Skip to main content
Top
Published in:

01-10-2024 | Kidney Cancer | Review

Lipid metabolism reprogramming in renal cell carcinomas

Authors: Mustafa Khalid Abduljabbar, Mohammed Merza, Abdulqader Aziz, Soumya V. Menon, Mandeep Kaur, Zafar Aminov, Safia Obaidur Rab, Ahmed Hjazi, Yasser Fakri Mustafa, Benien C. Gabel

Published in: Medical Oncology | Issue 10/2024

Login to get access

Abstract

This study investigates the intricate mechanisms underlying the correlation between elevated consumption of harmful fats and the onset of kidney malignancies. The rise in global obesity rates has been accompanied by an increased prevalence of renal cancers, prompting an exploration into the molecular pathways and biological processes linking these phenomena. Through an extensive review of current literature and clinical studies, we identify potential key factors contributing to the carcinogenic influence of harmful fats on renal tissues. Our analysis highlights the role of adipose tissue-derived factors, inflammatory mediators, and lipid metabolism dysregulation in fostering a microenvironment conducive to renal tumorigenesis. Furthermore, we delve into the impact of harmful fats on signaling pathways associated with cell proliferation, apoptosis evasion, and angiogenesis within the renal parenchyma. This review underscores the importance of elucidating the molecular intricacies linking lipid metabolism and kidney malignancies, offering a foundation for future research and the development of targeted preventive and therapeutic interventions. The findings discussed herein contribute to our understanding of the complex relationship between lipid mediators and renal cancer, providing a basis for public health strategies aimed at mitigating the impact of harmful fats on kidney health.
Literature
1.
go back to reference Global OWH, Estimates H. Deaths by Cause. Age, Sex, by Country and by Region. 2020;2020:2000. Global OWH, Estimates H. Deaths by Cause. Age, Sex, by Country and by Region. 2020;2020:2000.
2.
go back to reference Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, Kuczyk MA, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24.PubMedCrossRef Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, Kuczyk MA, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24.PubMedCrossRef
3.
go back to reference Siegel R, Miller K, Fuchs H, Jemal A. Erratum to “Cancer statistics, 2021.” CA Cancer J Clin. 2021;71(1):7–33.PubMedCrossRef Siegel R, Miller K, Fuchs H, Jemal A. Erratum to “Cancer statistics, 2021.” CA Cancer J Clin. 2021;71(1):7–33.PubMedCrossRef
4.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA: a cancer journal for clinicians. 2022;72(1):7. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA: a cancer journal for clinicians. 2022;72(1):7.
5.
go back to reference Majidpoor J, Mortezaee K. Interleukin-2 therapy of cancer-clinical perspectives. Int Immunopharmacol. 2021;98:107836.PubMedCrossRef Majidpoor J, Mortezaee K. Interleukin-2 therapy of cancer-clinical perspectives. Int Immunopharmacol. 2021;98:107836.PubMedCrossRef
6.
go back to reference McKay RR, Bosse D, Choueiri TK (2018). Evolving systemic treatment landscape for patients with advanced renal cell carcinoma. Journal of Clinical Oncology. McKay RR, Bosse D, Choueiri TK (2018). Evolving systemic treatment landscape for patients with advanced renal cell carcinoma. Journal of Clinical Oncology.
9.
10.
go back to reference Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22.PubMedCrossRef Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22.PubMedCrossRef
11.
go back to reference Peck B, Schulze A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends in cancer. 2019;5(11):693–703.PubMedCrossRef Peck B, Schulze A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends in cancer. 2019;5(11):693–703.PubMedCrossRef
12.
go back to reference Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, et al. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020;159:245–93.PubMedPubMedCentralCrossRef Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, et al. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020;159:245–93.PubMedPubMedCentralCrossRef
14.
go back to reference Auciello FR, Bulusu V, Oon C, Tait-Mulder J, Berry M, Bhattacharyya S, Tumanov S, et al. A stromal lysolipid–autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 2019;9(5):617–27.PubMedPubMedCentralCrossRef Auciello FR, Bulusu V, Oon C, Tait-Mulder J, Berry M, Bhattacharyya S, Tumanov S, et al. A stromal lysolipid–autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 2019;9(5):617–27.PubMedPubMedCentralCrossRef
15.
go back to reference Attané C, Muller C. Drilling for oil: tumor-surrounding adipocytes fueling cancer. Trends in Cancer. 2020;6(7):593–604.PubMedCrossRef Attané C, Muller C. Drilling for oil: tumor-surrounding adipocytes fueling cancer. Trends in Cancer. 2020;6(7):593–604.PubMedCrossRef
16.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: a cancer journal for clinicians. 2018;68(1):7–30. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: a cancer journal for clinicians. 2018;68(1):7–30.
17.
go back to reference Capitanio U, Montorsi F. Renal cancer. The Lancet. 2016;387(10021):894–906.CrossRef Capitanio U, Montorsi F. Renal cancer. The Lancet. 2016;387(10021):894–906.CrossRef
18.
go back to reference Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, Gore JL, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84.PubMedCrossRef Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, Gore JL, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84.PubMedCrossRef
19.
go back to reference Gansler T, Fedewa S, Amin MB, Lin CC, Jemal A. Trends in reporting histological subtyping of renal cell carcinoma: association with cancer center type. Hum Pathol. 2018;74:99–108.PubMedCrossRef Gansler T, Fedewa S, Amin MB, Lin CC, Jemal A. Trends in reporting histological subtyping of renal cell carcinoma: association with cancer center type. Hum Pathol. 2018;74:99–108.PubMedCrossRef
20.
go back to reference Theis RP, Dolwick Grieb SM, Burr D, Siddiqui T, Asal NR. Smoking, environmental tobacco smoke, and risk of renal cell cancer: a population-based case-control study. BMC Cancer. 2008;8:1–11.CrossRef Theis RP, Dolwick Grieb SM, Burr D, Siddiqui T, Asal NR. Smoking, environmental tobacco smoke, and risk of renal cell cancer: a population-based case-control study. BMC Cancer. 2008;8:1–11.CrossRef
22.
go back to reference Kim CS, Han K-D, Choi HS, Bae EH, Ma SK, Kim SW. Association of hypertension and blood pressure with kidney cancer risk: a nationwide population-based cohort study. Hypertension. 2020;75(6):1439–46.PubMedCrossRef Kim CS, Han K-D, Choi HS, Bae EH, Ma SK, Kim SW. Association of hypertension and blood pressure with kidney cancer risk: a nationwide population-based cohort study. Hypertension. 2020;75(6):1439–46.PubMedCrossRef
23.
go back to reference Johansson M, Carreras-Torres R, Scelo G, Purdue MP, Mariosa D, Muller DC, Timpson NJ, et al. The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study. PLoS Med. 2019;16(1): e1002724.PubMedPubMedCentralCrossRef Johansson M, Carreras-Torres R, Scelo G, Purdue MP, Mariosa D, Muller DC, Timpson NJ, et al. The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study. PLoS Med. 2019;16(1): e1002724.PubMedPubMedCentralCrossRef
24.
go back to reference Choueiri TK, Je Y, Cho E. Analgesic use and the risk of kidney cancer: A meta-analysis of epidemiologic studies. Int J Cancer. 2014;134(2):384–96.PubMedCrossRef Choueiri TK, Je Y, Cho E. Analgesic use and the risk of kidney cancer: A meta-analysis of epidemiologic studies. Int J Cancer. 2014;134(2):384–96.PubMedCrossRef
25.
go back to reference Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5(1):e189-e. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5(1):e189-e.
