Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-28T10:32:07.174Z Has data issue: false hasContentIssue false

Neurofibromatosis Type 1: Piecing the Puzzle Together

Published online by Cambridge University Press:  18 September 2015

Matthias M. Feldkamp
Affiliation:
Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto Division of Neurosurgery, The Toronto Hospital, and University of Toronto, Toronto, U.S.A.
David H. Gutmann
Affiliation:
Departments of Neurology and Genetics, Washington University School of Medicine, St. Louis, U.S.A.
Abhijit Guha*
Affiliation:
Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto Division of Neurosurgery, The Toronto Hospital, and University of Toronto, Toronto, U.S.A. Department of Surgical Oncology, Ontario Cancer Institute, Peripheral Nerve Unit, The Toronto Hospital, Toronto, Ontario.
*
2-415 McLaughlin Pavilion, The Toronto Hospital, Toronto Western Division, 399 Bathurst Street Toronto, Ontario, Canada M5T 2S8
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Neurofibromatosis type 1 (NF1) was first described in 1882 and is characterized by a diverse spectrum of clinical manifestations, including neurofibromas, cafe au lait spots, and Lisch nodules. NF1 is also noted for the higher risk of associated malignancies, making it the most common tumour-predisposing disease in humans. Transmitted in an autosomal dominant manner, the NFI gene was cloned in 1990, and belongs to the family of tumour suppressor genes. Since then, there has been an explosion in our understanding of how the gene product, neurofibromin, functions in normal cellular physiology, and how its loss in NF1 relates to the wide spectrum of clinical findings, including NF1-associated tumours. Neurofibromin is a major negative regulator of a key signal transduction pathway in cells, the Ras pathway, which transmits mitogenic signals to the nucleus. Loss of neurofibromin leads to increased levels of activated Ras (bound to GTP), and thus increased downstream mitogenic signaling. Our understanding of neurofibromin's role within cells has allowed for the development of pharmacological therapies which target the specific molecular abnormalities in NF1 tumours. These include the farnesyl transferase inhibitors, which inhibit the post-translational modification of Ras, and other agents which modulate Ras-mediated signaling pathways.

Type
Review Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1998

References

REFERENCES

1.von Recklinghausen, FD. Über die multiplen Fibrome der Haut und ihre Beziehung zu den multiplen Neuromen. Berlin,Hirschwald, 1882.Google Scholar
2.Riccardi, VM, Eichner, JE. Neurofibromatosis: Phenotype, Natural History, and Pathogenesis. Baltimore, MD, Johns Hopkins University Press, 1992.Google Scholar
3.Trofatter, JA, MacCollin, MM, Rutter, JL, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 1993; 72: 791800.CrossRefGoogle ScholarPubMed
4.Rouleau, GA, Merel, P, Lutchman, M, et al. Alteration in a new gene encoding a putative membrane organizing protein causes neurofibromatosis type 2. Nature 1993; 363: 515521.CrossRefGoogle Scholar
5.Evans, DGR, Huson, SM, Donnai, D, et al. A clinical study of type 2 neurofibromatosis. Q J Med 1992; 84: 603618.Google ScholarPubMed
6.Tibbies, JAR, Cohen, MM. The Proteus syndrome: the Elephant Man diagnosed. Br Med J 1986; 293: 683685.CrossRefGoogle Scholar
