Skip to main content
Top
Published in:

Open Access 01-12-2024 | Research

LDHA exacerbates myocardial ischemia-reperfusion injury through inducing NLRP3 lactylation

Authors: Lixiang Fang, Zhenfei Yu, Xiaoling Qian, Huiqin Fang, Yakun Wang

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Myocardial ischemia-reperfusion (I/R) injury caused by revascularization treatment is the leading cause of cardiac damage aggravation in ischemic heart disease. Increasing evidence has unraveled the crucial role of pyroptosis in myocardial I/R injury. Of note, lactylation has been validated to be participated in modulating pyroptosis. Hence, this study was aimed to elaborate the potential and mechanism of lactylation in myocardial I/R damage. We established the cell model of I/R through inducing hypoxia/reoxygenation (H/R) of H9c2 cells. It was uncovered that H/R stimulation drove cardiomyocyte pyroptosis and upregulated total lactylation level. Further, we demonstrated that promoting lactylation contributed to H/R-evoked pyroptosis, whereas silencing LDHA led to the opposite results. More than that, LDHA was confirmed to facilitate lactylation of NLRP3 at K245 site and increase its protein stability. Our findings indicated that activation of NLRP3 abolished the function of LDHA deficiency in H/R-treated H9c2 cells. In concert with the aforementioned outcomes, knockout of LDHA attenuated the infarct size and myocardial damage in I/R mice and upregulation of NLRP3 counteracted the effects of LDHA knockout on I/R-evoked injury in vivo. To summarize, the current research provided persuasive evidence that LDHA promoted myocardial I/R damage via enhancing NLRP3 lactylation to induce cardiomyocyte pyroptosis.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Okwuosa IS, et al. Worldwide disparities in cardiovascular disease: challenges and solutions. Int J Cardiol. 2016;202:433–40.CrossRefPubMed Okwuosa IS, et al. Worldwide disparities in cardiovascular disease: challenges and solutions. Int J Cardiol. 2016;202:433–40.CrossRefPubMed
3.
go back to reference Patel MR, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 Appropriate Use Criteria for Coronary revascularization in patients with stable ischemic heart disease: a report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and interventions, Society of Cardiovascular Computed Tomography, and Society of thoracic surgeons. J Am Coll Cardiol. 2017;69(17):p2212–2241.CrossRef Patel MR, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 Appropriate Use Criteria for Coronary revascularization in patients with stable ischemic heart disease: a report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and interventions, Society of Cardiovascular Computed Tomography, and Society of thoracic surgeons. J Am Coll Cardiol. 2017;69(17):p2212–2241.CrossRef
4.
go back to reference Neri M, Riezzo I. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. 2017;7018393. Neri M, Riezzo I. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. 2017;7018393.
5.
go back to reference Ibáñez B, et al. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454–71.CrossRefPubMed Ibáñez B, et al. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454–71.CrossRefPubMed
6.
go back to reference Yang CF. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Ci Ji Yi Xue Za Zhi. 2018;30(4):209–15. Yang CF. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Ci Ji Yi Xue Za Zhi. 2018;30(4):209–15.
7.
go back to reference Abate SM, et al. Global burden of acute myocardial injury associated with COVID-19: a systematic review, meta-analysis, and meta-regression. Ann Med Surg (Lond). 2021;68:102594.PubMed Abate SM, et al. Global burden of acute myocardial injury associated with COVID-19: a systematic review, meta-analysis, and meta-regression. Ann Med Surg (Lond). 2021;68:102594.PubMed
8.
go back to reference Liu Y, Zhang J, Zhang D. Res Progress Role Pyroptosis Myocard Ischemia-Reperfusion Injury. 2022;11(20). Liu Y, Zhang J, Zhang D. Res Progress Role Pyroptosis Myocard Ischemia-Reperfusion Injury. 2022;11(20).
9.
go back to reference Zhou M, et al. Myocardial ischemia-reperfusion Injury: therapeutics from a Mitochondria-Centric Perspective. Cardiology. 2021;146(6):781–92.CrossRefPubMed Zhou M, et al. Myocardial ischemia-reperfusion Injury: therapeutics from a Mitochondria-Centric Perspective. Cardiology. 2021;146(6):781–92.CrossRefPubMed