27.
go back to reference Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656–70.PubMedPubMedCentralCrossRef Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656–70.PubMedPubMedCentralCrossRef
29.
go back to reference Ragone R, Sallustio F, Piccinonna S, Rutigliano M, Vanessa G, Palazzo S, Lucarelli G, et al. Renal cell carcinoma: a study through NMR-based metabolomics combined with transcriptomics. 2016;4(1):7. Ragone R, Sallustio F, Piccinonna S, Rutigliano M, Vanessa G, Palazzo S, Lucarelli G, et al. Renal cell carcinoma: a study through NMR-based metabolomics combined with transcriptomics. 2016;4(1):7.
30.
go back to reference Bianchi C, Meregalli C, Bombelli S, Di Stefano V, Salerno F, Torsello B, De Marco S, et al. The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. 2017;8(69): 113502. Bianchi C, Meregalli C, Bombelli S, Di Stefano V, Salerno F, Torsello B, De Marco S, et al. The glucose and lipid metabolism reprogramming is grade-dependent in clear cell renal cell carcinoma primary cultures and is targetable to modulate cell viability and proliferation. 2017;8(69): 113502.
31.
go back to reference Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, Lastilla G, et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget. 2015; 6: 13371–86.3823:13371–86. Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, Lastilla G, et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget. 2015; 6: 13371–86.3823:13371–86.
32.
go back to reference Lucarelli G, Rutigliano M, Sallustio F, Ribatti D, Giglio A, Signorile ML, Grossi V, et al. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. 2018;10(12):3957. Lucarelli G, Rutigliano M, Sallustio F, Ribatti D, Giglio A, Signorile ML, Grossi V, et al. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. 2018;10(12):3957.
33.
go back to reference Milella M, Rutigliano M, Lasorsa F, Ferro M, Bianchi R, Fallara G, Crocetto F, et al. The role of MUC1 in renal cell carcinoma. 2024;14(3):315. Milella M, Rutigliano M, Lasorsa F, Ferro M, Bianchi R, Fallara G, Crocetto F, et al. The role of MUC1 in renal cell carcinoma. 2024;14(3):315.
34.
go back to reference Lucarelli G, Rutigliano M, Loizzo D, di Meo NA, Lasorsa F, Mastropasqua M, Maiorano E, et al. MUC1 tissue expression and its soluble form CA15–3 identify a clear cell renal cell carcinoma with distinct metabolic profile and poor clinical outcome. 2022;23(22):13968. Lucarelli G, Rutigliano M, Loizzo D, di Meo NA, Lasorsa F, Mastropasqua M, Maiorano E, et al. MUC1 tissue expression and its soluble form CA15–3 identify a clear cell renal cell carcinoma with distinct metabolic profile and poor clinical outcome. 2022;23(22):13968.
35.
go back to reference Qiu B, Ackerman D, Sanchez DJ, Li B, Ochocki JD, Grazioli A, Bobrovnikova-Marjon E, et al. HIF2α-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov. 2015;5(6):652–67.PubMedPubMedCentralCrossRef Qiu B, Ackerman D, Sanchez DJ, Li B, Ochocki JD, Grazioli A, Bobrovnikova-Marjon E, et al. HIF2α-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov. 2015;5(6):652–67.PubMedPubMedCentralCrossRef
36.
go back to reference Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, Lac S, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci. 2015;112(8):2473–8.PubMedPubMedCentralCrossRef Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, Lac S, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci. 2015;112(8):2473–8.PubMedPubMedCentralCrossRef
37.
go back to reference El-Mashtoly SF, Yosef HK, Petersen D, Mavarani L, Maghnouj A, Hahn S, Kötting C, et al. Label-free Raman spectroscopic imaging monitors the integral physiologically relevant drug responses in cancer cells. Anal Chem. 2015;87(14):7297–304.PubMedCrossRef El-Mashtoly SF, Yosef HK, Petersen D, Mavarani L, Maghnouj A, Hahn S, Kötting C, et al. Label-free Raman spectroscopic imaging monitors the integral physiologically relevant drug responses in cancer cells. Anal Chem. 2015;87(14):7297–304.PubMedCrossRef
38.
go back to reference Steuwe C, Patel II, Ul-Hasan M, Schreiner A, Boren J, Brindle KM, Reichelt S, et al. CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells. J Biophotonics. 2014;7(11–12):906–13.PubMedCrossRef Steuwe C, Patel II, Ul-Hasan M, Schreiner A, Boren J, Brindle KM, Reichelt S, et al. CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells. J Biophotonics. 2014;7(11–12):906–13.PubMedCrossRef
39.
go back to reference Daniëls VW, Smans K, Royaux I, Chypre M, Swinnen JV, Zaidi N. Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS ONE. 2014;9(9): e106913.PubMedPubMedCentralCrossRef Daniëls VW, Smans K, Royaux I, Chypre M, Swinnen JV, Zaidi N. Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS ONE. 2014;9(9): e106913.PubMedPubMedCentralCrossRef
40.
go back to reference Kamphorst JJ, Cross JR, Fan J, De Stanchina E, Mathew R, White EP, Thompson CB, et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci. 2013;110(22):8882–7.PubMedPubMedCentralCrossRef Kamphorst JJ, Cross JR, Fan J, De Stanchina E, Mathew R, White EP, Thompson CB, et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci. 2013;110(22):8882–7.PubMedPubMedCentralCrossRef
41.
go back to reference Bombelli S, Torsello B, De Marco S, Lucarelli G, Cifola I, Grasselli C, Strada G, et al. 36-kDa annexin A3 isoform negatively modulates lipid storage in clear cell renal cell carcinoma cells. 2020;190(11):2317–26. Bombelli S, Torsello B, De Marco S, Lucarelli G, Cifola I, Grasselli C, Strada G, et al. 36-kDa annexin A3 isoform negatively modulates lipid storage in clear cell renal cell carcinoma cells. 2020;190(11):2317–26.
42.
go back to reference Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Autorino R, et al. Cancer stem cells in renal cell carcinoma: origins and biomarkers. 2023;24(17):13179. Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Autorino R, et al. Cancer stem cells in renal cell carcinoma: origins and biomarkers. 2023;24(17):13179.