7.Lott, IT, Richardson, ER Jr. Neuropathological findings and the biology of neurofibromatosis. Adv Neurol 1981; 29: 2332.Google ScholarPubMed
8.Gutmann, DH, Collins, FS. von Recklinghausen neurofibromatosis. In: Scriver, CR, Beaudet, AL, Sly, WS, Valle, D, eds. von Recklinghausen Neurofibromatosis. New York, McGraw-Hill, 1995: 677696.Google Scholar
9.Burwell, RG, James, NJJohnston, DI. Cafe-au-lait spots in schoolchildren. Arch Dis Child 1982; 57: 631632.CrossRefGoogle ScholarPubMed
10.Stumpf, S, Alksne, JF, Annegers, JFet al. Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 1988; 45: 575578.Google Scholar
11.Huson, SM. Neurofibromatosis 1: A clinical and genetic overview. In: Huson, SM, Hughes, RAC, eds. Neurofibromatosis 1: A clinical and genetic overview. London, Chapman and Hall, 1994: 160203.Google Scholar
12.Grifa, A, Piemontese, MR, Melchionda, S, et al. Screening of neurofibromatosis type 1 gene: identification of a large deletion and of an intronic variant. Clin Genet 1995; 47: 281284.CrossRefGoogle ScholarPubMed
13.Sorensen, SA, Mulvihill, JJ, Nielsen, A. Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. N Engl J Med 1986; 314: 10101015.CrossRefGoogle Scholar
14.Zoller, M, Rembeck, B, Akesson, HO, Angervall, L. Life expectancy, mortality and prognostic factors in neurofibromatosis type 1. A twelve-year follow-up of an epidemiological study in Göteborg, Sweden. Acta Derm Venereol 1995; 75: 136140.CrossRefGoogle ScholarPubMed
15.Riccardi, VM. Von Recklinghausen neurofibromatosis. N Engl J Med 1981; 305: 16171627.CrossRefGoogle ScholarPubMed
16.Shannon, KM, O’Connell, P, Martin, GA, et al. Loss of the normal NFl allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 1994;330:597601.CrossRefGoogle Scholar
17.Mulvihill, JJ. Malignancy: epidemiologically associated cancers. In: Huson, SM, Hughes, RAC, eds. Malignancy: Epidemiologically Associated Cancers. London, Chapman & Hall Medical, 1994: 305315.Google Scholar
18.Marchuk, DA, Saulino, AM, Tavakkol, R, et al. cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 1991; 11: 931940.CrossRefGoogle ScholarPubMed
19.Preiser, SA, Davenport, CB. Multiple neurofibromatosis (von Recklinghausen disease) and its inheritance. Am J Med Sci 1918; 156:507.CrossRefGoogle Scholar
20.Crowe, F. A Clinical, Pathological and Genetic Study of Multiple Neurofibromatosis. Springfield, IL, C.C. Thomas, 1956.Google Scholar
21.Borberg, A. Clinical and genetic investigations into tuberous sclerosis and Recklinghausen’s neurofibromatosis. Acta Psychiatr Neurol (Suppl.) 1951; 71: 1239.Google ScholarPubMed
22.Riccardi, VM,Lewis, RA. Penetrance of von Recklinghausen neurofibromatosis: a distinction between predecessors and descendents. Am J Hum Genet 1988; 42: 284289.Google Scholar
23.Sergeyev, AS. On the mutation rate of neurofibromatosis. Humangenetik l975; 28: 129138.Google Scholar
24.Carey, JC, Baty, BJ, Johnson, JP, et al. The genetic aspects of neurofibromatosis. Ann N Y Acad Sci 1986; 486: 4556.CrossRefGoogle ScholarPubMed
25.Monaco, AP, Neve, RL, Colletti-Feener, C, et al. Isolation of candidate cDNAs for portions of the Duschenne muscular dystrophy gene. Nature 1986; 323: 646650.CrossRefGoogle Scholar
26.Richards, FM, Payne, SJ, Zbar, B, et al. Molecular analysis of de novo germline mutations in the von Hippel-Lindau disease gene. Hum Mol Genet 1995; 4: 21392143.CrossRefGoogle ScholarPubMed
27., DI, Coulter-Mackie, MB, Singh, SM. Evidence of DNA methylation in the neurofibromatosis type 1 (NF1) gene region of 17qll.2. Hum Mol Genet 1993; 2: 439444.CrossRefGoogle Scholar
