Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-26T07:30:48.966Z Has data issue: false hasContentIssue false

Interaction between catechol-O-methyltransferase (COMT) Val158Met genotype and genetic vulnerability to schizophrenia during explicit processing of aversive facial stimuli

Published online by Cambridge University Press:  23 May 2012

L. Lo Bianco
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy Psychiatric Unit, Department of Mental Health, United Hospitals of Ancona, Polytechnic University of Marche, Italy
G. Blasi
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
P. Taurisano
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
A. Di Giorgio
Affiliation:
Psychiatric Liaison Service, IRCCS ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
F. Ferrante
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
G. Ursini
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
L. Fazio
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
B. Gelao
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
R. Romano
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
A. Papazacharias
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
G. Caforio
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
L. Sinibaldi
Affiliation:
Mendel Lab, IRCSS ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
T. Popolizio
Affiliation:
Section of Neuroradiology, IRCCS ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
C. Bellantuono
Affiliation:
Psychiatric Unit, Department of Mental Health, United Hospitals of Ancona, Polytechnic University of Marche, Italy
A. Bertolino*
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
*
*Address for correspondence: A. Bertolino, Ph.D., Dipartimento di Scienze Neurologiche e Psichiatriche, Università degli Studi di Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy. (Email: a.bertolino@psichiat.uniba.it)

Abstract

Background

Emotion dysregulation is a key feature of schizophrenia, a brain disorder strongly associated with genetic risk and aberrant dopamine signalling. Dopamine is inactivated by catechol-O-methyltransferase (COMT), whose gene contains a functional polymorphism (COMT Val158Met) associated with differential activity of the enzyme and with brain physiology of emotion processing. The aim of the present study was to investigate whether genetic risk for schizophrenia and COMT Val158Met genotype interact on brain activity during implicit and explicit emotion processing.

Method

A total of 25 patients with schizophrenia, 23 healthy siblings of patients and 24 comparison subjects genotyped for COMT Val158Met underwent functional magnetic resonance imaging during implicit and explicit processing of facial stimuli with negative emotional valence.

Results

We found a main effect of diagnosis in the right amygdala, with decreased activity in patients and siblings compared with control subjects. Furthermore, a genotype × diagnosis interaction was found in the left middle frontal gyrus, such that the effect of genetic risk for schizophrenia was evident in the context of the Val/Val genotype only, i.e. the phenotype of reduced activity was present especially in Val/Val patients and siblings. Finally, a complete inversion of the COMT effect between patients and healthy subjects was found in the left striatum during explicit processing.

Conclusions

Overall, these results suggest complex interactions between genetically determined dopamine signalling and risk for schizophrenia on brain activity in the prefrontal cortex during emotion processing. On the other hand, the effects in the striatum may represent state-related epiphenomena of the disorder itself.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi-Dargham, A, Mawlawi, O, Lombardo, I, Gil, R, Martinez, D, Huang, Y, Hwang, DR, Keilp, J, Kochan, L, Van Heertum, R, Gorman, JM, Laruelle, M (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. Journal of Neuroscience 22, 37083719.CrossRefGoogle ScholarPubMed