43.
go back to reference Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77.PubMedCrossRef Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77.PubMedCrossRef
44.
go back to reference Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Can Res. 2012;72(15):3709–14.CrossRef Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Can Res. 2012;72(15):3709–14.CrossRef
45.
go back to reference Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Can Res. 2006;66(12):5977–80.CrossRef Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Can Res. 2006;66(12):5977–80.CrossRef
46.
go back to reference Biswas S, Lunec J, Bartlett K. Non-glucose metabolism in cancer cells—is it all in the fat? Cancer Metastasis Rev. 2012;31:689–98.PubMedCrossRef Biswas S, Lunec J, Bartlett K. Non-glucose metabolism in cancer cells—is it all in the fat? Cancer Metastasis Rev. 2012;31:689–98.PubMedCrossRef
47.
go back to reference Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, Huang P, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25(10):1041–51.PubMedPubMedCentralCrossRef Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, Huang P, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25(10):1041–51.PubMedPubMedCentralCrossRef
48.
go back to reference Reilly PT, Mak TW. Molecular pathways: tumor cells Co-opt the brain-specific metabolism gene CPT1C to promote survival. Clin Cancer Res. 2012;18(21):5850–5.PubMedCrossRef Reilly PT, Mak TW. Molecular pathways: tumor cells Co-opt the brain-specific metabolism gene CPT1C to promote survival. Clin Cancer Res. 2012;18(21):5850–5.PubMedCrossRef
49.
go back to reference Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Investig. 2010;120(1):142–56.PubMedCrossRef Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Investig. 2010;120(1):142–56.PubMedCrossRef
50.
go back to reference Schlaepfer IR, Rider L, Rodrigues LU, Gijón MA, Pac CT, Romero L, Cimic A, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther. 2014;13(10):2361–71.PubMedPubMedCentralCrossRef Schlaepfer IR, Rider L, Rodrigues LU, Gijón MA, Pac CT, Romero L, Cimic A, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther. 2014;13(10):2361–71.PubMedPubMedCentralCrossRef
51.
go back to reference Vargas T, Moreno-Rubio J, Herranz J, Cejas P, Molina S, Gonzalez-Vallinas M, Mendiola M, et al. ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients. Oncotarget. 2015;6(9):7348.PubMedPubMedCentralCrossRef Vargas T, Moreno-Rubio J, Herranz J, Cejas P, Molina S, Gonzalez-Vallinas M, Mendiola M, et al. ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients. Oncotarget. 2015;6(9):7348.PubMedPubMedCentralCrossRef
52.
go back to reference Hilvo M, Denkert C, Lehtinen L, Müller B, Brockmöller S, Seppänen-Laakso T, Budczies J, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Can Res. 2011;71(9):3236–45.CrossRef Hilvo M, Denkert C, Lehtinen L, Müller B, Brockmöller S, Seppänen-Laakso T, Budczies J, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Can Res. 2011;71(9):3236–45.CrossRef
53.
go back to reference Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Can Res. 2010;70(20):8117–26.CrossRef Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Can Res. 2010;70(20):8117–26.CrossRef
54.
go back to reference Kawashima M, Iwamoto N, Kawaguchi-Sakita N, Sugimoto M, Ueno T, Mikami Y, Terasawa K, et al. High-resolution imaging mass spectrometry reveals detailed spatial distribution of phosphatidylinositols in human breast cancer. Cancer Sci. 2013;104(10):1372–9.PubMedPubMedCentralCrossRef Kawashima M, Iwamoto N, Kawaguchi-Sakita N, Sugimoto M, Ueno T, Mikami Y, Terasawa K, et al. High-resolution imaging mass spectrometry reveals detailed spatial distribution of phosphatidylinositols in human breast cancer. Cancer Sci. 2013;104(10):1372–9.PubMedPubMedCentralCrossRef
55.
go back to reference Eberlin LS, Gabay M, Fan AC, Gouw AM, Tibshirani RJ, Felsher DW, Zare RN. Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci. 2014;111(29):10450–5.PubMedPubMedCentralCrossRef Eberlin LS, Gabay M, Fan AC, Gouw AM, Tibshirani RJ, Felsher DW, Zare RN. Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci. 2014;111(29):10450–5.PubMedPubMedCentralCrossRef
56.
go back to reference Perry RH, Bellovin DI, Shroff EH, Ismail AI, Zabuawala T, Felsher DW, Zare RN. Characterization of MYC-induced tumorigenesis by in situ lipid profiling. Anal Chem. 2013;85(9):4259–62.PubMedPubMedCentralCrossRef Perry RH, Bellovin DI, Shroff EH, Ismail AI, Zabuawala T, Felsher DW, Zare RN. Characterization of MYC-induced tumorigenesis by in situ lipid profiling. Anal Chem. 2013;85(9):4259–62.PubMedPubMedCentralCrossRef
57.
go back to reference Shroff EH, Eberlin LS, Dang VM, Gouw AM, Gabay M, Adam SJ, Bellovin DI, et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci. 2015;112(21):6539–44.PubMedPubMedCentralCrossRef Shroff EH, Eberlin LS, Dang VM, Gouw AM, Gabay M, Adam SJ, Bellovin DI, et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci. 2015;112(21):6539–44.PubMedPubMedCentralCrossRef
58.
go back to reference Bobulescu IA, Pop LM, Mani C, Turner K, Rivera C, Khatoon S, Kairamkonda S, et al. Renal lipid metabolism abnormalities in obesity and clear cell renal cell carcinoma. Metabolites. 2021;11(9):608.PubMedPubMedCentralCrossRef Bobulescu IA, Pop LM, Mani C, Turner K, Rivera C, Khatoon S, Kairamkonda S, et al. Renal lipid metabolism abnormalities in obesity and clear cell renal cell carcinoma. Metabolites. 2021;11(9):608.PubMedPubMedCentralCrossRef
59.
go back to reference Yang X, Okamura DM, Lu X, Chen Y, Moorhead J, Varghese Z, Ruan XZ. CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol. 2017;13(12):769–81.PubMedCrossRef Yang X, Okamura DM, Lu X, Chen Y, Moorhead J, Varghese Z, Ruan XZ. CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol. 2017;13(12):769–81.PubMedCrossRef
60.
go back to reference Hua W, Huang H-z, Tan L-t, Wan J-m, Gui H-b, Zhao L, Ruan X-z, et al. CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress. PloS one. 2015;10(5):e0127507. Hua W, Huang H-z, Tan L-t, Wan J-m, Gui H-b, Zhao L, Ruan X-z, et al. CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress. PloS one. 2015;10(5):e0127507.
61.
go back to reference Eshbach ML, Weisz OA. Receptor-mediated endocytosis in the proximal tubule. Annu Rev Physiol. 2017;79:425–48.PubMedCrossRef Eshbach ML, Weisz OA. Receptor-mediated endocytosis in the proximal tubule. Annu Rev Physiol. 2017;79:425–48.PubMedCrossRef
62.
go back to reference Khan S, Cabral PD, Schilling WP, Schmidt ZW, Uddin AN, Gingras A, Madhavan SM, et al. Kidney proximal tubule lipoapoptosis is regulated by fatty acid transporter-2 (FATP2). J Am Soc Nephrol. 2018;29(1):81–91.PubMedCrossRef Khan S, Cabral PD, Schilling WP, Schmidt ZW, Uddin AN, Gingras A, Madhavan SM, et al. Kidney proximal tubule lipoapoptosis is regulated by fatty acid transporter-2 (FATP2). J Am Soc Nephrol. 2018;29(1):81–91.PubMedCrossRef
64.
go back to reference di Meo NA, Lasorsa F, Rutigliano M, Loizzo D, Ferro M, Stella A,Bizzoca C, et al. Renal cell carcinoma as a metabolic disease: an update on main pathways, potential biomarkers, and therapeutic targets. 2022;23(22):14360. di Meo NA, Lasorsa F, Rutigliano M, Loizzo D, Ferro M, Stella A,Bizzoca C, et al. Renal cell carcinoma as a metabolic disease: an update on main pathways, potential biomarkers, and therapeutic targets. 2022;23(22):14360.
