Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-31T12:58:16.263Z Has data issue: false hasContentIssue false

Cephalic Axial Skeletal-Neural Dysraphic Disorders: Embryology and Pathology

Published online by Cambridge University Press:  18 September 2015

Miguel Marín-Padilla*
Affiliation:
Professor of Pathology and Maternal & Child Health, Department of Pathology, Dartmouth Medical School, Hanover, New Hampshire
*
Department of Pathology, Dartmouth Medical School, Hanover, New Hampshire, U.S.A. 03756
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three fundamental types of cephalic axial skeletal-neural dysrapic disorders are analyzed, including: cranioschisis aperta with encephaloschisis (anencephaly and/or exencephaly), cranioschisis occulta with occipital encephalocele, and the Chiari malformation (occipital bone hypoplasia) with compression, deformation and displacement of hindbrain, cerebellum, and medulla. Both clinical and experimental (vitamin A induced) examples of these malformations are used. The study establishes that these are not simple neurological (neural tube defects) disorders as it has been generally assumed, but complex developmental malformations affecting primarily the formation of the axial basicranium (causing skeletal defects) and the elevation of the neural folds and neurocranium (causing neural defects), and, secondarily, the topography of the facial skeleton or viscerocranium (causing oropharyngeal defects). The pathology of these skeletal, neural, and oropharyngeal defects is analyzed, their embryonic origin explored, and their developmental interrelationships discussed. The study proposes that an early paraxial mesodermal insufficiency may be the original anomaly common to all the different malformations that constitutes this heterogeneous group of dysraphic disorders. At any time during the segmental formation of the embryonic skeletal-neural axis, a simple reduction in the number of paraxial mesodermal cells produced by the Hensen node/primitive streak complex, could impair the formation of the axial skeleton as well as the elevation of the neural folds thus interfering with their closure. The final type of malformation is determined by variations of the degree, time of occurrence, and duration of the paraxial mesodermal insufficiency.

Type
Symposium
Copyright
Copyright © Canadian Neurological Sciences Federation 1991