Adolphs, R (2008). Fear, faces, and the human amygdala. Current Opinion in Neurobiology 18, 166172.CrossRefGoogle ScholarPubMed
Adolphs, R (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences 1191, 4261.CrossRefGoogle ScholarPubMed
Akil, M, Kolachana, BS, Rothmond, DA, Hyde, TM, Weinberger, DR, Kleinman, JE (2003). Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. Journal of Neuroscience 23, 20082013.CrossRefGoogle ScholarPubMed
Alsobrook, JP 2nd, Zohar, AH, Leboyer, M, Chabane, N, Ebstein, RP, Pauls, DL (2002). Association between the COMT locus and obsessive-compulsive disorder in females but not males. American Journal of Medical Genetics 114, 116120.CrossRefGoogle Scholar
Badgaiyan, RD, Fischman, AJ, Alpert, NM (2009). Dopamine release during human emotional processing. Neuroimage 47, 20412045.CrossRefGoogle ScholarPubMed
Bertolino, A, Breier, A, Callicott, JH, Adler, C, Mattay, VS, Shapiro, M, Frank, JA, Pickar, D, Weinberger, DR (2000). The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 22, 125132.CrossRefGoogle ScholarPubMed
Bertolino, A, Caforio, G, Blasi, G, De Candia, M, Latorre, V, Petruzzella, V, Altamura, M, Nappi, G, Papa, S, Callicott, JH, Mattay, VS, Bellomo, A, Scarabino, T, Weinberger, DR, Nardini, M (2004). Interaction of COMT (Val108/158Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. American Journal of Psychiatry 161, 17981805.CrossRefGoogle Scholar
Bertolino, A, Knable, MB, Saunders, RC, Callicott, JH, Kolachana, B, Mattay, VS, Bachevalier, J, Frank, JA, Egan, M, Weinberger, DR (1999). The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biological Psychiatry 45, 660667.CrossRefGoogle ScholarPubMed
Bilder, RM, Volavka, J, Czobor, P, Malhotra, AK, Kennedy, JL, Ni, X, Goldman, RS, Hoptman, MJ, Sheitman, B, Lindenmayer, JP, Citrome, L, McEvoy, JP, Kunz, M, Chakos, M, Cooper, TB, Lieberman, JA (2002). Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biological Psychiatry 52, 701707.CrossRefGoogle ScholarPubMed
Blasi, G, Hariri, AR, Alce, G, Taurisano, P, Sambataro, F, Das, S, Bertolino, A, Weinberger, DR, Mattay, VS (2009 a). Preferential amygdala reactivity to the negative assessment of neutral faces. Biological Psychiatry 66, 847853.CrossRefGoogle Scholar
Blasi, G, Lo Bianco, L, Taurisano, P, Gelao, B, Romano, R, Fazio, L, Papazacharias, A, Di Giorgio, A, Caforio, G, Rampino, A, Masellis, R, Papp, A, Ursini, G, Sinibaldi, L, Popolizio, T, Sadee, W, Bertolino, A (2009 b). Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans. Journal of Neuroscience 29, 1481214819.CrossRefGoogle ScholarPubMed
Bolte, S, Poustka, F (2003). The recognition of facial affect in autistic and schizophrenic subjects and their first-degree relatives. Psychological Medicine 33, 907915.CrossRefGoogle ScholarPubMed
Boos, HB, Aleman, A, Cahn, W, Hulshoff Pol, H, Kahn, RS (2007). Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Archives of General Psychiatry 64, 297304.CrossRefGoogle ScholarPubMed
Breiter, HC, Etcoff, NL, Whalen, PJ, Kennedy, WA, Rauch, SL, Buckner, RL, Strauss, MM, Hyman, SE, Rosen, BR (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron 17, 875887.CrossRefGoogle ScholarPubMed
Brunelin, J, d'Amato, T, Van Os, J, Cochet, A, Suaud-Chagny, MF, Saoud, M (2008). Effects of acute metabolic stress on the dopaminergic and pituitary–adrenal axis activity in patients with schizophrenia, their unaffected siblings and controls. Schizophrenia Research 100, 206211.CrossRefGoogle ScholarPubMed
Brunelin, J, d'Amato, T, Van Os, J, Costes, N, Suaud Chagny, MF, Saoud, M (2010). Increased left striatal dopamine transmission in unaffected siblings of schizophrenia patients in response to acute metabolic stress. Psychiatry Research 181, 130135.CrossRefGoogle ScholarPubMed