10.
go back to reference Popov SV, et al. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis. 2023;28(1–2):55–80.CrossRefPubMed Popov SV, et al. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis. 2023;28(1–2):55–80.CrossRefPubMed
11.
go back to reference Zou R, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 2022;21(1):106.CrossRefPubMedPubMedCentral Zou R, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 2022;21(1):106.CrossRefPubMedPubMedCentral
13.
go back to reference Ge X, et al. The pathological role of NLRs and AIM2 inflammasome-mediated pyroptosis in damaged blood-brain barrier after traumatic brain injury. Brain Res. 2018;1697:10–20.CrossRefPubMed Ge X, et al. The pathological role of NLRs and AIM2 inflammasome-mediated pyroptosis in damaged blood-brain barrier after traumatic brain injury. Brain Res. 2018;1697:10–20.CrossRefPubMed
14.
go back to reference Zheng Y, Xu X. Pyroptosis: A Newly Discovered Therapeutic Target for Ischemia-Reperfusion Injury. Biomolecules. 2022;12(11):1625. Zheng Y, Xu X. Pyroptosis: A Newly Discovered Therapeutic Target for Ischemia-Reperfusion Injury. Biomolecules. 2022;12(11):1625.
15.
go back to reference Popov SV, Maslov LN. Role Pyroptosis Ischemic Reperfusion Injury Heart. J Cardiovasc Pharmacol Ther. 2021;26(6):562–74. Popov SV, Maslov LN. Role Pyroptosis Ischemic Reperfusion Injury Heart. J Cardiovasc Pharmacol Ther. 2021;26(6):562–74.
16.
go back to reference Sun J et al. LncRNA ROR modulates myocardial ischemia-reperfusion injury mediated by the miR-185-5p/CDK6 axis. Lab Invest. 2022;102(5):505-14. Sun J et al. LncRNA ROR modulates myocardial ischemia-reperfusion injury mediated by the miR-185-5p/CDK6 axis. Lab Invest. 2022;102(5):505-14.
17.
go back to reference Zhang J, et al. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging. 2020;12(23):24270–87.CrossRefPubMedPubMedCentral Zhang J, et al. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging. 2020;12(23):24270–87.CrossRefPubMedPubMedCentral
18.
go back to reference Zhang B, Liu G. KDM3A Attenuates Myocardial Ischemic and Reperfusion Injury by Ameliorating Cardiac Microvascular Endothelial Cell Pyroptosis. Oxid Med Cell Longev. 2022;4622520. Zhang B, Liu G. KDM3A Attenuates Myocardial Ischemic and Reperfusion Injury by Ameliorating Cardiac Microvascular Endothelial Cell Pyroptosis. Oxid Med Cell Longev. 2022;4622520.
19.
go back to reference Lou Y, et al. miR-424 promotes cardiac ischemia/reperfusion injury by direct targeting of CRISPLD2 and regulating cardiomyocyte pyroptosis. Int J Clin Exp Pathol. 2018;11(7):3222–35.PubMedPubMedCentral Lou Y, et al. miR-424 promotes cardiac ischemia/reperfusion injury by direct targeting of CRISPLD2 and regulating cardiomyocyte pyroptosis. Int J Clin Exp Pathol. 2018;11(7):3222–35.PubMedPubMedCentral
20.
go back to reference Lu C, Chen C. Oridonin Attenuates Myocardial Ischemia/Reperfusion Injury via Downregulating Oxidative Stress and NLRP3 Inflammasome Pathway in Mice. Evid Based Complement Alternat Med. 2020;7395187. Lu C, Chen C. Oridonin Attenuates Myocardial Ischemia/Reperfusion Injury via Downregulating Oxidative Stress and NLRP3 Inflammasome Pathway in Mice. Evid Based Complement Alternat Med. 2020;7395187.
22.
go back to reference Certo M, Tsai CH, Pucino V. Lactate Modulation Immune Responses Inflamm versus Tumour Microenvironments. Nat Rev Immunol. 2021;21(3):151–61. Certo M, Tsai CH, Pucino V. Lactate Modulation Immune Responses Inflamm versus Tumour Microenvironments. Nat Rev Immunol. 2021;21(3):151–61.
24.
go back to reference Cheng X, Wang K. Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov. 2023;9(1):275. Cheng X, Wang K. Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discov. 2023;9(1):275.
25.
go back to reference Lv X, Lv Y, Dai X. Lactate, histone lactylation and cancer hallmarks. Expert Rev Mol Med. 2023;25:e7. Lv X, Lv Y, Dai X. Lactate, histone lactylation and cancer hallmarks. Expert Rev Mol Med. 2023;25:e7.
26.
go back to reference Li Q, et al. NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis. Int J Biol Sci. 2024;20(4):1413–35.CrossRefPubMedPubMedCentral Li Q, et al. NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis. Int J Biol Sci. 2024;20(4):1413–35.CrossRefPubMedPubMedCentral