28.Colman, SD, Williams, CA, Wallace, MR. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NFI gene. Nat Genet 1995; 11: 9092.CrossRefGoogle Scholar
29.Jadayel, D, Fain, P, Upadhyaya, M, et al. Paternal origin of new mutations in von Recklinghausen neurofibromatosis. Nature 1990;343:558559.CrossRefGoogle ScholarPubMed
30.Hall, JG. Genomic imprinting: review and relevance to human diseases. Am J Hum Genet 1990; 46: 857873.Google ScholarPubMed
31.Stephens, K, Kayes, L, Riccardi, VM, et al. Preferential mutation of the neurofibromatosis type 1 gene in paternally derived chromosomes. Hum Genet 1992; 88: 279282.CrossRefGoogle ScholarPubMed
32.Monk, M, Boubelik, M, Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ line lineages during mouse embryo development. Development 1987; 99: 371382.CrossRefGoogle ScholarPubMed
33.Driscoll, DJ, Migeon, BR. Sex difference in methylation of singlecopy genes in human meiotic germ cells: implications for X chromosome inactivation, parental imprinting, and origin of CpG mutations. Somat Cell Mol Genet 1990; 16: 267282.CrossRefGoogle ScholarPubMed
34.Miller, M, Hall, JG. Possible maternal effect on severity of neurofibromatosis. Lancet 1978; 2: 10711073.CrossRefGoogle ScholarPubMed
35.Easton, DF, Ponder, MA, Huson, SM, Ponder, BAJ. An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am J Hum Genet 1993; 53: 305313.Google ScholarPubMed
36.Sarfarazi, M, Huson, SM, Edwards, JH. An exclusion map for von Recklinghausen neurofibromatosis. J Med Genet 1987; 24: 515520.CrossRefGoogle ScholarPubMed
37.Barker, D, Wright, E, Nguyen, K, et al. Gene for von Recklinghausen neurofibromatosis is in the pericentromeric region of chromosome 17. Science 1987; 236: 11001102.CrossRefGoogle Scholar
38.Stephens, K, Green, P, Riccardi, VM, et al. Genetic analysis of eight loci tightly linked to neurofibromatosis 1. Am J Hum Genet 1989; 44: 1319.Google ScholarPubMed
39.Goldgar, DE, Green, P, Parry, DM, Mulvihill, JJ. Multipoint linkage analysis in neurofibromatosis type 1: an international collaboration. Am J Hum Genet 1989; 44: 612.Google ScholarPubMed
40.Ledbetter, DH, Rich, DC, O’Connell, P, Leppert, M, Carey, JC. Precise localization of NFl to 17q 11.2 by balanced translocation. Am J Med Genet 1989; 44: 2024.Google Scholar
41.Schmidt, MA, Michels, VV, Dewald, GW. Cases of neurofibromatosis with rearrangements of chromosome 17 involving band 17ql 1.2. Am J Med Genet 1987; 28: 771777.CrossRefGoogle Scholar
42.O’Connell, P, Leach, R, Cawthon, RM, et al. Two NF1 translocations map within a 600-kilobase segment of 17ql 1.2. Science 1989; 244: 10871088.CrossRefGoogle Scholar
43.Fountain, JW, Wallace, MR, Bruce, MA, et al. Physical mapping of a translocation breakpoint in neurofibromatosis. Science 1989; 244: 10851087.CrossRefGoogle ScholarPubMed
44.O’Connell, P, Viskochil, D, Buchberg, AM, et al. The human homolog of murine Evi-2 lies between two von Recklinghausen neurofibromatosis translocations. Genomics 1990; 7: 547554.CrossRefGoogle Scholar
45.Cawthon, RM, Anderson, LB, Buchberg, AM, et al. cDNA sequence and genomic structure of EVI2B, a gene lying within an intron of the neurofibromatosis type 1 gene. Genomics 1991; 9: 446460.CrossRefGoogle ScholarPubMed
46.Viskochil, D, Cawthon, R, O’Connell, P, et al. The gene encoding the oligodendrocyte-myelin glycoprotein is embedded within the neurofibromatosis type 1 gene. Mol Cell Biol 1991; 11: 906912.Google ScholarPubMed