Buchel, C, Morris, J, Dolan, RJ, Friston, KJ (1998). Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20, 947957.CrossRefGoogle ScholarPubMed
Callicott, JH, Egan, MF, Mattay, VS, Bertolino, A, Bone, AD, Verchinksi, B, Weinberger, DR (2003 a). Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. American Journal of Psychiatry 160, 709719.CrossRefGoogle ScholarPubMed
Callicott, JH, Mattay, VS, Verchinski, BA, Marenco, S, Egan, MF, Weinberger, DR (2003 b). Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. American Journal of Psychiatry 160, 22092215.CrossRefGoogle ScholarPubMed
Carlsson, A (1988). The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1, 179186.CrossRefGoogle ScholarPubMed
Chan, RC, Li, H, Cheung, EF, Gong, QY (2010). Impaired facial emotion perception in schizophrenia: a meta-analysis. Psychiatry Research 178, 381390.CrossRefGoogle ScholarPubMed
Chen, J, Lipska, BK, Halim, N, Ma, QD, Matsumoto, M, Melhem, S, Kolachana, BS, Hyde, TM, Herman, MM, Apud, J, Egan, MF, Kleinman, JE, Weinberger, DR (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics 75, 807821.CrossRefGoogle ScholarPubMed
Chen, LS, Rice, TK, Thompson, PA, Barch, DM, Csernansky, JG (2009). Familial aggregation of clinical and neurocognitive features in sibling pairs with and without schizophrenia. Schizophrenia Research 111, 159166.CrossRefGoogle ScholarPubMed
Colzato, LS, Waszak, F, Nieuwenhuis, S, Posthuma, D, Hommel, B (2010). The flexible mind is associated with the catechol-O-methyltransferase (COMT) Val158Met polymorphism: evidence for a role of dopamine in the control of task-switching. Neuropsychologia 48, 27642768.CrossRefGoogle ScholarPubMed
Das, P, Kemp, AH, Flynn, G, Harris, AW, Liddell, BJ, Whitford, TJ, Peduto, A, Gordon, E, Williams, LM (2007). Functional disconnections in the direct and indirect amygdala pathways for fear processing in schizophrenia. Schizophrenia Research 90, 284294.CrossRefGoogle ScholarPubMed
Delawalla, Z, Csernansky, JG, Barch, DM (2008). Prefrontal cortex function in nonpsychotic siblings of individuals with schizophrenia. Biological Psychiatry 63, 490497.CrossRefGoogle ScholarPubMed
Delgado, MR, Jou, RL, LeDoux, JE, Phelps, EA (2009). Avoiding negative outcomes: tracking the mechanisms of avoidance learning in humans during fear conditioning. Frontiers in Behavioral Neuroscience 3, 33.CrossRefGoogle ScholarPubMed
Di Giorgio, A, Caforio, G, Blasi, G, Taurisano, P, Fazio, L, Romano, R, Ursini, G, Gelao, B, Bianco, LL, Papazacharias, A, Sinibaldi, L, Popolizio, T, Bellomo, A, Bertolino, A (2011). Catechol-O-methyltransferase Val158Met association with parahippocampal physiology during memory encoding in schizophrenia. Psychological Medicine 41, 17211731.CrossRefGoogle ScholarPubMed
Dickinson, D, Elvevag, B (2009). Genes, cognition and brain through a COMT lens. Neuroscience 164, 7287.CrossRefGoogle ScholarPubMed
Domschke, K, Baune, BT, Havlik, L, Stuhrmann, A, Suslow, T, Kugel, H, Zwanzger, P, Grotegerd, D, Sehlmeyer, C, Arolt, V, Dannlowski, U (2012). Catechol-O-methyltransferase gene variation: impact on amygdala response to aversive stimuli. Neuroimage 60, 22222229.CrossRefGoogle ScholarPubMed
Domschke, K, Freitag, CM, Kuhlenbäumer, G, Schirmacher, A, Sand, P, Nyhuis, P, Jacob, C, Fritze, J, Franke, P, Rietschel, M, Garritsen, HS, Fimmers, R, Nöthen, MM, Lesch, KP, Stögbauer, F, Deckert, J (2004). Association of the functional V158M catechol-O-methyl-transferase polymorphism with panic disorder in women. International Journal of Neuropsychopharmacology 7, 183188.CrossRefGoogle ScholarPubMed
Drabant, EM, Hariri, AR, Meyer-Lindenberg, A, Munoz, KE, Mattay, VS, Kolachana, BS, Egan, MF, Weinberger, DR (2006). Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Archives of General Psychiatry 63, 13961406.CrossRefGoogle ScholarPubMed