27.
go back to reference Du S, et al. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes. Theranostics. 2023;13(11):3856–71.CrossRefPubMedPubMedCentral Du S, et al. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes. Theranostics. 2023;13(11):3856–71.CrossRefPubMedPubMedCentral
28.
go back to reference Mao ZJ et al. A Meta-Analysis of Resveratrol Protects against Myocardial Ischemia/Reperfusion Injury: Evidence from Small Animal Studies and Insight into Molecular Mechanisms. Oxid Med Cell Longev. 2019: p. 5793867. Mao ZJ et al. A Meta-Analysis of Resveratrol Protects against Myocardial Ischemia/Reperfusion Injury: Evidence from Small Animal Studies and Insight into Molecular Mechanisms. Oxid Med Cell Longev. 2019: p. 5793867.
30.
go back to reference Chen Z, et al. Apelin/APJ system: a Novel Therapeutic Target for Myocardial Ischemia/Reperfusion Injury. DNA Cell Biol. 2016;35(12):766–75.CrossRefPubMed Chen Z, et al. Apelin/APJ system: a Novel Therapeutic Target for Myocardial Ischemia/Reperfusion Injury. DNA Cell Biol. 2016;35(12):766–75.CrossRefPubMed
31.
go back to reference Li Y et al. miR-190-5p Alleviates Myocardial Ischemia-Reperfusion Injury by Targeting PHLPP1. Dis Markers. 2021;2021:8709298. Li Y et al. miR-190-5p Alleviates Myocardial Ischemia-Reperfusion Injury by Targeting PHLPP1. Dis Markers. 2021;2021:8709298.
32.
go back to reference Li T, et al. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene. 2022;808:145968.CrossRefPubMed Li T, et al. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene. 2022;808:145968.CrossRefPubMed
33.
go back to reference Li C, et al. LncRNA PVT1 Knockdown ameliorates myocardial ischemia reperfusion damage via suppressing gasdermin D-Mediated pyroptosis in Cardiomyocytes. Front Cardiovasc Med. 2021;8:747802.CrossRefPubMedPubMedCentral Li C, et al. LncRNA PVT1 Knockdown ameliorates myocardial ischemia reperfusion damage via suppressing gasdermin D-Mediated pyroptosis in Cardiomyocytes. Front Cardiovasc Med. 2021;8:747802.CrossRefPubMedPubMedCentral
34.
go back to reference Zhang Y, Hailati J. Ubiquitin-specific protease 11 aggravates ischemia-reperfusion-induced Cardiomyocyte Pyroptosis and Injury by promoting TRAF3 deubiquitination. Balkan Med J. 2023;40(3):205-14. Zhang Y, Hailati J. Ubiquitin-specific protease 11 aggravates ischemia-reperfusion-induced Cardiomyocyte Pyroptosis and Injury by promoting TRAF3 deubiquitination. Balkan Med J. 2023;40(3):205-14.
35.
go back to reference Ma X, et al. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury via inhibiting ferroptosis by the cAMP/PKA/CREB pathway. Mol Cell Probes. 2023;68:101899.CrossRefPubMed Ma X, et al. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury via inhibiting ferroptosis by the cAMP/PKA/CREB pathway. Mol Cell Probes. 2023;68:101899.CrossRefPubMed
36.
go back to reference Chen X et al. Trimetazidine affects pyroptosis by targeting GSDMD in myocardial ischemia/reperfusion injury. Inflamm Res. 2022;71(2):227-41. Chen X et al. Trimetazidine affects pyroptosis by targeting GSDMD in myocardial ischemia/reperfusion injury. Inflamm Res. 2022;71(2):227-41.
37.
go back to reference Ding S, et al. Inhibiting MicroRNA-29a protects myocardial ischemia-reperfusion Injury by Targeting SIRT1 and suppressing oxidative stress and NLRP3-Mediated pyroptosis pathway. J Pharmacol Exp Ther. 2020;372(1):128–35.CrossRefPubMed Ding S, et al. Inhibiting MicroRNA-29a protects myocardial ischemia-reperfusion Injury by Targeting SIRT1 and suppressing oxidative stress and NLRP3-Mediated pyroptosis pathway. J Pharmacol Exp Ther. 2020;372(1):128–35.CrossRefPubMed
38.
go back to reference Zhu Y, et al. High-dose remifentanil exacerbates myocardial ischemia-reperfusion injury through activation of calcium-sensing receptor-mediated pyroptosis. Int J Med Sci. 2023;20(12):1570–83.CrossRefPubMedPubMedCentral Zhu Y, et al. High-dose remifentanil exacerbates myocardial ischemia-reperfusion injury through activation of calcium-sensing receptor-mediated pyroptosis. Int J Med Sci. 2023;20(12):1570–83.CrossRefPubMedPubMedCentral
39.