65.
go back to reference Adams KF, Leitzmann MF, Albanes D, Kipnis V, Moore SC, Schatzkin A, Chow W-H. Body size and renal cell cancer incidence in a large US cohort study. Am J Epidemiol. 2008;168(3):268–77.PubMedPubMedCentralCrossRef Adams KF, Leitzmann MF, Albanes D, Kipnis V, Moore SC, Schatzkin A, Chow W-H. Body size and renal cell cancer incidence in a large US cohort study. Am J Epidemiol. 2008;168(3):268–77.PubMedPubMedCentralCrossRef
66.
go back to reference Weiss RH, editor Metabolomics and metabolic reprogramming in kidney cancer. Seminars in nephrology; 2018: Elsevier. Weiss RH, editor Metabolomics and metabolic reprogramming in kidney cancer. Seminars in nephrology; 2018: Elsevier.
67.
go back to reference Lucarelli G, Loizzo D, Franzin R, Battaglia S, Ferro M, Cantiello F, Castellano G, et al. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. 2019;19(5):397–407. Lucarelli G, Loizzo D, Franzin R, Battaglia S, Ferro M, Cantiello F, Castellano G, et al. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. 2019;19(5):397–407.
68.
go back to reference Ganti S, Taylor SL, Abu Aboud O, Yang J, Evans C, Osier MV, Alexander DC, et al. Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics analysis. Can Res. 2012;72(14):3471–9.CrossRef Ganti S, Taylor SL, Abu Aboud O, Yang J, Evans C, Osier MV, Alexander DC, et al. Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics analysis. Can Res. 2012;72(14):3471–9.CrossRef
69.
go back to reference Teng L, Chen Y, Cao Y, Wang W, Xu Y, Wang Y, Lv J, et al. Overexpression of ATP citrate lyase in renal cell carcinoma tissues and its effect on the human renal carcinoma cells in vitro. Oncol Lett. 2018;15(5):6967–74.PubMedPubMedCentral Teng L, Chen Y, Cao Y, Wang W, Xu Y, Wang Y, Lv J, et al. Overexpression of ATP citrate lyase in renal cell carcinoma tissues and its effect on the human renal carcinoma cells in vitro. Oncol Lett. 2018;15(5):6967–74.PubMedPubMedCentral
70.
go back to reference Gibbs Richard A. 1 CGARNAwgBCoMCCJMMGPHWDA, 4 BCAGRACA, 6 BIBRCK, Brigham, 59 WsHSS, 8 BUVH-TWFRBJ, 9 UoTMACCVRGTPT-GWARWJN, et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9. Gibbs Richard A. 1 CGARNAwgBCoMCCJMMGPHWDA, 4 BCAGRACA, 6 BIBRCK, Brigham, 59 WsHSS, 8 BUVH-TWFRBJ, 9 UoTMACCVRGTPT-GWARWJN, et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.
71.
go back to reference Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G, et al. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Can Res. 2007;67(17):8180–7.CrossRef Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G, et al. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Can Res. 2007;67(17):8180–7.CrossRef
72.
go back to reference Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005;8(4):311–21.PubMedCrossRef Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005;8(4):311–21.PubMedCrossRef
73.
go back to reference Horiguchi A, Asano T, Asano T, Ito K, Sumitomo M, Hayakawa M. Fatty acid synthase over expression is an indicator of tumor aggressiveness and poor prognosis in renal cell carcinoma. J Urol. 2008;180(3):1137–40.PubMedCrossRef Horiguchi A, Asano T, Asano T, Ito K, Sumitomo M, Hayakawa M. Fatty acid synthase over expression is an indicator of tumor aggressiveness and poor prognosis in renal cell carcinoma. J Urol. 2008;180(3):1137–40.PubMedCrossRef
74.
go back to reference Von Roemeling CA, Marlow LA, Wei JJ, Cooper SJ, Caulfield TR, Wu K, Tan WW, et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res. 2013;19(9):2368–80.CrossRef Von Roemeling CA, Marlow LA, Wei JJ, Cooper SJ, Caulfield TR, Wu K, Tan WW, et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res. 2013;19(9):2368–80.CrossRef
75.
go back to reference Wang J, Xu Y, Zhu L, Zou Y, Kong W, Dong B, Huang J, et al. High expression of stearoyl-CoA desaturase 1 predicts poor prognosis in patients with clear-cell renal cell carcinoma. PLoS ONE. 2016;11(11): e0166231.PubMedPubMedCentralCrossRef Wang J, Xu Y, Zhu L, Zou Y, Kong W, Dong B, Huang J, et al. High expression of stearoyl-CoA desaturase 1 predicts poor prognosis in patients with clear-cell renal cell carcinoma. PLoS ONE. 2016;11(11): e0166231.PubMedPubMedCentralCrossRef
76.
go back to reference di Meo NA, Lasorsa F, Rutigliano M, Milella M, Ferro M, Battaglia M, Ditonno P, et al. The dark side of lipid metabolism in prostate and renal carcinoma: novel insights into molecular diagnostic and biomarker discovery. 2023;23(4):297–313. di Meo NA, Lasorsa F, Rutigliano M, Milella M, Ferro M, Battaglia M, Ditonno P, et al. The dark side of lipid metabolism in prostate and renal carcinoma: novel insights into molecular diagnostic and biomarker discovery. 2023;23(4):297–313.
77.
go back to reference Simopoulos AP. Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet. Healthy agriculture, healthy nutrition, healthy people. 102: Karger Publishers; 2011. p. 10–21. Simopoulos AP. Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet. Healthy agriculture, healthy nutrition, healthy people. 102: Karger Publishers; 2011. p. 10–21.
78.
go back to reference Chilton FH, Murphy RC, Wilson BA, Sergeant S, Ainsworth H, Seeds MC, Mathias RA. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients. 2014;6(5):1993–2022.PubMedPubMedCentralCrossRef Chilton FH, Murphy RC, Wilson BA, Sergeant S, Ainsworth H, Seeds MC, Mathias RA. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients. 2014;6(5):1993–2022.PubMedPubMedCentralCrossRef
79.
go back to reference Takezaki T, Inoue M, Kataoka H, Ikeda S, Yoshida M, Ohashi Y, Tajima K, et al. Diet and lung cancer risk from a 14-year population-based prospective study in Japan: with special reference to fish consumption. Nutr Cancer. 2003;45(2):160–7.PubMedCrossRef Takezaki T, Inoue M, Kataoka H, Ikeda S, Yoshida M, Ohashi Y, Tajima K, et al. Diet and lung cancer risk from a 14-year population-based prospective study in Japan: with special reference to fish consumption. Nutr Cancer. 2003;45(2):160–7.PubMedCrossRef
80.
go back to reference Xu Y, Yang X, Wang T, Yang L, He Y-Y, Miskimins K, Qian SY. Knockdown delta-5-desaturase in breast cancer cells that overexpress COX-2 results in inhibition of growth, migration and invasion via a dihomo-γ-linolenic acid peroxidation dependent mechanism. BMC Cancer. 2018;18:1–15.CrossRef Xu Y, Yang X, Wang T, Yang L, He Y-Y, Miskimins K, Qian SY. Knockdown delta-5-desaturase in breast cancer cells that overexpress COX-2 results in inhibition of growth, migration and invasion via a dihomo-γ-linolenic acid peroxidation dependent mechanism. BMC Cancer. 2018;18:1–15.CrossRef
81.