Dreher, JC, Kohn, P, Kolachana, B, Weinberger, DR, Berman, KF (2009). Variation in dopamine genes influences responsivity of the human reward system. Proceedings of the National Academy of Sciences USA 106, 617622.CrossRefGoogle ScholarPubMed
Egan, MF, Goldberg, TE, Gscheidle, T, Weirich, M, Rawlings, R, Hyde, TM, Bigelow, L, Weinberger, DR (2001 a). Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biological Psychiatry 50, 98107.CrossRefGoogle ScholarPubMed
Egan, MF, Goldberg, TE, Kolachana, BS, Callicott, JH, Mazzanti, CM, Straub, RE, Goldman, D, Weinberger, DR (2001 b). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences USA 98, 69176922.CrossRefGoogle ScholarPubMed
Enoch, MA, Xu, K, Ferro, E, Harris, CR, Goldman, D (2003). Genetic origins of anxiety in women: a role for a functional catechol-O-methyltransferase polymorphism. Psychiatric Genetics 13, 3341.CrossRefGoogle ScholarPubMed
Gogos, JA, Morgan, M, Luine, V, Santha, M, Ogawa, S, Pfaff, D, Karayiorgou, M (1998). Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proceedings of the National Academy of Sciences USA 95, 99919996.CrossRefGoogle ScholarPubMed
Goudreau, JL, Maraganore, DM, Farrer, MJ, Lesnick, TG, Singleton, AB, Bower, JH, Hardy, JA, Rocca, WA (2002). Case–control study of dopamine transporter-1, monoamine oxidase-B, and catechol-O-methyl transferase polymorphisms in Parkinson's disease. Movement Disorders 17, 13051311.CrossRefGoogle ScholarPubMed
Grace, AA (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 124.CrossRefGoogle ScholarPubMed
Grace, AA (2000). Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Research. Brain Research Reviews 31, 330341.CrossRefGoogle Scholar
Grace, AA, Rosenkranz, JA (2002). Regulation of conditioned responses of basolateral amygdala neurons. Physiology and Behavior 77, 489493.CrossRefGoogle ScholarPubMed
Gur, RE, McGrath, C, Chan, RM, Schroeder, L, Turner, T, Turetsky, BI, Kohler, C, Alsop, D, Maldjian, J, Ragland, JD, Gur, RC (2002). An fMRI study of facial emotion processing in patients with schizophrenia. American Journal of Psychiatry 159, 19921999.CrossRefGoogle ScholarPubMed
Gur, RE, Nimgaonkar, VL, Almasy, L, Calkins, ME, Ragland, JD, Pogue-Geile, MF, Kanes, S, Blangero, J, Gur, RC (2007). Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia. American Journal of Psychiatry 164, 813819.CrossRefGoogle Scholar
Habel, U, Klein, M, Shah, NJ, Toni, I, Zilles, K, Falkai, P, Schneider, F (2004). Genetic load on amygdala hypofunction during sadness in nonaffected brothers of schizophrenia patients. American Journal of Psychiatry 161, 18061813.CrossRefGoogle ScholarPubMed
Hariri, AR, Bookheimer, SY, Mazziotta, JC (2000). Modulating emotional responses: effects of a neocortical network on the limbic system. Neuroreport 11, 4348.CrossRefGoogle ScholarPubMed
Hariri, AR, Mattay, VS, Tessitore, A, Fera, F, Weinberger, DR (2003). Neocortical modulation of the amygdala response to fearful stimuli. Biological Psychiatry 53, 494501.CrossRefGoogle ScholarPubMed
Hariri, AR, Tessitore, A, Mattay, VS, Fera, F, Weinberger, DR (2002). The amygdala response to emotional stimuli: a comparison of faces and scenes. Neuroimage 17, 317323.CrossRefGoogle ScholarPubMed
Heinz, A, Smolka, MN (2006). The effects of catechol O-methyltransferase genotype on brain activation elicited by affective stimuli and cognitive tasks. Reviews in the Neurosciences 17, 359367.CrossRefGoogle ScholarPubMed
Henry, JD, Green, MJ, de Lucia, A, Restuccia, C, McDonald, S, O'Donnell, M (2007). Emotion dysregulation in schizophrenia: reduced amplification of emotional expression is associated with emotional blunting. Schizophrenia Research 95, 197204.CrossRefGoogle ScholarPubMed