47.Xu, GF, O’Connell, P, Viskochil, D, et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 1990; 62: 599608.CrossRefGoogle ScholarPubMed
48.Viskochil, D, Buchberg, AM, Xu, G, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type I locus. Cell 1990; 62: 187192.CrossRefGoogle Scholar
49.Wallace, MR, Marchuk, DA, Andersen, LB, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 1990,249: 181186.CrossRefGoogle ScholarPubMed
50.Li, Y, O’Connell, P, Breidenbach, HH, et al. Genomic organization of the neurofibromatosis 1 gene (NF1). Genomics 1995; 25: 918.CrossRefGoogle ScholarPubMed
51.Hajra, A, Martin-Gallardo, A, Tarle, SA, Freedman, M, Wilson-Gunn, S, et al. DNA sequences in the promoter region of the NFI gene are highly conserved between human and mouse. Genomics 1994; 21: 649652.CrossRefGoogle Scholar
52.Viskochil, D, White, R, Cawthon, R. The neurofibromatosis type 1 gene. Ann Rev Neurosci 1993; 16: 183205.CrossRefGoogle ScholarPubMed
53.DeClue, JE, Cohen, BD, Lowy, DR. Identification and characterization of the neurofibromatosis typel protein product. Proc Natl Acad Sci U S A 1991; 88: 99149918.CrossRefGoogle Scholar
54.Gutmann, DH, Wood, DL, Collins, FS. Identification of the neurofibromatosis type 1 gene product. Proc Natl Acad Sci U S A 1991;88:96589662.CrossRefGoogle ScholarPubMed
55.Daston, MM, Scrable, H, Nordlund, M, et al. The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes. Neuron 1992;8:415428.CrossRefGoogle ScholarPubMed
56.Gutmann, DH, Geist, RT, Wright, DE, Snider, WD. Expression of the neurofibromatosis 1 (NFI) isoforms in developing and adult rat tissues. Cell Growth Differ 1995; 6: 315323.Google Scholar
57.Andersen, LB, Ballester, R, Marchuk, DA, et al. A conserved alternative splice in the von Recklinghausen neurofibromatosis (NFI) gene produces two neurofibromin isoforms, both of which have GTPase-activating protein activity. Mol Cell Biol 1993; 13:487495.Google Scholar
58.Bernards, A, Haase, VH, Murthy, AE, et al. Complete human NFI cDNA sequence: two alternatively spliced mRNAs and absence of expression in a neuroblastoma line. DNA Cell Biol 1992; 11:727734.CrossRefGoogle Scholar
59.Teinturier, C, Danglot, G, Slim, R, et al. The neurofibromatosis 1 gene transcripts expressed in peripheral nerve and neurofibromas bear the additional exon located in the GAP domain. Biochem Biophys Res Commun 1992; 188: 851857.CrossRefGoogle ScholarPubMed
60.Gutmann, DH, Andersen, LB, Cole, JL, Swaroop, M, Collins, FS. An alternatively-spliced mRNA in the carboxy terminus of the neurofibromatosis type 1 (NFI) gene is expressed in muscle. Hum Mol Genet 1993; 2: 989992.CrossRefGoogle Scholar
61.Gutmann, DH, Geist, RT, Rose, K, Wright, DE. Expression of two new protein isoforms of the neurofibromatosis type 1 gene product, neurofibromin, in muscle tissues. Dev Dyn 1995; 202: 302311.CrossRefGoogle ScholarPubMed
62.Danglot, G, Regnier, V, Fauvet, D, et al. Neurofibromatosis 1 (NFI) mRNAs expressed in the central nervous system are differentially spliced in the 5’ part of the gene. Hum Mol Genet 1995; 4:915920.CrossRefGoogle Scholar
63.Geist, RT, Gutmann, DH. Expression of a developmentally-regulated neuron-specific isoform of the neurofibromatosis 1 (NFI) gene. Neurosci Lett 1996; 211: 8588.CrossRefGoogle Scholar
64.Platten, M, Giordano, MJ, Dirven, CMF, Gutmann, DH, Louis, DN. Up-regulation of specific NFI gene transcripts in sporadic pilocytic astrocytomas. Am J Pathol 1996; 149: 621627.Google Scholar