go back to reference Saito K, Arai E, Maekawa K, Ishikawa M, Fujimoto H, Taguchi R, Matsumoto K, et al. Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma. Sci Rep. 2016;6(1):28932.PubMedPubMedCentralCrossRef Saito K, Arai E, Maekawa K, Ishikawa M, Fujimoto H, Taguchi R, Matsumoto K, et al. Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma. Sci Rep. 2016;6(1):28932.PubMedPubMedCentralCrossRef
82.
go back to reference Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng Y-Y, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 2019;10(1):1617.PubMedPubMedCentralCrossRef Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng Y-Y, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 2019;10(1):1617.PubMedPubMedCentralCrossRef
83.
go back to reference Yoshimura K, Chen LC, Mandal MK, Nakazawa T, Yu Z, Uchiyama T, Hori H, et al. Analysis of renal cell carcinoma as a first step for developing mass spectrometry-based diagnostics. J Am Soc Mass Spectrom. 2012;23(10):1741–9.PubMedCrossRef Yoshimura K, Chen LC, Mandal MK, Nakazawa T, Yu Z, Uchiyama T, Hori H, et al. Analysis of renal cell carcinoma as a first step for developing mass spectrometry-based diagnostics. J Am Soc Mass Spectrom. 2012;23(10):1741–9.PubMedCrossRef
84.
go back to reference Naito S, Makhov P, Astsaturov I, Golovine K, Tulin A, Kutikov A, Uzzo RG, et al. LDL cholesterol counteracts the antitumour effect of tyrosine kinase inhibitors against renal cell carcinoma. Br J Cancer. 2017;116(9):1203–7.PubMedPubMedCentralCrossRef Naito S, Makhov P, Astsaturov I, Golovine K, Tulin A, Kutikov A, Uzzo RG, et al. LDL cholesterol counteracts the antitumour effect of tyrosine kinase inhibitors against renal cell carcinoma. Br J Cancer. 2017;116(9):1203–7.PubMedPubMedCentralCrossRef
85.
go back to reference Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 2007;40(9–10):575–84.PubMedCrossRef Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 2007;40(9–10):575–84.PubMedCrossRef
86.
go back to reference Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev. 2022;41(1):17–31.PubMedCrossRef Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev. 2022;41(1):17–31.PubMedCrossRef
87.
go back to reference Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8.PubMedPubMedCentralCrossRef Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8.PubMedPubMedCentralCrossRef
88.
go back to reference Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer. 2016;16(11):718–31.PubMedCrossRef Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer. 2016;16(11):718–31.PubMedCrossRef
89.
go back to reference Thompson JM, Alvarez A, Singha MK, Pavesic MW, Nguyen QH, Nelson LJ, Fruman DA, et al. Targeting the mevalonate pathway suppresses VHL-deficient CC-RCC through an HIF-dependent mechanism. Mol Cancer Ther. 2018;17(8):1781–92.PubMedPubMedCentralCrossRef Thompson JM, Alvarez A, Singha MK, Pavesic MW, Nguyen QH, Nelson LJ, Fruman DA, et al. Targeting the mevalonate pathway suppresses VHL-deficient CC-RCC through an HIF-dependent mechanism. Mol Cancer Ther. 2018;17(8):1781–92.PubMedPubMedCentralCrossRef
90.
go back to reference Li L, Kaelin WG. New insights into the biology of renal cell carcinoma. Hematology/Oncology Clinics. 2011;25(4):667–86.CrossRef Li L, Kaelin WG. New insights into the biology of renal cell carcinoma. Hematology/Oncology Clinics. 2011;25(4):667–86.CrossRef
92.
go back to reference Hagiwara N, Watanabe M, Iizuka-Ohashi M, Yokota I, Toriyama S, Sukeno M, Tomosugi M, et al. Mevalonate pathway blockage enhances the efficacy of mTOR inhibitors with the activation of retinoblastoma protein in renal cell carcinoma. Cancer Lett. 2018;431:182–9.PubMedCrossRef Hagiwara N, Watanabe M, Iizuka-Ohashi M, Yokota I, Toriyama S, Sukeno M, Tomosugi M, et al. Mevalonate pathway blockage enhances the efficacy of mTOR inhibitors with the activation of retinoblastoma protein in renal cell carcinoma. Cancer Lett. 2018;431:182–9.PubMedCrossRef
93.
go back to reference McKay RR, Lin X, Albiges L, Fay AP, Kaymakcalan MD, Mickey SS, Ghoroghchian PP, et al. Statins and survival outcomes in patients with metastatic renal cell carcinoma. Eur J Cancer. 2016;52:155–62.PubMedCrossRef McKay RR, Lin X, Albiges L, Fay AP, Kaymakcalan MD, Mickey SS, Ghoroghchian PP, et al. Statins and survival outcomes in patients with metastatic renal cell carcinoma. Eur J Cancer. 2016;52:155–62.PubMedCrossRef
94.
go back to reference Chou Y-C, Lin C-H, Wong C-S, Chou W-Y, Chang J-Y, Sun C-A. Statin use and the risk of renal cell carcinoma: national cohort study. J Investig Med. 2020;68(3):776–81.PubMedCrossRef Chou Y-C, Lin C-H, Wong C-S, Chou W-Y, Chang J-Y, Sun C-A. Statin use and the risk of renal cell carcinoma: national cohort study. J Investig Med. 2020;68(3):776–81.PubMedCrossRef
95.
go back to reference Latif F, Tory K, Gnarra J, Yao M, Duh F-M, Orcutt ML, Stackhouse T, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.PubMedCrossRef Latif F, Tory K, Gnarra J, Yao M, Duh F-M, Orcutt ML, Stackhouse T, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.PubMedCrossRef
96.
go back to reference Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH. von Hippel-Lindau disease. The Lancet. 2003;361(9374):2059–67.CrossRef Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH. von Hippel-Lindau disease. The Lancet. 2003;361(9374):2059–67.CrossRef
97.
go back to reference Hu SL, Chang A, Perazella MA, Okusa MD, Jaimes EA, Weiss RH. The nephrologist’s tumor: basic biology and management of renal cell carcinoma. J Am Soc Nephrol. 2016;27(8):2227–37.PubMedPubMedCentralCrossRef Hu SL, Chang A, Perazella MA, Okusa MD, Jaimes EA, Weiss RH. The nephrologist’s tumor: basic biology and management of renal cell carcinoma. J Am Soc Nephrol. 2016;27(8):2227–37.PubMedPubMedCentralCrossRef
98.
go back to reference Nickerson ML, Jaeger E, Shi Y, Durocher JA, Mahurkar S, Zaridze D, Matveev V, et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 2008;14(15):4726–34.PubMedPubMedCentralCrossRef Nickerson ML, Jaeger E, Shi Y, Durocher JA, Mahurkar S, Zaridze D, Matveev V, et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 2008;14(15):4726–34.PubMedPubMedCentralCrossRef
99.
go back to reference Masson N, Ratcliffe PJ. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer & metabolism. 2014;2:1–17.CrossRef Masson N, Ratcliffe PJ. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer & metabolism. 2014;2:1–17.CrossRef
100.
go back to reference Liu R, Feng Y, Deng Y, Zou Z, Ye J, Cai Z, Zhu X, et al. A HIF1α-GPD1 feedforward loop inhibits the progression of renal clear cell carcinoma via mitochondrial function and lipid metabolism. J Exp Clin Cancer Res. 2021;40(1):188.PubMedPubMedCentralCrossRef Liu R, Feng Y, Deng Y, Zou Z, Ye J, Cai Z, Zhu X, et al. A HIF1α-GPD1 feedforward loop inhibits the progression of renal clear cell carcinoma via mitochondrial function and lipid metabolism. J Exp Clin Cancer Res. 2021;40(1):188.PubMedPubMedCentralCrossRef
101.
go back to reference Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2012;12(1):9–22.CrossRef Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2012;12(1):9–22.CrossRef
103.
go back to reference Koizume S, Miyagi Y. Lipid droplets: a key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int J Mol Sci. 2016;17(9):1430.PubMedPubMedCentralCrossRef Koizume S, Miyagi Y. Lipid droplets: a key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int J Mol Sci. 2016;17(9):1430.PubMedPubMedCentralCrossRef
104.
go back to reference Garcia C, Andersen CJ, Blesso CNJN. The role of lipids in the regulation of immune responses. 2023;15(18):3899. Garcia C, Andersen CJ, Blesso CNJN. The role of lipids in the regulation of immune responses. 2023;15(18):3899.