Ho, BC, Wassink, TH, O'Leary, DS, Sheffield, VC, Andreasen, NC (2005). Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Molecular Psychiatry 10, 229, 287298.CrossRefGoogle ScholarPubMed
Hollingshead, A, Redlich, F (1958). Social Class and Mental Illness. John Wiley: New York.CrossRefGoogle Scholar
Howes, OD, Kambeitz, J, Kim, E, Stahl, D, Slifstein, M, Abi-Dargham, A, Kapur, S (2012). The nature of dopamine dysfunction in schizophrenia and what this means for treatment: meta-analysis of imaging studies. Archives of General Psychiatry. Published online 2 April 2012. doi:10.1001/archgenpsychiatry.2012.169.CrossRefGoogle Scholar
Jensen, J, McIntosh, AR, Crawley, AP, Mikulis, DJ, Remington, G, Kapur, S (2003). Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40, 12511257.CrossRefGoogle ScholarPubMed
Karayiorgou, M, Sobin, C, Blundell, ML, Galke, BL, Malinova, L, Goldberg, P, Ott, J, Gogos, JA (1999). Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive-compulsive disorder. Biological Psychiatry 45, 11781189.CrossRefGoogle ScholarPubMed
Karreman, M, Moghaddam, B (1996). The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. Journal of Neurochemistry 66, 589598.CrossRefGoogle ScholarPubMed
Kay, SR, Fiszbein, A, Opler, LA (1987). The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13, 261276.CrossRefGoogle ScholarPubMed
Kremer, I, Pinto, M, Murad, I, Muhaheed, M, Bannoura, I, Muller, DJ, Schulze, TG, Reshef, A, Blanaru, M, Gathas, S, Goichman, R, Rietschel, M, Dobrusin, M, Bachner-Melman, R, Nemanov, L, Belmaker, RH, Maier, W, Ebstein, RP (2003). Family-based and case–control study of catechol-O-methyltransferase in schizophrenia among Palestinian Arabs. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics 119B, 3539.CrossRefGoogle ScholarPubMed
LaBar, KS, Gatenby, JC, Gore, JC, LeDoux, JE, Phelps, EA (1998). Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20, 937945.CrossRefGoogle ScholarPubMed
Lachman, HM, Papolos, DF, Saito, T, Yu, YM, Szumlanski, CL, Weinshilboum, RM (1996). Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6, 243250.CrossRefGoogle ScholarPubMed
Laruelle, M, Abi-Dargham, A, Gil, R, Kegeles, L, Innis, R (1999). Increased dopamine transmission in schizophrenia: relationship to illness phases. Biological Psychiatry 46, 5672.CrossRefGoogle ScholarPubMed
LeDoux, J (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology 23, 727738.CrossRefGoogle ScholarPubMed
LeDoux, J (2007). The amygdala. Current Biology 17, R868R874.CrossRefGoogle ScholarPubMed
Li, H, Chan, RC, McAlonan, GM, Gong, QY (2010). Facial emotion processing in schizophrenia: a meta-analysis of functional neuroimaging data. Schizophrenia Bulletin 36, 10291039.CrossRefGoogle ScholarPubMed
Mannisto, PT, Kaakkola, S (1999). Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacological Reviews 51, 593628.Google ScholarPubMed
Matsumoto, M, Weickert, CS, Akil, M, Lipska, BK, Hyde, TM, Herman, MM, Kleinman, JE, Weinberger, DR (2003). Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116, 127137.CrossRefGoogle ScholarPubMed
McGuffin, P, Riley, B, Plomin, R (2001). Genomics and behavior. Toward behavioral genomics. Science 291, 12321249.CrossRefGoogle ScholarPubMed
McIntosh, AM, Baig, BJ, Hall, J, Job, D, Whalley, HC, Lymer, GK, Moorhead, TW, Owens, DG, Miller, P, Porteous, D, Lawrie, SM, Johnstone, EC (2007). Relationship of catechol-O-methyltransferase variants to brain structure and function in a population at high risk of psychosis. Biological Psychiatry 61, 11271134.CrossRefGoogle Scholar
Menon, M, Jensen, J, Vitcu, I, Graff-Guerrero, A, Crawley, A, Smith, MA, Kapur, S (2007). Temporal difference modeling of the blood-oxygen level dependent response during aversive conditioning in humans: effects of dopaminergic modulation. Biological Psychiatry 62, 765772.CrossRefGoogle ScholarPubMed
