Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-26T06:48:13.225Z Has data issue: false hasContentIssue false

Working Memory Performance among Childhood Brain Tumor Survivors

Published online by Cambridge University Press:  13 June 2012

Heather M. Conklin*
Affiliation:
Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee
Jason M. Ashford
Affiliation:
Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee
Robyn A. Howarth
Affiliation:
Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee
Thomas E. Merchant
Affiliation:
Division of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
Robert J. Ogg
Affiliation:
Division of Translational Imaging Research, St. Jude Children's Research Hospital, Memphis, Tennessee
Victor M. Santana
Affiliation:
Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
Wilburn E. Reddick
Affiliation:
Division of Translational Imaging Research, St. Jude Children's Research Hospital, Memphis, Tennessee
Shengjie Wu
Affiliation:
Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
Xiaoping Xiong
Affiliation:
Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
*
Correspondence and reprint requests to: Heather M. Conklin, Department of Psychology, Mail Stop #740, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105. E-mail: heather.conklin@stjude.org

Abstract

While longitudinal studies of children treated for brain tumors have consistently revealed declines on measures of intellectual functioning, greater specification of cognitive changes following treatment is imperative for isolating vulnerable neural systems and developing targeted interventions. Accordingly, this cross-sectional study evaluated the performance of childhood brain tumor survivors (n = 50) treated with conformal radiation therapy, solid tumor survivors (n = 40) who had not received central nervous system (CNS) -directed therapy, and healthy sibling controls (n = 40) on measures of working memory [Digit Span and computerized self-ordered search (SOS) tasks]. Findings revealed childhood brain tumor survivors were impaired on both traditional [Digit Span Backward- F(2,127)= 5.98; p < .01] and experimental [SOS-Verbal- F(2,124)= 4.18; p < .05; SOS-Object- F(2,126)= 5.29; p < .01] measures of working memory, and performance on working memory measures correlated with intellectual functioning (Digit Span Backward- r = .45; p < .0001; SOS- r = −.32 to −.26; p < .01). Comparison of performance on working memory tasks to recognition memory tasks (computerized delayed match-to-sample) offered some support for greater working memory impairment. This pattern of findings is consistent with vulnerability in functional networks that include prefrontal brain regions and has implications for the clinical management of children with brain tumors. (JINS, 2012, 18, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayr, L.K., Yeates, K., Enrile, B.G. (2005). Arithmetic skills and their cognitive correlates in children with acquired and congenital brain disorder. Journal of the International Neuropsychology Society, 11, 249262. doi:10.1017/S1355617705050307CrossRefGoogle ScholarPubMed
Baddeley, A. (1998). Working memory. Comptes Rendus de l Academie des Sciences- Series iii, Sciences d la Vie, 321, 167173. doi:10.1016/S0764-4469(97)89817-4Google ScholarPubMed
Barratt, W. R. (2006). The Barratt Simplified Measure of Social Status. Retrieved from the Indiana State University website: http://wbarratt.indstate.edu/socialclass/Barratt_Simplifed_Measure_of_Social_Status.pdfGoogle Scholar
Butler, R.W., Copeland, D.R., Fairclough, D.L., Mulhern, R.K., Katz, E.R., Kazak, A.E., Sahler, O.J. (2008). A multi-center, randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. Journal of Consulting and Clinical Psychology, 76, 367378. doi:10.1037/0022-006X.76.3.367CrossRefGoogle Scholar
Conklin, H.M., Curtis, C.E., Calkins, M.E., Iacono, W.G. (2005). Working memory impairment in schizophrenia patients and their first-degree relatives: Cognitive functioning shedding light on etiology. Neuropsychologia, 43, 930942. doi:10.1016/j.neuropsychologia.2004.09.013CrossRefGoogle ScholarPubMed