65.Buchberg, AM, Cleveland, LS, Jenkins, NA, Copeland, NG. Sequence homology shared by neurofibromatosis type-1 gene and IRA-1 and IRA-2 negative regulators of the RAS cyclic AMP pathway. Nature 1990; 347: 291294.CrossRefGoogle ScholarPubMed
66.Ahmadian, MR, Wiesmuller, L, Lautwein, A, Bischoff, FR, Wittinghofer, A. Structural differences in the minimal catalytic domains of the GTPase-activating proteins pl20GAP and neurofibromin. J Biol Chem 1996; 271: 1640916415.CrossRefGoogle Scholar
67.Cullen, PJ, Hsuan, JJ, Truong, O, et al. Identification of a specific Ins(l,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 1995; 376: 527530.CrossRefGoogle Scholar
68.Bollag, G, McCormick, F. Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature 1991; 351: 576579.CrossRefGoogle ScholarPubMed
69.Downward, J. Regulation of p21ras by GTPase activating proteins and guanine nucleotide exchange proteins. Curr Opin Genet Dev 1992; 2: 1318.CrossRefGoogle ScholarPubMed
70.Downward, J. Regulatory mechanisms for ras proteins. Bioessays 1992; 14: 177184.CrossRefGoogle ScholarPubMed
71.McCormick, F. Signal transduction. How receptors turn Ras on. Nature 1993; 363: 1516.CrossRefGoogle Scholar
72.McCormick, F. Ras signaling and NF1. Curr Opin Genet Dev 1995; 5:5155.CrossRefGoogle ScholarPubMed
73.Guha, A, Lau, N, Gutmann, D, et al. Ras-GTP levels are elevated in human NF1 peripheral nerve tumours. Oncogene 1996; 12: 507513.Google Scholar
74.Maekawa, M, Li, S, Iwamatsu, A, et al. A novel mammalian Ras GTPase-activating protein which has phospholipid-binding and Btk homology regions. Mol Cell Biol 1994; 14: 68796885.Google ScholarPubMed
75.Rozakis-Adcock, M, Fernley, R, Wade, J, Pawson, T, Bowtell, D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSosl. Nature 1993; 363: 8385.CrossRefGoogle Scholar
76.Lowenstein, EJ, Daly, RJ, Batzer, AG, et al. The SH2 and SH3 domain-containing protein GRB2 links receptors tyrosine kinases to ras signaling. Cell 1992; 70: 431442.CrossRefGoogle ScholarPubMed
77.Buday, L, Downward, J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 1993; 73: 611620.CrossRefGoogle ScholarPubMed
78.Chardin, P, Camonis, JH, Gale, NW, et al. Human Sos I: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 1993; 260: 13381343.CrossRefGoogle Scholar
79.Egan, SE, Giddings, BW, Brooks, MW, et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 1993; 363: 4551.CrossRefGoogle ScholarPubMed
80.Li, W, Nishimura, R, Kashishian, A, et al. A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol 1994; 14: 509517.CrossRefGoogle ScholarPubMed
81.Rozakis-Adcock, M, McGlade, J, Mbamalu, G, et al. Association of the She and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 1992; 360: 689692.CrossRefGoogle Scholar
82.Bos, JL. Ras oncogenes in human cancers: a review. Cancer Res 1989;49:46824689.Google ScholarPubMed
83.Cantley, LC, Auger, KR, Carpenter, C, et al. Oncogenes and signal transduction. Cell 1991; 64: 281302.CrossRefGoogle ScholarPubMed
84.Martin, GA, Viskochil, D, Bollag, G, et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 1990; 63: 843849.CrossRefGoogle ScholarPubMed
85.Ballester, R, Marchuk, D, Boguski, M, et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 1990; 63: 851859.CrossRefGoogle ScholarPubMed
86.Xu, GF, Lin, B, Tanaka, K, et al. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 1990; 63: 835841.CrossRefGoogle ScholarPubMed