Mier, D, Kirsch, P, Meyer-Lindenberg, A (2010). Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Molecular Psychiatry 15, 918927.CrossRefGoogle ScholarPubMed
Miyake, N, Thompson, J, Skinbjerg, M, Abi-Dargham, A (2011). Presynaptic dopamine in schizophrenia. CNS Neuroscience and Therapeutics 17, 104109.CrossRefGoogle ScholarPubMed
Morris, JS, Frith, CD, Perrett, DI, Rowland, D, Young, AW, Calder, AJ, Dolan, RJ (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383, 812815.CrossRefGoogle ScholarPubMed
Moss, J, Bolam, JP (2008). A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. Journal of Neuroscience 28, 1122111230.CrossRefGoogle ScholarPubMed
Mueller, EM, Makeig, S, Stemmler, G, Hennig, J, Wacker, J (2011). Dopamine effects on human error processing depend on catechol-O-methyltransferase VAL158MET genotype. Journal of Neuroscience 31, 1581815825.CrossRefGoogle ScholarPubMed
Myin-Germeys, I, van Os, J (2007). Stress-reactivity in psychosis: evidence for an affective pathway to psychosis. Clinical Psychology Review 27, 409424.CrossRefGoogle ScholarPubMed
Myin-Germeys, I, van Os, J, Schwartz, JE, Stone, AA, Delespaul, PA (2001). Emotional reactivity to daily life stress in psychosis. Archives of General Psychiatry 58, 11371144.CrossRefGoogle ScholarPubMed
Nixon, DC, Prust, MJ, Sambataro, F, Tan, HY, Mattay, VS, Weinberger, DR, Callicott, JH (2011). Interactive effects of DAOA (G72) and catechol-O-methyltransferase on neurophysiology in prefrontal cortex. Biological Psychiatry 69, 10061008.CrossRefGoogle ScholarPubMed
Ochsner, KN, Gross, JJ (2005). The cognitive control of emotion. Trends in Cognitive Sciences 9, 242249.CrossRefGoogle ScholarPubMed
Oldfield, RC (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia 9, 97113.CrossRefGoogle ScholarPubMed
Ono, H, Shirakawa, O, Nushida, H, Ueno, Y, Maeda, K (2004). Association between catechol-O-methyltransferase functional polymorphism and male suicide completers. Neuropsychopharmacology 29, 13741377.CrossRefGoogle ScholarPubMed
Phillips, ML (2003). Understanding the neurobiology of emotion perception: implications for psychiatry. British Journal of Psychiatry 182, 190192.CrossRefGoogle ScholarPubMed
Phillips, ML, Drevets, WC, Rauch, SL, Lane, R (2003 a). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biological Psychiatry 54, 504514.CrossRefGoogle ScholarPubMed
Phillips, ML, Drevets, WC, Rauch, SL, Lane, R (2003 b). Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biological Psychiatry 54, 515528.CrossRefGoogle ScholarPubMed
Prata, DP, Mechelli, A, Fu, CH, Picchioni, M, Kane, F, Kalidindi, S, McDonald, C, Howes, O, Kravariti, E, Demjaha, A, Toulopoulou, T, Diforti, M, Murray, RM, Collier, DA, McGuire, PK (2009). Opposite effects of catechol-O-methyltransferase Val158Met on cortical function in healthy subjects and patients with schizophrenia. Biological Psychiatry 65, 473480.CrossRefGoogle ScholarPubMed
Rasetti, R, Mattay, VS, Wiedholz, LM, Kolachana, BS, Hariri, AR, Callicott, JH, Meyer-Lindenberg, A, Weinberger, DR (2009). Evidence that altered amygdala activity in schizophrenia is related to clinical state and not genetic risk. American Journal of Psychiatry 166, 216225.CrossRefGoogle Scholar
Reuter, M, Hennig, J (2005). Association of the functional catechol-O-methyltransferase VAL158MET polymorphism with the personality trait of extraversion. Neuroreport 16, 11351138.CrossRefGoogle ScholarPubMed
Rujescu, D, Giegling, I, Gietl, A, Hartmann, AM, Moller, HJ (2003). A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits. Biological Psychiatry 54, 3439.CrossRefGoogle ScholarPubMed
Rybakowski, JK, Borkowska, A, Czerski, PM, Hauser, J (2002). Eye movement disturbances in schizophrenia and a polymorphism of catechol-O-methyltransferase gene. Psychiatry Research 113, 4957.CrossRefGoogle Scholar