105.
go back to reference Vuong L, Kotecha RR, Voss MH. Hakimi AAJCd. Tumor microenvironment dynamics in clear-cell renal cell carcinoma. 2019;9(10):1349–57. Vuong L, Kotecha RR, Voss MH. Hakimi AAJCd. Tumor microenvironment dynamics in clear-cell renal cell carcinoma. 2019;9(10):1349–57.
106.
go back to reference Tamma R, Rutigliano M, Lucarelli G, Annese T, Ruggieri S, Cascardi E, Napoli A, et al., editors. Microvascular density, macrophages, and mast cells in human clear cell renal carcinoma with and without bevacizumab treatment. Urologic Oncology: Seminars and Original Investigations; 2019: Elsevier. Tamma R, Rutigliano M, Lucarelli G, Annese T, Ruggieri S, Cascardi E, Napoli A, et al., editors. Microvascular density, macrophages, and mast cells in human clear cell renal carcinoma with and without bevacizumab treatment. Urologic Oncology: Seminars and Original Investigations; 2019: Elsevier.
107.
go back to reference Gigante M, Pontrelli P, Herr W, Gigante M, D’Avenia M, Zaza G, Cavalcanti E, et al. miR-29b and miR-198 overexpression in CD8+ T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction. 2016;14:1–13. Gigante M, Pontrelli P, Herr W, Gigante M, D’Avenia M, Zaza G, Cavalcanti E, et al. miR-29b and miR-198 overexpression in CD8+ T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction. 2016;14:1–13.
108.
go back to reference Netti GS, Lucarelli G, Spadaccino F, Castellano G, Gigante M, Divella C, Rocchetti MT, et al. PTX3 modulates the immunoflogosis in tumor microenvironment and is a prognostic factor for patients with clear cell renal cell carcinoma. 2020;12(8):7585. Netti GS, Lucarelli G, Spadaccino F, Castellano G, Gigante M, Divella C, Rocchetti MT, et al. PTX3 modulates the immunoflogosis in tumor microenvironment and is a prognostic factor for patients with clear cell renal cell carcinoma. 2020;12(8):7585.
109.
go back to reference Lucarelli G, Netti GS, Rutigliano M, Lasorsa F, Loizzo D, Milella M, Schirinzi A, et al. MUC1 expression affects the immunoflogosis in renal cell carcinoma microenvironment through complement system activation and immune infiltrate modulation. 2023;24(5):4814. Lucarelli G, Netti GS, Rutigliano M, Lasorsa F, Loizzo D, Milella M, Schirinzi A, et al. MUC1 expression affects the immunoflogosis in renal cell carcinoma microenvironment through complement system activation and immune infiltrate modulation. 2023;24(5):4814.
110.
go back to reference Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F,Simone S, et al. Complement system and the kidney: its role in renal diseases, kidney transplantation and renal cell carcinoma. 2023;24(22):16515. Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F,Simone S, et al. Complement system and the kidney: its role in renal diseases, kidney transplantation and renal cell carcinoma. 2023;24(22):16515.
111.
go back to reference Lucarelli G, Rutigliano M, Ferro M, Giglio A, Intini A, Triggiano F, Palazzo S, et al., editors. Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations; 2017: Elsevier. Lucarelli G, Rutigliano M, Ferro M, Giglio A, Intini A, Triggiano F, Palazzo S, et al., editors. Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations; 2017: Elsevier.
112.
go back to reference Lasorsa F, di Meo NA, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, et al. Immune checkpoint inhibitors in renal cell carcinoma: molecular basis and rationale for their use in clinical practice. 2023;11(4):1071. Lasorsa F, di Meo NA, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, et al. Immune checkpoint inhibitors in renal cell carcinoma: molecular basis and rationale for their use in clinical practice. 2023;11(4):1071.
113.
go back to reference Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, et al. Cellular and molecular players in the tumor microenvironment of renal cell carcinoma. 2023;12(12):3888. Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, et al. Cellular and molecular players in the tumor microenvironment of renal cell carcinoma. 2023;12(12):3888.
114.
go back to reference Santoni M, Monteiro FSM, Massari F, Abahssain H, Aurilio G, Molina-Cerrillo J, Myint ZW, et al. Statins and renal cell carcinoma: Antitumor activity and influence on cancer risk and survival. 2022;176: 103731. Santoni M, Monteiro FSM, Massari F, Abahssain H, Aurilio G, Molina-Cerrillo J, Myint ZW, et al. Statins and renal cell carcinoma: Antitumor activity and influence on cancer risk and survival. 2022;176: 103731.
115.
go back to reference Liang W, Pan Y, Liu A, He Y. Zhu YJFiO. Influence of statin use on prognosis of patients with renal cell cancer: a meta-analysis. 2023;13:1132177. Liang W, Pan Y, Liu A, He Y. Zhu YJFiO. Influence of statin use on prognosis of patients with renal cell cancer: a meta-analysis. 2023;13:1132177.
116.
go back to reference Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, Puchowicz M, et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 2017;8(1):1769.PubMedPubMedCentralCrossRef Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, Puchowicz M, et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 2017;8(1):1769.PubMedPubMedCentralCrossRef
117.
go back to reference Lv Q, Wang G, Zhang Y, Han X, Li H, Le W, Zhang M, et al. FABP5 regulates the proliferation of clear cell renal cell carcinoma cells via the PI3K/AKT signaling pathway. Int J Oncol. 2019;54(4):1221–32.PubMedPubMedCentral Lv Q, Wang G, Zhang Y, Han X, Li H, Le W, Zhang M, et al. FABP5 regulates the proliferation of clear cell renal cell carcinoma cells via the PI3K/AKT signaling pathway. Int J Oncol. 2019;54(4):1221–32.PubMedPubMedCentral
118.
go back to reference Zhang X, Saarinen AM, Hitosugi T, Wang Z, Wang L, Ho TH, Liu J. Inhibition of intracellular lipolysis promotes human cancer cell adaptation to hypoxia. Elife. 2017;6: e31132.PubMedPubMedCentralCrossRef Zhang X, Saarinen AM, Hitosugi T, Wang Z, Wang L, Ho TH, Liu J. Inhibition of intracellular lipolysis promotes human cancer cell adaptation to hypoxia. Elife. 2017;6: e31132.PubMedPubMedCentralCrossRef
119.
