Setaria digitata: The causative parasite of cerebrospinal nematodiasis in goats, sheep and horses. British Veterinary Journal 152, 561–571.Google Scholar
Wijesundera, W.S., Chandrasekharan, N.V., Karunanayake, E.H. & Rajapakse, R.P. (1997) Development of a rapid, nonradioactive, oligonucleotide-based assay for the detection of Setaria digitata. Experimental Parasitology 86, 161–162.Google Scholar
Wijesundera, W.S., Chandrasekharan, N.V. & Karunanayake, E.H. (1999) A sensitive polymerase chain reaction based assay for the detection of Setaria digitata: The causative organism of cerebrospinal nematodiasis in goats, sheep and horses. Veterinary Parasitology 81, 225–233.Google Scholar
Williams, H.E. (1955) Studies on the bovine filariid Setaria cervi (Rudolphi, 1819). Parasitology 45, 56–62.Google Scholar
Wittich, R.M., Kilian, H.D. & Walter, R.D. (1987) Polyamine metabolism in filarial worms. Molecular and Biochemical Parasitology 24, 155–162.Google Scholar
Wuhrer, M., Rickhoff, S., Dennis, R.D., Lochnit, G., Soboslay, P.T., Baumeister, S. & Geyer, R. (2000) Phosphocholine-containing, zwitterionic glycosphingolipids of adult Onchocerca volvulus as highly conserved antigenic structures of parasitic nematodes. Biochemical Journal 348, 417423.Google Scholar
Zachariah, T.J. & Raj, R.K. (1986) Effect of diethylcarbamazine on lipid metabolism of Setaria digitata. Indian Journal of Medical Research 83, 41–45.Google ScholarPubMed
Zdarska, Z. & Scholl, V.A. (1978) Scanning electron microscopy of Setaria labiatopapillosa (Alessandrini, 1848) from cattle of Kazakhstan. Folia Parasitologica 25, 137–140.Google Scholar
Zhang, L.P., Maiorino, M., Roveri, A. & Ursini, F. (1989) Phospholipid hydroperoxide glutathione peroxidase: Specific activity in tissues of rats of different age and comparison with other glutathione peroxidases. Biochimica et Biophysica Acta 1006, 140–143.Google Scholar