87.Nur-E-Kamal, MSA, Varga, M, Maruta, H. The GTPase-activating NF1 fragment of 91 amino acids reverses v-Ha-Ras-induced malignant phenotype. J Biol Chem 1993; 268: 2233122337.CrossRefGoogle ScholarPubMed
88.Basu, TN, Gutmann, DH, Fletcher, JA, et al. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 1992; 356: 713715.CrossRefGoogle ScholarPubMed
89.DeClue, JE, Papageorge, AG, Fletcher, JA, et al. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (typel) neurofibromatosis. Cell 1992;69:265273.CrossRefGoogle Scholar
90.Johnson, MR, DeClue, JE, Felzmann, S, et al. Neurofibromin can inhibit Ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Mol Cell Biol 1994; 14: 641645.Google ScholarPubMed
91.Nakafuku, M, Nagamine, M, Ohtoshi, A, et al. Suppression of oncogenic Ras by mutant neurofibromatosis type 1 genes with single amino acid substitutions. Proc Natl Acad Sci U S A 1993; 90:67066710.CrossRefGoogle ScholarPubMed
92.Feldkamp, MM, Lau, N, Provias, JP, Guha, A. Acute presentation of a neurogenic sarcoma in a patient with neurofibromatosis type 1: A pathologic and molecular explanation. J Neurosurg 1996; 84: 867873.CrossRefGoogle Scholar
93.Johnson, MR, Look, AT, DeClue, JE, Valentine, MB, Lowy, DR. Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP’Ras. Proc Natl Acad Sci U S A 1993; 90: 55395543.CrossRefGoogle ScholarPubMed
94.Li, Y, White, R. Suppression of a human colon cancer cell line by introduction of an exogenous NF1 gene. Cancer Res 1996; 56:28722876.Google ScholarPubMed
95.Gutmann, DH. Tumor suppressor genes as negative growth regulators in development and differentiation. Int J Dev Biol 1995; 39: 895907.Google ScholarPubMed
96.Gregory, PE, Gutmann, DH, Mitchell, A, et al. The neurofibromatosis type 1 gene product (neurofibromin) associates with microtubules. Somat Cell Mol Genet 1993; 19: 265274.CrossRefGoogle ScholarPubMed
97.Bollag, G, McCormick, F, Clark, R. Characterization of full-length neurofibromin: tubulin inhibits Ras GAP activity. EMBO J 1993; 12: 19231927.CrossRefGoogle ScholarPubMed
98.Boyer, MJ, Gutmann, DH, Collins, FS, Bar-Sagi, D. Crosslinking of the surface immunoglobulin receptor in B lymphocytes induces a redistribution of neurofibromin but not pl20-GAP. Oncogene 1994;9:349357.Google Scholar
99.Izawa, I, Tamaki, N, Saya, H. Phosphorylation of neurofibromatosis type 1 gene product (neurofibromin) by cAMP-dependent protein kinase. FEBS Lett 1996; 382: 5359.CrossRefGoogle ScholarPubMed
100.Gutmann, DH, Collins, FS. The neurofibromatosis type 1 gene and its protein product, neurofibromin. Neuron 1993; 10: 335343.CrossRefGoogle ScholarPubMed
101.Gutmann, DH, Mahadeo, DK, Giordano, M, Silbergeld, D, Guha, A. Increased neurofibromatosis 1 gene expression in astrocytic tumors: positive regulation by p21-ras. Oncogene 1996; 12: 21212127.Google ScholarPubMed
102.Giordano, MJ, Mahadeo, DK, He, YY, et al. Increased expression of the neurofibromatosis 1 (NF1) gene product, neurofibromin, in astrocytes in response to cerebral ischemia. J Neurosci Res 1996;43:246253.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
103.Knudson, AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971; 68: 820823.CrossRefGoogle ScholarPubMed
104.Xu, W, Mulligan, LM, Ponder, MA,et al. Loss of NF1 alleles in phaeochromocytomas from patients with type I neurofibromatosis. Genes Chromosomes Cancer 1992; 4: 337342.CrossRefGoogle ScholarPubMed