go back to reference Sundelin JP, Ståhlman M, Lundqvist A, Levin M, Parini P, Johansson ME, Boren J. Increased expression of the very low-density lipoprotein receptor mediates lipid accumulation in clear-cell renal cell carcinoma. PLoS ONE. 2012;7(11): e48694.PubMedPubMedCentralCrossRef Sundelin JP, Ståhlman M, Lundqvist A, Levin M, Parini P, Johansson ME, Boren J. Increased expression of the very low-density lipoprotein receptor mediates lipid accumulation in clear-cell renal cell carcinoma. PLoS ONE. 2012;7(11): e48694.PubMedPubMedCentralCrossRef
120.
go back to reference Heiligtag S, Bredehorst R, David K. Key role of mitochondria in cerulenin-mediated apoptosis. Cell Death Differ. 2002;9(9):1017–25.PubMedCrossRef Heiligtag S, Bredehorst R, David K. Key role of mitochondria in cerulenin-mediated apoptosis. Cell Death Differ. 2002;9(9):1017–25.PubMedCrossRef
121.
go back to reference Hao X, Zhu X, Tian H, Lai G, Zhang W, Zhou H, Liu S. Pharmacological effect and mechanism of orlistat in anti-tumor therapy: A review. Medicine. 2023;102(36): e34671.PubMedPubMedCentralCrossRef Hao X, Zhu X, Tian H, Lai G, Zhang W, Zhou H, Liu S. Pharmacological effect and mechanism of orlistat in anti-tumor therapy: A review. Medicine. 2023;102(36): e34671.PubMedPubMedCentralCrossRef
122.
go back to reference Ho T-S, Ho Y-P, Wong W-Y, Chiu LC-M, Wong Y-S, Ooi VE-CJB, Pharmacotherapy. Fatty acid synthase inhibitors cerulenin and C75 retard growth and induce caspase-dependent apoptosis in human melanoma A-375 cells. 2007;61(9):578–87. Ho T-S, Ho Y-P, Wong W-Y, Chiu LC-M, Wong Y-S, Ooi VE-CJB, Pharmacotherapy. Fatty acid synthase inhibitors cerulenin and C75 retard growth and induce caspase-dependent apoptosis in human melanoma A-375 cells. 2007;61(9):578–87.
123.
go back to reference Gao Y, Lin L-P, Zhu C-H, Chen Y, Hou Y-T, Ding JJCb, therapy. Growth arrest induced by C75, A fatty acid synthase inhibitor, was partially modulated by p38 MAPK but not by p53 in human hepatocellular carcinoma. 2006;5(8):978–85. Gao Y, Lin L-P, Zhu C-H, Chen Y, Hou Y-T, Ding JJCb, therapy. Growth arrest induced by C75, A fatty acid synthase inhibitor, was partially modulated by p38 MAPK but not by p53 in human hepatocellular carcinoma. 2006;5(8):978–85.
124.
go back to reference Chen B-H, Hsieh C-H, Tsai S-Y, Wang C-Y, Wang C-CJSr. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. 2020;10(1):5163. Chen B-H, Hsieh C-H, Tsai S-Y, Wang C-Y, Wang C-CJSr. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. 2020;10(1):5163.
125.
go back to reference de Aquino IG, Bastos DC, Cuadra-Zelaya FJM, Teixeira IF, Salo T, Della Coletta R, Graner EJAoob. Anticancer properties of the fatty acid synthase inhibitor TVB-3166 on oral squamous cell carcinoma cell lines. 2020;113:104707. de Aquino IG, Bastos DC, Cuadra-Zelaya FJM, Teixeira IF, Salo T, Della Coletta R, Graner EJAoob. Anticancer properties of the fatty acid synthase inhibitor TVB-3166 on oral squamous cell carcinoma cell lines. 2020;113:104707.
126.
go back to reference Zaytseva YY, Rychahou PG, Le A-T, Scott TL, Flight RM, Kim JT, Harris J, et al. Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. 2018;9(37):24787. Zaytseva YY, Rychahou PG, Le A-T, Scott TL, Flight RM, Kim JT, Harris J, et al. Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. 2018;9(37):24787.
127.
go back to reference Menendez JA, Lupu RJEoott. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. 2017;21(11):1001–16. Menendez JA, Lupu RJEoott. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. 2017;21(11):1001–16.
128.
go back to reference Falchook G, Infante J, Arkenau H-T, Patel MR, Dean E, Borazanci E, Brenner A, et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. 2021;34. Falchook G, Infante J, Arkenau H-T, Patel MR, Dean E, Borazanci E, Brenner A, et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. 2021;34.
129.
go back to reference Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, et al. ATP citrate lyase inhibition can suppress tumor cell growth. 2005;8(4):311–21. Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, et al. ATP citrate lyase inhibition can suppress tumor cell growth. 2005;8(4):311–21.
130.
go back to reference Schwartz L, Buhler L, Icard P, Lincet H. Steyaert J-MJAR. Metabolic treatment of cancer: intermediate results of a prospective case series. 2014;34(2):973–80. Schwartz L, Buhler L, Icard P, Lincet H. Steyaert J-MJAR. Metabolic treatment of cancer: intermediate results of a prospective case series. 2014;34(2):973–80.
131.
go back to reference Wang C, Xu C, Sun M, Luo D. Liao D-f, Cao DJB, communications br. Acetyl-CoA carboxylase-α inhibitor TOFA induces human cancer cell apoptosis. 2009;385(3):302–6. Wang C, Xu C, Sun M, Luo D. Liao D-f, Cao DJB, communications br. Acetyl-CoA carboxylase-α inhibitor TOFA induces human cancer cell apoptosis. 2009;385(3):302–6.
132.
go back to reference He D, Sun X, Yang H, Li X, Yang DJJoC. TOFA induces cell cycle arrest and apoptosis in ACHN and 786-O cells through inhibiting PI3K/Akt/mTOR pathway. 2018;9(15):2734. He D, Sun X, Yang H, Li X, Yang DJJoC. TOFA induces cell cycle arrest and apoptosis in ACHN and 786-O cells through inhibiting PI3K/Akt/mTOR pathway. 2018;9(15):2734.
133.
go back to reference Wen H, Lee S, Zhu W-G, Lee O-J, Yun SJ, Kim J, Park SJBeBA-M, et al. Glucose-derived acetate and ACSS2 as key players in cisplatin resistance in bladder cancer. 2019;1864(3):413–21. Wen H, Lee S, Zhu W-G, Lee O-J, Yun SJ, Kim J, Park SJBeBA-M, et al. Glucose-derived acetate and ACSS2 as key players in cisplatin resistance in bladder cancer. 2019;1864(3):413–21.
134.
go back to reference von Roemeling CA, Caulfield TR, Marlow L, Bok I, Wen J, Miller JL, Hughes R, et al. Accelerated bottom-up drug design platform enables the discovery of novel stearoyl-CoA desaturase 1 inhibitors for cancer therapy. 2018;9(1):3. von Roemeling CA, Caulfield TR, Marlow L, Bok I, Wen J, Miller JL, Hughes R, et al. Accelerated bottom-up drug design platform enables the discovery of novel stearoyl-CoA desaturase 1 inhibitors for cancer therapy. 2018;9(1):3.