Conklin, H.M., Li, C., Xiong, X., Ogg, R.J., Merchant, T.E. (2008). Predicting change in academic abilities after conformal radiation therapy for localized ependymoma. Journal of Clinical Oncology, 26, 39653970. doi:10.1200/JCO.2007.15.9970CrossRefGoogle ScholarPubMed
Conklin, H.M., Luciana, M., Hooper, C.J., Yarger, R.S. (2007). Working memory performance in typically developing children and adolescents: Behavioral evidence of protracted frontal lobe development. Developmental Neuropsychology, 31, 103128. doi:10.1207/s15326942dn3101_6CrossRefGoogle ScholarPubMed
Conklin, H.M., Reddick, W.E., Ashford, J., Ogg, S., Howard, S.C., Morris, E.B., Khan, R.B. (2010). Long-term efficacy of methylphenidate in enhancing attention regulation, social skills, and academic abilities of childhood cancer survivors. Journal of Clinical Oncology, 28, 44654472. doi:10.1200/JCO.2010.28.4026CrossRefGoogle ScholarPubMed
Curtis, C.E., Zald, D.H., Pardo, J.V. (2000). Organization of working memory within the human prefrontal cortex: A PET study of self-ordered object working memory. Neuropsychologia, 38, 15031510. doi:10.1016/S0028-3932(00)00062-2CrossRefGoogle ScholarPubMed
De Jonge, P., de Jong, P.F. (1996). Working memory, intelligence and reading ability in children. Personality and Individual Differences, 21, 10071020. doi:10.1016/S0191-8869(96)00161-4CrossRefGoogle Scholar
Dennis, M., Hetherington, C.R., Spiegler, B.J. (1998). Memory and attention after childhood brain tumors. Medical and Pediatric Oncology Supplement, 1, 2533. doi:10.1002/(SICI)1096-911X(1998)30:1+<25::AID-MPO4>3.3.CO;2-13.0.CO;2-A>CrossRefGoogle Scholar
Dennis, M., Speigler, B.J., Obonsawin, M.C., Maria, B.L., Cowell, C., Hoffman, H.J. (1992). Brain tumors in children and adolescents- III. Effects of radiation and hormone status on intelligence and on working, associative and serial order memory. Neuropsychology, 30, 257275. doi:10.1016/0028-3932(92)90004-6CrossRefGoogle ScholarPubMed
Di Pinto, M., Conklin, H.M., Li, C., Xiong, X., Merchant, T.E. (2010). Investigating verbal and visual auditory learning after conformal radiation therapy for childhood ependymoma. International Journal of Radiation, Oncology, Biology, Physics, 77, 10021008. doi:10.1016/j.ijrobp.2009.06.003CrossRefGoogle ScholarPubMed
Filley, C.M., Kleinschmit-DeMasters, B.K. (2001). Toxic leukoencephalopathy. New England Journal of Medicine, 345, 425432. doi:10.1056/NEJM200108093450606CrossRefGoogle ScholarPubMed
Fry, A.S., Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 4, 237241. doi:10.1111/j.1467-9280.1996.tb00366.xCrossRefGoogle Scholar
Giedd, J.N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 105109. doi:10.1196/annals.1308.009CrossRefGoogle ScholarPubMed
Gilhooly, K.J., Logie, R.H. (1980). Age of acquisition, imagery, concreteness, familiarity and ambiguity measures for 1944 words. Behavioral Research Methods and Instrumentation, 12, 395427. doi:10.3758/BF03201693CrossRefGoogle Scholar
Goldman-Rakic, P.S. (1995). Architecture of the prefrontal cortex and the central executive. Annals of the New York Academy of Sciences, 769, 7183. doi:10.1111/j.1749-6632.1995.tb38132.xCrossRefGoogle ScholarPubMed
Grill, J., Renaux, B.K., Bultau, C., Viguier, D., Levy-Piebois, C., Sainte-Rose, C., Kalifa, C. (1999). Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes. International Journal of Radiation Oncology, Biology, and Physics, 45, 137145. doi:10.1016/S0360-3016(99)00177-7CrossRefGoogle ScholarPubMed
Hanten, G., Levin, H.S., Song, J.X. (1999). Working memory and metacognition in sentence comprehension by severely head injured children: A preliminary study with implications for rehabilitation. Developmental Neuropsychology, 16, 393414. doi:10.1207/S15326942DN1603_23CrossRefGoogle Scholar
Janzen, L.A., Spiegler, B.J. (2008). Neurodevelopmental sequelae of pediatric acute lymphoblastic leukemia and its treatment. Developmental Disabilities Research Review, 14, 185195. doi:10.1002/ddrr.24CrossRefGoogle ScholarPubMed