105.Gutmann, DH, Cole, JL, Stone, WJ, Ponder, BAJ, Collins, FS. Loss of neurofibromin in adrenal gland tumors from patients with neurofibromatosis type 1. Genes Chromosomes Cancer 1994; 10: 5558.CrossRefGoogle ScholarPubMed
106.Sawada, Si, Florell, S, Purandare, SM, et al. Identification of NF1 mutations in both alleles of a dermal neurofibroma. Nat Genet 1996; 14: 110112.CrossRefGoogle ScholarPubMed
107.Takahashi, K, Suzuki, H, Hatori, M, et al. Reduced expression of neurofibromin in the soft tissue tumours obtained from patients with neurofibromatosis type I. Clin Sci 1995; 88: 581585.CrossRefGoogle ScholarPubMed
108.Legius, E, Marchuk, DA, Collins, FS, Glover, TW. Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet 1993; 3: 122126.CrossRefGoogle Scholar
109.Jacks, T, Shih, TS, Schmitt, EM, et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nfl. Nat Genet 1994;7:353361.CrossRefGoogle Scholar
110.Brannan, CI, Perkins, AS, Vogel, KS, et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 1994; 8: 10191029.CrossRefGoogle ScholarPubMed
111.Kirby, ML, Gale, TF, Stewart, DE. Neural crest cells contribute to aorticopulmonary septation. Science 1983; 220: 10591061.CrossRefGoogle ScholarPubMed
112.Vogel, KS, Brannan, CI, Jenkins, NA, Copeland, NG, Parada, LF. Loss of neurofibromin results in neurotrophin-independent survival of embryonic sensory and sympathetic neurons. Cell 1995;82:733742.CrossRefGoogle ScholarPubMed
113.Borasio, GD, John, J, Wittinghofer, A, et al. ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron 1989; 2: 10871096.CrossRefGoogle ScholarPubMed
114.Kim, HA, Rosenbaum, T, Marchionni, MA, Ratner, N, DeClue, JE. Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene 1995; 11: 325335.Google ScholarPubMed
115.Rosenbaum, C, Krasnoselski, AL, Marchionni, MA, Brackenbury, RW , Ratner, N. Neuregulins and neu/erbB2 are required for response of Schwann cells to multiple growth factors. J Neurochem 1996;66:S47.Google Scholar
116.Johnson, MD, Kamso-Pratt, J, Federspiel, CF, Whetsell, WO Jr. Mast cell and lymphoreticular infiltrates in neurofibromas. Comparison with nerve sheath tumors. Arch Pathol Lab Med 1989; 113: 12631270.Google ScholarPubMed
117.Ducatman, BS, Scheithauer, BW, Piepgras, DG, Reiman, HM, Ilstrup, DM. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer 1986; 57: 20062021.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
118.Birch, R. Peripheral nerve tumors. In: Dyck, PJ, Thomas, RK, eds. Peripheral Nerve Tumors. Philadelphia, W.B. Saunders, 1993: 16231640.Google Scholar
119.Enneking, W. Musculoskeletal Tumor Surgery. Edinburgh, Churchill Livingstone, 1983.Google Scholar
120.Castresana, JS, Barrios, C, Gomez, L, Kreicbergs, A. No association between c-myc amplification and TP53 mutation in sarcoma tumorigenesis. Cancer Genet Cytogenet 1994; 76: 4749.CrossRefGoogle ScholarPubMed
121.Andreassen, A, Oyjord, T, Hovig, E, et al. p53abnormalities in different subtypes of human sarcomas. Cancer Res 1993; 53: 468471.Google ScholarPubMed
122.Lothe, RA, Slettan, A, Saeter, G, Bet al, . Alterations at chromosome 17 loci in peripheral nerve sheath tumors. J Neuropathol Exp Neurol 1995;54:6573.CrossRefGoogle ScholarPubMed
123.Cordon-Cardo, C, Latres, E, Drobnjak, M, et al. Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res 1994; 54: 794799.Google ScholarPubMed
124.Legius, E, Dierick, H, Wu, R, et al. TP53 mutations are frequent in malignant NF1 tumors. Genes Chromosomes Cancer 1994; 10: 250255.CrossRefGoogle ScholarPubMed