135.
go back to reference Ma MKF, Lau EYT, Leung DHW, Lo J, Ho NPY, Cheng LKW, Ma S, et al. Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation. 2017;67(5):979–90. Ma MKF, Lau EYT, Leung DHW, Lo J, Ho NPY, Cheng LKW, Ma S, et al. Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation. 2017;67(5):979–90.
136.
go back to reference Wang W, Wang Y, Liu M, Zhang Y, Yang T, Li D, Huang Y, et al. Betulinic acid induces apoptosis and suppresses metastasis in hepatocellular carcinoma cell lines in vitro and in vivo. 2019;23(1):586–95. Wang W, Wang Y, Liu M, Zhang Y, Yang T, Li D, Huang Y, et al. Betulinic acid induces apoptosis and suppresses metastasis in hepatocellular carcinoma cell lines in vitro and in vivo. 2019;23(1):586–95.
137.
go back to reference Potze L, Di Franco S. H Kessler J, Stassi G, Paul Medema JJCscr, therapy. Betulinic acid kills colon cancer stem cells. 2016;11(5):427–33. Potze L, Di Franco S. H Kessler J, Stassi G, Paul Medema JJCscr, therapy. Betulinic acid kills colon cancer stem cells. 2016;11(5):427–33.
138.
go back to reference Pisanu ME, Noto A, De Vitis C, Morrone S, Scognamiglio G, Botti G, Venuta F, et al. Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. 2017;406:93–104. Pisanu ME, Noto A, De Vitis C, Morrone S, Scognamiglio G, Botti G, Venuta F, et al. Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. 2017;406:93–104.
139.
go back to reference Tracz-Gaszewska Z, Dobrzyn PJC. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. 2019;11(7):948. Tracz-Gaszewska Z, Dobrzyn PJC. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. 2019;11(7):948.
140.
go back to reference Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J, Furdui CM, et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. 2019;79(20):5355–66. Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J, Furdui CM, et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. 2019;79(20):5355–66.
141.
go back to reference Shim J-K, Choi S, Yoon S-J, Choi RJ, Park J, Lee EH, Cho HJ, et al. Etomoxir, a carnitine palmitoyltransferase 1 inhibitor, combined with temozolomide reduces stemness and invasiveness in patient-derived glioblastoma tumorspheres. 2022;22(1):309. Shim J-K, Choi S, Yoon S-J, Choi RJ, Park J, Lee EH, Cho HJ, et al. Etomoxir, a carnitine palmitoyltransferase 1 inhibitor, combined with temozolomide reduces stemness and invasiveness in patient-derived glioblastoma tumorspheres. 2022;22(1):309.
142.
go back to reference Schlaepfer IR, Rider L, Rodrigues LU, Gijón MA, Pac CT, Romero L, Cimic A, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. 2014;13(10):2361–71. Schlaepfer IR, Rider L, Rodrigues LU, Gijón MA, Pac CT, Romero L, Cimic A, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. 2014;13(10):2361–71.
143.
go back to reference Djamgoz MBJBJoC. Ranolazine: a potential anti-metastatic drug targeting voltage-gated sodium channels. 2024;130(9):1415–9. Djamgoz MBJBJoC. Ranolazine: a potential anti-metastatic drug targeting voltage-gated sodium channels. 2024;130(9):1415–9.
144.
go back to reference Pacilli A, Calienni M, Margarucci S, D’Apolito M, Petillo O, Rocchi L, Pasquinelli G, et al. Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. 2013;105(7):489–98. Pacilli A, Calienni M, Margarucci S, D’Apolito M, Petillo O, Rocchi L, Pasquinelli G, et al. Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. 2013;105(7):489–98.
145.
go back to reference Peeters R, Cuenca-Escalona J, Zaal EA, Hoekstra AT, Balvert AC, Vidal-Manrique M, Blomberg N, et al. Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37. 2022;13(1):5371. Peeters R, Cuenca-Escalona J, Zaal EA, Hoekstra AT, Balvert AC, Vidal-Manrique M, Blomberg N, et al. Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37. 2022;13(1):5371.
146.
go back to reference Liang Y, Nephew KP, Hyder SMJJocs, therapeutics c. Cholesterol Biosynthesis Inhibitor RO 48–8071 Suppresses Growth of Epithelial Ovarian Cancer Cells in Vitro and In Vivo. 2023;7(1):1. Liang Y, Nephew KP, Hyder SMJJocs, therapeutics c. Cholesterol Biosynthesis Inhibitor RO 48–8071 Suppresses Growth of Epithelial Ovarian Cancer Cells in Vitro and In Vivo. 2023;7(1):1.
147.
go back to reference Ding Z, Gu Y, Huang D, Zhou H, Zhu T, Luo X, Zhang S, et al. Cholesterol biosynthesis inhibitor RO 48‑8071 inhibits pancreatic ductal adenocarcinoma cell viability by deactivating the JNK and ERK/MAPK signaling pathway. 2021;24(6):1–8. Ding Z, Gu Y, Huang D, Zhou H, Zhu T, Luo X, Zhang S, et al. Cholesterol biosynthesis inhibitor RO 48‑8071 inhibits pancreatic ductal adenocarcinoma cell viability by deactivating the JNK and ERK/MAPK signaling pathway. 2021;24(6):1–8.
148.
go back to reference Liang Y, Zou X, Hyder SMJCRR. Cholesterol biosynthesis inhibitor RO 48–8071 inhibits viability of aggressive cancer cells. 2020;4(4):1–4. Liang Y, Zou X, Hyder SMJCRR. Cholesterol biosynthesis inhibitor RO 48–8071 inhibits viability of aggressive cancer cells. 2020;4(4):1–4.
149.
go back to reference Chang W-T, Lin H-W, Lin S-H, Li Y-HJJno. Association of statin use with cancer-and noncancer-associated survival among patients with breast cancer in Asia. 2023;6(4):e239515-e. Chang W-T, Lin H-W, Lin S-H, Li Y-HJJno. Association of statin use with cancer-and noncancer-associated survival among patients with breast cancer in Asia. 2023;6(4):e239515-e.
150.
go back to reference Xiong K, Wang G, Peng T, Zhou F, Chen S, Liu W, Ju L, et al. The cholesterol esterification inhibitor avasimibe suppresses tumour proliferation and metastasis via the E2F-1 signalling pathway in prostate cancer. 2021;21:1–13. Xiong K, Wang G, Peng T, Zhou F, Chen S, Liu W, Ju L, et al. The cholesterol esterification inhibitor avasimibe suppresses tumour proliferation and metastasis via the E2F-1 signalling pathway in prostate cancer. 2021;21:1–13.
151.
go back to reference Yue S, Li J, Lee S-Y, Lee HJ, Shao T, Song B, Cheng L, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. 2014;19(3):393–406. Yue S, Li J, Lee S-Y, Lee HJ, Shao T, Song B, Cheng L, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. 2014;19(3):393–406.
Metadata
Title
Lipid metabolism reprogramming in renal cell carcinomas
Authors
Mustafa Khalid Abduljabbar
Mohammed Merza
Abdulqader Aziz
Soumya V. Menon
Mandeep Kaur
Zafar Aminov
Safia Obaidur Rab
Ahmed Hjazi
Yasser Fakri Mustafa
Benien C. Gabel
Publication date
01-10-2024
Publisher
Springer US
Published in
Medical Oncology / Issue 10/2024
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-024-02484-5

Other articles of this Issue 10/2024

Medical Oncology 10/2024 Go to the issue

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more