Kirschen, M.P., Davis-Ratner, M.S., Milner, M.W., Chen, S.H., Schraedley-Desmond, P., Fisher, P.G., Desmond, J.E. (2008). Verbal memory impairments in children after cerebellar tumor resection. Behavioral Neurology, 20, 3953. doi:10.3233/BEN-2008-0216CrossRefGoogle ScholarPubMed
Law, N., Bouffet, E., Laughlin, S., Laperrier, N., Briere, M., Strother, D., Mabbott, D. (2011). Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: Impact on working memory. Neuroimage, 56, 22382248. doi:10.1016/j.neuroimage.2011.03.065CrossRefGoogle ScholarPubMed
Luciana, M., Conklin, H.M., Hooper, C.J., Yarger, R.S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76, 697712. doi:10.1111/j.1467-8624.2005.00872.xCrossRefGoogle ScholarPubMed
Mabbott, D.J., Penkman, L., Witol, A., Strother, D., Bouffet, E. (2008). Core neurocognitive functions in children treated for posterior fossa tumors. Neuropsychology, 22, 159168. doi:10.1037/0894-4105.22.2.159CrossRefGoogle ScholarPubMed
Merchant, T.E. (2002). Current management of childhood ependymoma. Oncology, 16, 629644 Retrieved from http://www.rosalina.info/links/Ependymoma.pdfGoogle ScholarPubMed
Merchant, T.E., Conklin, H.M., Wu, S., Lustig, R.H., Xiong, X. (2009). Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: Prospective evaluation of cognitive, endocrine, and hearing deficits. Journal of Clinical Oncology, 27, 36913697. doi:10.1200/JCO.2008.21.2738CrossRefGoogle ScholarPubMed
Merchant, T.E., Mulhern, R.K., Krasin, M.J., Kun, L.E., Williams, T., Li, C., Sandford, R.A. (2004). Preliminary results from a phase II trial of conformal radiation therapy and evaluations of radiation-related CNS effects for pediatric patients with localized ependymoma. Journal of Clinical Oncology, 22, 31563162. doi:10.1200/JCO.2004.11.142CrossRefGoogle ScholarPubMed
Minisini, A., Atalay, G., Bottomley, A., Puglisi, F., Piccart, M., Biganzoli, L. (2004). What is the effect of systemic anticancer treatment on cognitive function? Lancet Oncology, 5, 774779. doi:10.1016/S1470-2045(04)01465-2CrossRefGoogle ScholarPubMed
Mulhern, R.K., Butler, R.W. (2004). Neurocognitive sequelae of childhood cancers and their treatment. Pediatric Rehabilitation, 7, 114. doi:10.1080/13638490310001655528CrossRefGoogle ScholarPubMed
Mulhern, R.K., Merchant, T.E., Gajjar, A., Reddick, W. E., Kun, L.E. (2004). Late neurocognitive sequelae in survivors of brain tumours in childhood. The Lancet, 5, 399408. doi:10.1016/S1470-2045(04)01507-4CrossRefGoogle ScholarPubMed
Mulhern, R.K., Reddick, W.E., Palmer, S.L., Glass, J.O., Elkin, T.D., Kun, L.E., Gajjar, A. (1999). Neurocognitive deficits in medulloblastoma survivors and white matter loss. Annuals of Neurology, 46, 834841. doi:10.1002/1531-8249(199912)46:6<834::AID-ANA5>3.0.CO;2-M3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Nelson, C.A. (1995). The ontogeny of human memory: A cognitive neuroscience perspective. Developmental Psychology, 31, 723738. doi:10.1037//0012-1649.31.5.723CrossRefGoogle Scholar
Olsen, R.K., Nichols, E.A., Chen, J., Hunt, J.F., Glover, G.H., Gabrieli, J.D.E., Wagner, A.D. (2009). Performance-related sustained and anticipatory activity in human medial temporal lobe during delayed match-to-sample. The Journal of Neuroscience, 29, 1188011890. doi:10.1523/JNEUROSCI.2245-09.2009CrossRefGoogle ScholarPubMed
Palmer, S.L., Goloubeva, O., Reddick, W.E., Glass, J.O., Gajjar, A., Kun, L., Mulhern, R.K. (2001). Patterns of intellectual development among survivors of pediatric medulloblastoma: A longitudinal analysis. Journal of Clinical Oncology, 19, 23022308 Retrieved from http://jco.ascopubs.org/content/19/8/2302.fullCrossRefGoogle ScholarPubMed
Petrides, M. (1995). Functional organization of the human frontal cortex for mnemonic processing. Evidence from neuroimaging studies. Annals of the New York Academy of Sciences, 769, 8596. doi:10.1111/j.1749-6632.1995.tb38133.xCrossRefGoogle ScholarPubMed