References

1.Recklinhausen, FV, Untersuchungen iiber die Spina Bifida. II Ueber die Art und die Entstehung der Spina Bifida, ihre Beziegung ziir Riicknmarks und Darmspalte. Virchows Arch Path Anat 1896; 105: 296330.CrossRefGoogle Scholar
2.Morgagni, JG, De Sedibus et Causis Morborum per Anatomen Indagacione. Veneti 1761. The Seats and Causes of Diseases Investigated by Anatomy. Engish translation, Alexander B London, Millar & Capell, 1869.Google Scholar
3.Lemire, RJ, Beckwith, JB, Walkany, J. Anencephaly. New York: Raven Press, 1978. 11133.Google Scholar
4.Elwood, JM, Elwood, JH, Epidemiology of Anencephalus and Spina Bifida. New York: Oxford Univ Press, 1980. 1133.Google Scholar
5.Walkany, J. Congenital Malformations: Notes and Comments. Chicago: Year Book Publisher, 1971. 189296.Google Scholar
6.Larroche, JC. Malformations of the nervous system. In: Greenfields Neuropathology. Adams, JH, Corsellis, JAN. Duchen, LW, eds. New York: John Wiley & Sons, 1984.385451.Google Scholar
7.Friede, RL, Developmental Neurpathology. Berlin: Springer Verlag, 1989. 247291.CrossRefGoogle Scholar
8.Marin-Padilla, M, Morphogenesis of anencephaly and related malformations. Current Topics in Pathology 1970; 51: 145174.CrossRefGoogle Scholar
9.Gardner, WJ. The Dysraphic States. From Syringomyelia to Anencephaly; Amsterdam: Exceprta Medica 1973.156.Google Scholar
10.Giroud, A. Anencephaly. In: Handbook of Clinical Neurology, vol 30. Vinken, PS, Bruyn, GW, eds. Amsterdam: Elsevier/North Holland 1977.173208.Google Scholar
11.Dadmanabhan, R, Light microscopic study on the pathogenesis of exencephaly and cranioschisis induced in rat after neural tube closure. Teratology 1988; 37: 2936.CrossRefGoogle Scholar
12.Peters, PWJ. Induced congenital malformations of the central nervous system . A teratological study monograph Lisse: Swetts & Zeitlinger 1981; 573.Google Scholar
13.Marin-Padilla, M, Clinical and experimental rachischisis. In: Handbook of Clinical Neurology, vol 32. Contgenital Malformations of the Spine and Spinal Cord . Vinken, PJ, Bruyn, GW, eds. Amsterdam: Elservier/North Holland 1978; 159191Google Scholar
14.McLaurin, RL, Encephalocele and cranium bifidum. In: Handbook of Clinical Neurology, vol 50, Malformations . Myrianthopolous, N, ed. Amsterdam: Elsevier Publishers 1987; 97111.Google Scholar
15.Welch, K, Winston, KR, Spina Bifida. In: Handbook of Clinical Neurology, vol 50, Malformations. Myrianthopolous, N, ed. Amsterdam: Elsevier Publishers 1987; 477508.Google Scholar
16.Bamberger-Bozo, C, Winston, KR, The Chiari II malformation. In: Handbook of Clinical Neurology, vol 50. Malformations. Myrianthopolous, , ed. Amsterdam: Elsevier Publishers 1987; 403412.Google Scholar
17.Padget, D, Neuroschisis and human embryonic development. New evidence on anencephaly, spina bifida and diverse mammalian defects. J Neuropath Exp Neurol 1970; 29: 192216.CrossRefGoogle ScholarPubMed
18.Meneses, AH, VanGilder, JC. Transoral-transpharyngeal approach to the anterior craniocervical junction. 10 year experience of 72 patients. J Neurosurg 1988; 69: 895903.CrossRefGoogle Scholar
19.Meneses, AH, Smoker, WRK, Dyste, GN. Syringomyelia, Chiari Malformation and Hydromyelia. In: Neurological Surgery, vol 2, third edition; Youmans, J, ed. Philadelphia: WB Saunders Company 1990.14211459.Google Scholar
20.Hamilton, WJ, Boyd, JD, Mossman, HM. Human Embryology; Baltimore: William & Wilkins Publishers 1972.162182, 437–525.CrossRefGoogle Scholar
21.Marin-Padilla, M, Shears, AH, Nance, DM. Study of the skull in human cranioschisis. Acta Anat 1965; 62: 120.CrossRefGoogle ScholarPubMed
22.de Beer, GR, The Development of the Vertebrate Skull. Myrianthopolous, N, ed. Oxford: Claredon Press 1937; 484496.Google Scholar
23.Marin-Padilla, M, Study of the vertebral column in human craniorachischisis. The significance of the notochordal alterations. Acta Anat 1966; 63: 3248.CrossRefGoogle Scholar
24.Marin-Padilla, M, Shears, AH, Nance, DM. Study of the sphenoid bone in human cranioschisis and craniorachischisis. Virchows Arch Path Anat 1965; 339: 245253.CrossRefGoogle Scholar
25.Marin-Padilla, M, Notochordal-basichondrocranium relationships. Abnormalities in experimental axial skeletal (dysraphic) disorders. J Embryol exp Morph 1979; 53: 1538.Google ScholarPubMed
26.Marfn-Padilla, M, Morphogenesis of experimentally induced Arnold-Chiari malformation. J Neurol Sci 1981; 50: 2955.CrossRefGoogle Scholar
27.Marin-Padilla, M, Morphogenesis of experimental encephalocele (cranioschisis occulta). J Neurol Sci 1980; 46: 8399.CrossRefGoogle ScholarPubMed
28.Meier, S, Tarn, PPL, Metameric pattern development in the embryonic axis of the mouse. I Differentiation of the cranial segments. Differentiation 1982; 21: 95108CrossRefGoogle ScholarPubMed