125. Menon, AG, Anderson, KM, Riccardi, VM, et al. Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc Natl Acad Sci U S A 1990; 87: 54355439.CrossRefGoogle ScholarPubMed
126.Friend, SH, Horowitz, JM, Gerber, MR, et al. Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc Natl Acad Sci US A 1987;84:90599063.CrossRefGoogle ScholarPubMed
127.Wunder, JS, Czitrom, AA, Kandel, R, Andrulis, IL. Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft-tissue sarcomas. J Natl Cancer Inst 1991; 83: 194200.CrossRefGoogle ScholarPubMed
128.Cance, WG, Brennan, MF, Dudas, ME, Huang, CM, Cordon-Cardo, C. Altered expression of the retinoblastosis gene product in human sarcomas. N Engl J Med 1990; 323: 14571462.CrossRefGoogle ScholarPubMed
129.Jhanwar, SC, Chen, Q, Li, FP, Brennan, MF, Woodruff, JM. Cytogenetic analysis of soft tissue sarcomas. Recurrent chromosome abnormalities in malignant peripheral nerve sheath tumors (MPNST). Cancer Genet Cytogenet 1994; 78: 138144.CrossRefGoogle ScholarPubMed
130.Ottini, L, Esposito, DL, Richetta, A, et al. Alterations of microsatellites in neurofibromas of von Recklinghausen’s disease. Cancer Res 1995;55:56775680.Google ScholarPubMed
131.Uchida, T, Wang, C, Wada, C, et al. Microsatellite instability in transitional cell carcinoma of the urinary tract and its relationship to clinicopathological variables and smoking. Int J Cancer 1996; 69: 142145.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
132.Zhu, J, Guo, SZ, Beggs, AH, et al. Microsatellite instability analysis of primary human brain tumors. Oncogene 1996; 12: 14171423.Google ScholarPubMed
133.Upadhyaya, M, Shen, M, Cherryson, A, et al. Analysis of mutations at the neurofibromatosis 1 (NF1) locus. Hum Mol Genet 1992;1:735740.CrossRefGoogle ScholarPubMed
134.Lazaro, C, Kruyer, H, Gaona, A, Estivill, X. Two further cases of mutation R1947X in the NF1 gene: screening for a relatively common recurrent mutation. Hum Genet 1995; 96: 361363.CrossRefGoogle ScholarPubMed
135.Hofman, KJ, Boehm, CD. Familial neurofibromatosis type 1: clinical experience with DNA testing. J Pediatr 1992; 120: 394398.CrossRefGoogle ScholarPubMed
136.Dublin, S, Riccardi, VM, Stephens, K. Methods for rapid detection of a recurrent nonsense mutation and documentation of phenotypic features in neurofibromatosis type 1 patients. Hum Mutat 1995;5:8185.CrossRefGoogle ScholarPubMed
137.Gasparini, P, D’Agnima, L, Pio de Cillis, G, et al. Scanning the first part of the neurofibromatosis type 1 gene by RNA- SSCP: identification of three novel mutations and of two new polymorphisms. Hum Genet 1996; 97: 492495.CrossRefGoogle ScholarPubMed
138.Gibbs, JB, Oliff, A, Kohl, NE. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell 1994; 77: 175178.CrossRefGoogle ScholarPubMed
139.Hancock, JF, Paterson, H, Marshall, CJ. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 1990; 63: 133139.CrossRefGoogle ScholarPubMed
140.Kohl, NE, Omer, CA, Conner, MW, et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1995; 1: 792797.CrossRefGoogle ScholarPubMed
141.Yan, N, Ricca, C, Fletcher, J, et al. Farnesyltransferase inhibitors block the neurofibromatosis type I (NF1) malignant phenotype. Cancer Res 1995; 55: 35693575.Google ScholarPubMed
142.Pang, L, Sawada, T, Decker, SJ, Saltiel, AR. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J Biol Chem 1995; 270: 1358513588.CrossRefGoogle ScholarPubMed