Petrides, M., Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia, 20, 249262. doi:10.1016/0028-3932(82)90100-2CrossRefGoogle ScholarPubMed
Qiu, D., Kwong, D.L., Chan, G.C., Leung, L.H., Khong, P.L. (2007). Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: Reflection of regional white matter radiosensitivity? International Journal of Radiation Oncology, Biology, Physics, 69, 846851. doi:10.1016/j.ijrobp.2007.04.041CrossRefGoogle ScholarPubMed
Ranganath, C., Johnson, M.K., D'Esposito, M. (2003). Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia, 41, 378389. doi:10.1016/S0028-3932(02)00169-0CrossRefGoogle ScholarPubMed
Rao, A.A., Ye, H., Decker, P.A., Howe, C.L., Wetmore, C. (2011). Therapeutic doses of cranial irradiation induce hippocampus-dependent cognitive deficits in young mice. Journal of Neurooncology, 105, 191198. doi:10.1007/s11060-011-0582-9Google ScholarPubMed
Reddick, W.E., Russell, J.M., Glass, J.O., Xiong, X., Mulhern, R.K., Langston, J.W., Gajjar, A. (2000). Subtle white matter volume differences in children treated for medulloblastoma with conventional or reduced dose craniospinal irradiation. Magnetic Resonance Imaging, 18, 787793. doi:10.1016/S0730-725X(00)00182-XCrossRefGoogle ScholarPubMed
Reeves, C.B., Palmer, S.L., Reddick, W.E., Merchant, T.E., Buchanan, G.M., Gajjar, A., Mulhern, R.K. (2006). Attention and memory function among pediatric patients with medulloblastoma. Journal of Pediatric Psychology, 31, 272280. doi:10.1093/jpepsy/jsj019CrossRefGoogle ScholarPubMed
Rueckriegel, S.M., Driever, P.H., Blankenburg, F., Ludemann, L., Henze, G., Bruhn, H. (2010). Differences in supratentorial damage of white matter in pediatric survivors of posterior fossa tumors with and without adjuvant treatment as detected by magnetic resonance diffusion tensor imaging. International Journal of Radiation Oncology, Biology, Physics, 76, 859866. doi:10.1016/j.ijrobp.2009.02.054CrossRefGoogle ScholarPubMed
Schatz, J., Kramer, J.H., Ablin, A., Matthay, K.K. (2000). Processing speed, working memory, and IQ: A developmental model of cognitive deficits following cranial radiation therapy. Neuropsychology, 14, 189200. doi:10.1037//0894-4105.14.2.189CrossRefGoogle ScholarPubMed
Schon, K., Hasselmo, M.E., Lopresti, M.L., Tricarico, M.D., Stern, C.E. (2004). Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: A functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. Journal of Neuroscience, 24, 1108811097. doi:10.1523/JNEUROSCI.3807-04.2004CrossRefGoogle ScholarPubMed
Smith, E.E., Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Science of the United States of America, 95, 1206112068. doi:10.1073/pnas.95.20.12061CrossRefGoogle ScholarPubMed
Sowell, E.R., Thompson, P.M., Tessner, K.D., Toga, A.W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation. The Journal of Neuroscience, 21, 88198829. Retrieved from http://www.jneurosci.org/content/21/22/8819.fullCrossRefGoogle ScholarPubMed
Swanson, H.L. (1999). What develops in working memory? A life span perspective. Developmental Psychology, 35, 9861000. doi:10.1037//0012-1649.35.4.986CrossRefGoogle ScholarPubMed
Vardy, J., Tannock, I. (2007). Cognitive function after chemotherapy in adults with solid tumours. Critical Review Oncology Hematology, 63, 183202. doi:10.1016/j.critrevonc.2007.06.001CrossRefGoogle ScholarPubMed
Waber, D.P., Pomeroy, S.L., Chiverton, A.M., Kieran, M.W., Scott, R.M., Goumnerova, L.C., Rivkin, M.J. (2006). Everyday cognitive function after craniopharyngioma in childhood. Pediatric Neurology, 34, 1319. doi:10.1016/j.pediatrneurol.2005.06.002CrossRefGoogle ScholarPubMed
Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: Harcourt Assessment.Google Scholar
Wechsler, D. (1999). Wechsler Adult Intelligence Scale-Third Edition. San Antonio, TX: Psychological Corporation.Google Scholar
Wechsler, D. (2003). Wechsler Intelligence Scale for Children- Fourth Edition, Integrated. San Antonio, TX: Psychological Corporation.Google Scholar
Wilkinson, G.S. (1994). Wide Range Achievement Test- Third Edition. Wilmington, DE: Wide Range Inc.Google Scholar