29.Tarn, PPL, A study on the pattern of prospective somites in the presomitic mesoderm of the mouse embryo. J Embryol Exp Morph 1986; 92: 269285.Google Scholar
30.Noden, DM, Craniofacial development: New views on old problems. Anat Rec 1984; 208: 113.CrossRefGoogle ScholarPubMed
31.Marin-Padilla, M, Marin-Padilla, TM, Developmental abnormalities of the occipital bone in human chondrodystrophies (Achondroplasia and thanatophoric dwarfism). The National Foundation-March of Dimes. Birth Defects Series 1977; 13: 723.Google Scholar
32.O'Rahilly, R, Muller, F, The meninges in human development. J Neuropath Exp Neurol 1986; 45: 588608.CrossRefGoogle ScholarPubMed
33.Marin-Padilla, M, The closure of the neural tube. Teratology 1970; 3: 3946.CrossRefGoogle ScholarPubMed
34.Marin-Padilla, M, Mesodermal alterations induced by hypervitaminosis A. J Embryol Exp Biol 1966; 15: 261269.Google ScholarPubMed
35.Marin-Padillas, M, Mesodermal alterations induced with (DMSO) dimethylsulfoxide. Proc Soc Exp Biol 1966; 122: 717720.CrossRefGoogle Scholar
36.Carpenter, S, Developmental analysis of cephalic axial dysraphic disorders in arsenic-treated hamster embryos. Anat Embryol 1987; 176: 345365.CrossRefGoogle ScholarPubMed
37.Willhite, CC, Arsenic-induced axial skeletal (dysraphic) disorders. Exp Molec Path 1981; 34: 145158.CrossRefGoogle ScholarPubMed
38.Keen, JA, The morphology of the skull in human anencephalic monsters. S Afr Med J 1962; 8: 19.Google Scholar
39.Fields, HW, Metzner, L, Garol, JD. et al. The craniofacial skeleton in anencephalic human fetuses. I Cranial floor. Teratology 1978; 17: 5766.CrossRefGoogle ScholarPubMed
40.Garol, JD, Fields, JA, Metznere, L. et al. The craniofacial skeleton in anencephalic human fetuses. II Calvarium. Teratology 1978; 17: 6774.CrossRefGoogle ScholarPubMed
41.Metzner, L, Garol, JD, Fields, , et al. The craniofacial skeleton in anencephalic human fetuses. Ill Facial skeleton. Teratology 1978; 17: 7582.CrossRefGoogle Scholar
42.Marfn-Padilla, M, Origin, formation, and prenatal maturation of the human cerebral cortex: An overview. J Craniofac Genet Dev Biol 1990; 10: 137146.Google Scholar
43.England, MA. Color Atlas of Life Before Birth. Normal Fetal Development. Chicago: Year Book Med Publishers 1983; 5169.Google Scholar
44.Roth, M, Julien, C, Rossignol, S. Cranio-cervical growth collision: Another explanation of the Arnold-Chiari malformation. Neuroradiology 1986; 28: 187194.CrossRefGoogle ScholarPubMed
45.Schady, W, Metcalfe, RA, Butler, P. The incidence of craniocervical bony anomaly in the adult Chiari malformation. J Neurol Sci 1987; 82: 193203.CrossRefGoogle ScholarPubMed
46.McLone, DG, Knepper, PA, The cause of Chiari II malformation: A unified theory. Pediatr Neurosc 1989; 15: 112.CrossRefGoogle ScholarPubMed
47.Vega, A, Quintana, F, Berciano, J. Basichondrocranium anomalies in the adult Chiari type I malformations: A morphometric analysis. J Neurol Sci 1990; 99: 137145.CrossRefGoogle Scholar
48.Chiari, H, Ober Veranderungen des Kleinhirns infolge Hydrocephalic des Grosshirns. Dtsh med Wschr 1891; 17: 11721175.CrossRefGoogle Scholar
49.Chiari, H, Ober Veranderungen des Kleinhirns des Pons und Medulle Oblongata infolge von Kongenitaten Hydrocephalie des Grosshirns. Denkschr Akad Wiss Wien 1896; 63: 71116.Google Scholar
50.Gardner, WJ, The Dandy-Walker and Arnold-Chiari malformations. Arch Neurol 1976; 33: 519528.CrossRefGoogle ScholarPubMed
51.Peach, B, The Arnold-Chiari malformation. Morphogenesis. Arch Neurol 1965; 12: 527535.CrossRefGoogle ScholarPubMed
52.Peach, B, The Arnold-Chiari malformation. Anatomical features in 20 cases. Arch Neurol 1965; 12: 613621.CrossRefGoogle Scholar
53.Margolis, G, Kilham, L, Experimental virus induced hydrocephalus. Relation to pathogenesis of the Arnold-Chiari malformation. J Neurosurg 1969; 31: 19.CrossRefGoogle ScholarPubMed
54.Master, CC, Pathogenesis of the Arnold-Chiari malformation. The significance of hydrocephalus and aqueduct stenosis. J Neuropath Exp Neurol 1978; 37: 5673.CrossRefGoogle Scholar
55.Daniel, PM, Strich, SS, Some observations on congenital deformities of the central nervous system known as Arnold-Chiari malformation. J Neuropath Exp Neurol 1958; 17: 255266.CrossRefGoogle ScholarPubMed
56.Salam, MZ. Raymond, DA. The Arnold-Chiari Malformation. In: Handbook of Clinical Neurology, vol 32. Congenital Malformations of the Spine and Spinal Cord, Myrianthopolous, N, ed. Amsterdam: North Holland Publishers 1987; 99110.Google Scholar
57.Wilkinson, M. The Klippel-Feil Syndrome. In: Handbook of Clinical Neurology, vol 32. Congenital Malformations of the Spine and the Spinal Cord, Myrianthopolous, N, ed. Amsterdam: North Holland Publishers 1987; 111122.Google Scholar
58.Miyamoto, C, Ishii, H, Hamamoto, Y. An autopsy case of the Klippel-Feil syndrome. Bull Osaka Med Sch 1971; 17: 1116.Google ScholarPubMed