Salgado-Pineda, P, Fakra, E, Delaveau, P, Hariri, AR, Blin, O (2010). Differential patterns of initial and sustained responses in amygdala and cortical regions to emotional stimuli in schizophrenia patients and healthy participants. Journal of Psychiatry and Neuroscience 35, 4148.CrossRefGoogle ScholarPubMed
Sartori, G, Colombo, L, Vallar, G, Rusconi, ML, Pinarello, A (1997). T.I.B. Test di Intelligenza Breve per la valutazione del quoziente intellettivo attuale e pre-morboso [T.I.B. Brief intelligence test for assessing premorbid IQ]. Professione di Psicologo. Giornale dell'Ordine degli Psicologi 4, 124.Google Scholar
Sazci, A, Ergul, E, Kucukali, I, Kilic, G, Kaya, G, Kara, I (2004). Catechol-O-methyltransferase gene Val108/158Met polymorphism, and susceptibility to schizophrenia: association is more significant in women. Brain Research. Molecular Brain Research 132, 5156.CrossRefGoogle ScholarPubMed
Schlund, MW, Siegle, GJ, Ladouceur, CD, Silk, JS, Cataldo, MF, Forbes, EE, Dahl, RE, Ryan, ND (2010). Nothing to fear? Neural systems supporting avoidance behavior in healthy youths. Neuroimage 52, 710719.CrossRefGoogle ScholarPubMed
Schmack, K, Schlagenhauf, F, Sterzer, P, Wrase, J, Beck, A, Dembler, T, Kalus, P, Puls, I, Sander, T, Heinz, A, Gallinat, J (2008). Catechol-O-methyltransferase val158met genotype influences neural processing of reward anticipation. Neuroimage 42, 16311638.CrossRefGoogle ScholarPubMed
Schwartz, CE, Wright, CI, Shin, LM, Kagan, J, Whalen, PJ, McMullin, KG, Rauch, SL (2003). Differential amygdalar response to novel versus newly familiar neutral faces: a functional MRI probe developed for studying inhibited temperament. Biological Psychiatry 53, 854862.CrossRefGoogle ScholarPubMed
Seamans, JK, Yang, CR (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 74, 158.CrossRefGoogle ScholarPubMed
Shifman, S, Bronstein, M, Sternfeld, M, Pisante, A, Weizman, A, Reznik, I, Spivak, B, Grisaru, N, Karp, L, Schiffer, R, Kotler, M, Strous, RD, Swartz-Vanetik, M, Knobler, HY, Shinar, E, Yakir, B, Zak, NB, Darvasi, A (2004). COMT: a common susceptibility gene in bipolar disorder and schizophrenia. American Journal of Medical Genetics. Part B NeuroPsychiatric Genetics 128B, 6164.CrossRefGoogle ScholarPubMed
Slifstein, M, Kolachana, B, Simpson, EH, Tabares, P, Cheng, B, Duvall, M, Frankle, WG, Weinberger, DR, Laruelle, M, Abi-Dargham, A (2008). COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PET. Molecular Psychiatry 13, 821827.CrossRefGoogle ScholarPubMed
Smolka, MN, Schumann, G, Wrase, J, Grusser, SM, Flor, H, Mann, K, Braus, DF, Goldman, D, Buchel, C, Heinz, A (2005). Catechol-O-methyltransferase Val158Met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex. Journal of Neuroscience 25, 836842.CrossRefGoogle ScholarPubMed
Stein, MB, Fallin, MD, Schork, NJ, Gelernter, J (2005). COMT polymorphisms and anxiety-related personality traits. Neuropsychopharmacology 30, 20922102.CrossRefGoogle ScholarPubMed
Suslow, T, Ohrmann, P, Bauer, J, Rauch, AV, Schwindt, W, Arolt, V, Heindel, W, Kugel, H (2006). Amygdala activation during masked presentation of emotional faces predicts conscious detection of threat-related faces. Brain and Cognition 61, 243248.CrossRefGoogle ScholarPubMed
Tan, HY, Chen, Q, Goldberg, TE, Mattay, VS, Meyer-Lindenberg, A, Weinberger, DR, Callicott, JH (2007). Catechol-O-methyltransferase Val158Met modulation of prefrontal–parietal–striatal brain systems during arithmetic and temporal transformations in working memory. Journal of Neuroscience 27, 1339313401.CrossRefGoogle ScholarPubMed
Tessitore, A, Hariri, AR, Fera, F, Smith, WG, Das, S, Weinberger, DR, Mattay, VS (2005). Functional changes in the activity of brain regions underlying emotion processing in the elderly. Psychiatry Research 139, 918.CrossRefGoogle ScholarPubMed