go back to reference He W, Duan L. LOXL1-AS1 aggravates myocardial Ischemia/Reperfusion Injury through the miR-761/PTEN Axis. Korean Circ J. 2023;53(6):387-403. He W, Duan L. LOXL1-AS1 aggravates myocardial Ischemia/Reperfusion Injury through the miR-761/PTEN Axis. Korean Circ J. 2023;53(6):387-403.
40.
go back to reference An L, et al. Sevoflurane exerts protection against myocardial ischemia-reperfusion injury and pyroptosis through the circular RNA PAN3/microRNA-29b-3p/stromal cell-derived factor 4 axis. Int Immunopharmacol. 2023;120:110219.CrossRefPubMed An L, et al. Sevoflurane exerts protection against myocardial ischemia-reperfusion injury and pyroptosis through the circular RNA PAN3/microRNA-29b-3p/stromal cell-derived factor 4 axis. Int Immunopharmacol. 2023;120:110219.CrossRefPubMed
41.
43.
go back to reference Yao X, Li C. Lactate dehydrogenase A mediated histone lactylation induced the pyroptosis through targeting HMGB1. Metab Brain Dis. 2023;38(5):1543–53.CrossRefPubMed Yao X, Li C. Lactate dehydrogenase A mediated histone lactylation induced the pyroptosis through targeting HMGB1. Metab Brain Dis. 2023;38(5):1543–53.CrossRefPubMed
44.
go back to reference Xu X, et al. Sox10 escalates vascular inflammation by mediating vascular smooth muscle cell transdifferentiation and pyroptosis in neointimal hyperplasia. Cell Rep. 2023;42(8):112869.CrossRefPubMed Xu X, et al. Sox10 escalates vascular inflammation by mediating vascular smooth muscle cell transdifferentiation and pyroptosis in neointimal hyperplasia. Cell Rep. 2023;42(8):112869.CrossRefPubMed
45.
go back to reference Yao Y, Bade R. Global-scale profiling of Differential expressed lysine-lactylated proteins in the cerebral endothelium of cerebral ischemia-reperfusion Injury rats. Cell Mol Neurobiol. . 2023;43(5):1989-2004. Yao Y, Bade R. Global-scale profiling of Differential expressed lysine-lactylated proteins in the cerebral endothelium of cerebral ischemia-reperfusion Injury rats. Cell Mol Neurobiol. . 2023;43(5):1989-2004.
46.
go back to reference Fan M, Yang K. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv. 2023;9(5):eadc9465. Fan M, Yang K. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv. 2023;9(5):eadc9465.
47.
go back to reference He F, et al. N-acetylcysteine alleviates post-resuscitation myocardial dysfunction and improves survival outcomes via partly inhibiting NLRP3 inflammasome induced-pyroptosis. J Inflamm (Lond). 2020;17:25.CrossRefPubMed He F, et al. N-acetylcysteine alleviates post-resuscitation myocardial dysfunction and improves survival outcomes via partly inhibiting NLRP3 inflammasome induced-pyroptosis. J Inflamm (Lond). 2020;17:25.CrossRefPubMed
48.
go back to reference Shi J, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.CrossRefPubMed Shi J, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.CrossRefPubMed
49.
go back to reference Luan F, et al. Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway. Phytomedicine. 2022;100:154047.CrossRefPubMed Luan F, et al. Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway. Phytomedicine. 2022;100:154047.CrossRefPubMed
50.
go back to reference Luan F, et al. Cardioprotective effect of cinnamaldehyde pretreatment on ischemia/ reperfusion injury via inhibiting NLRP3 inflammasome activation and gasdermin D mediated cardiomyocyte pyroptosis. Chem Biol Interact. 2022;368:110245.CrossRefPubMed Luan F, et al. Cardioprotective effect of cinnamaldehyde pretreatment on ischemia/ reperfusion injury via inhibiting NLRP3 inflammasome activation and gasdermin D mediated cardiomyocyte pyroptosis. Chem Biol Interact. 2022;368:110245.CrossRefPubMed
51.
go back to reference Lin J et al. Oridonin Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting GSDMD-Mediated Pyroptosis. Genes (Basel). 2022;13(11):2133. Lin J et al. Oridonin Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting GSDMD-Mediated Pyroptosis. Genes (Basel). 2022;13(11):2133.
Metadata
Title
LDHA exacerbates myocardial ischemia-reperfusion injury through inducing NLRP3 lactylation
Authors
Lixiang Fang
Zhenfei Yu
Xiaoling Qian
Huiqin Fang
Yakun Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-024-04251-w

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.

Launching: Thursday 12th December 2024
 

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Register your interest now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now