Thermenos, HW, Seidman, LJ, Breiter, H, Goldstein, JM, Goodman, JM, Poldrack, R, Faraone, SV, Tsuang, MT (2004). Functional magnetic resonance imaging during auditory verbal working memory in nonpsychotic relatives of persons with schizophrenia: a pilot study. Biological Psychiatry 55, 490500.CrossRefGoogle ScholarPubMed
Toomey, R, Seidman, LJ, Lyons, MJ, Faraone, SV, Tsuang, MT (1999). Poor perception of nonverbal social–emotional cues in relatives of schizophrenic patients. Schizophrenia Research 40, 121130.CrossRefGoogle ScholarPubMed
Tottenham, N, Tanaka, JW, Leon, AC, McCarry, T, Nurse, M, Hare, TA, Marcus, DJ, Westerlund, A, Casey, BJ, Nelson, C (2009). The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Research 168, 242249.CrossRefGoogle ScholarPubMed
Tsai, SJ, Hong, CJ, Yu, YW, Chen, TJ (2004). Association study of catechol-O-methyltransferase gene and dopamine D 4receptor gene polymorphisms and personality traits in healthy young Chinese females. Neuropsychobiology 50, 153156.CrossRefGoogle Scholar
Tunbridge, EM, Harrison, PJ, Weinberger, DR (2006). Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry 60, 141151.CrossRefGoogle ScholarPubMed
van Buuren, M, Vink, M, Rapcencu, AE, Kahn, RS (2011). Exaggerated brain activation during emotion processing in unaffected siblings of patients with schizophrenia. Biological Psychiatry 70, 8187.CrossRefGoogle ScholarPubMed
Volavka, J, Kennedy, JL, Ni, X, Czobor, P, Nolan, K, Sheitman, B, Lindenmayer, JP, Citrome, L, McEvoy, J, Lieberman, JA (2004). COMT158 polymorphism and hostility. American Journal of Medical Genetics. Part B NeuroPsychiatric Genetics 127B, 2829.CrossRefGoogle ScholarPubMed
Weinberger, DR (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44, 660669.CrossRefGoogle ScholarPubMed
Weinberger, DR, Egan, MF, Bertolino, A, Callicott, JH, Mattay, VS, Lipska, BK, Berman, KF, Goldberg, TE (2001). Prefrontal neurons and the genetics of schizophrenia. Biological Psychiatry 50, 825844.CrossRefGoogle ScholarPubMed
Weinshilboum, RM, Otterness, DM, Szumlanski, CL (1999). Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annual Review of Pharmacology and Toxicology 39, 1952.CrossRefGoogle ScholarPubMed
Williams, LM, Das, P, Harris, AW, Liddell, BB, Brammer, MJ, Olivieri, G, Skerrett, D, Phillips, ML, David, AS, Peduto, A, Gordon, E (2004). Dysregulation of arousal and amygdala–prefrontal systems in paranoid schizophrenia. American Journal of Psychiatry 161, 480489.CrossRefGoogle ScholarPubMed
Williams, LM, Das, P, Liddell, BJ, Kemp, AH, Rennie, CJ, Gordon, E (2006). Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear. Journal of Neuroscience 26, 92649271.CrossRefGoogle ScholarPubMed
Woo, JM, Yoon, KS, Yu, BH (2002). Catechol O-methyltransferase genetic polymorphism in panic disorder. American Journal of Psychiatry 159, 17851787.CrossRefGoogle ScholarPubMed
Woodward, ND, Tibbo, P, Purdon, SE (2007). An fMRI investigation of procedural learning in unaffected siblings of individuals with schizophrenia. Schizophrenia Research 94, 306316.CrossRefGoogle ScholarPubMed
Wright, CI, Martis, B, Schwartz, CE, Shin, LM, Fischer, HH, McMullin, K, Rauch, SL (2003). Novelty responses and differential effects of order in the amygdala, substantia innominata, and inferior temporal cortex. Neuroimage 18, 660669.CrossRefGoogle ScholarPubMed
Yang, TT, Menon, V, Eliez, S, Blasey, C, White, CD, Reid, AJ, Gotlib, IH, Reiss, AL (2002). Amygdalar activation associated with positive and negative facial expressions. Neuroreport 13, 17371741.CrossRefGoogle ScholarPubMed
Zandbelt, BB, van Buuren, M, Kahn, RS, Vink, M (2011). Reduced proactive inhibition in schizophrenia is related to corticostriatal dysfunction and poor working memory. Biological Psychiatry 70, 11511158.CrossRefGoogle ScholarPubMed