Skip to main content
Top

Open Access 29-09-2024 | Ketamine | Invited Review

Synaptic basis of rapid antidepressant action

Authors: Ege T. Kavalali, Lisa M. Monteggia

Published in: European Archives of Psychiatry and Clinical Neuroscience

Login to get access

Abstract

The discovery of ketamine’s rapid antidepressant action has generated intense interest in the field of neuropsychiatry. This discovery demonstrated that to alleviate the symptoms of depression, treatments do not need to elicit substantive alterations in neuronal circuitry or trigger neurogenesis, but rather drive synaptic plasticity mechanisms to compensate for the underlying pathophysiology. The possibility of a rapidly induced antidepressant effect makes therapeutic pursuit of fast-acting neuropsychiatric medications against mood disorders plausible. In the meantime, the accumulating clinical as well as preclinical observations raise critical questions on the nature of the specific synaptic plasticity events that mediate these rapid antidepressant effects. This work has triggered the current growing interest in alternative psychoactive compounds that are thought to have similar properties to ketamine and its action. This review covers our insight into these questions based on the work our group has conducted on this topic in the last decade.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354CrossRefPubMed Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354CrossRefPubMed
2.
go back to reference Zarate CA Jr., Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864CrossRefPubMed Zarate CA Jr., Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864CrossRefPubMed
3.
go back to reference Kavalali ET, Monteggia LM (2012) Synaptic mechanisms underlying rapid antidepressant action of ketamine. Am J Psychiatry 169:1150–1156CrossRefPubMed Kavalali ET, Monteggia LM (2012) Synaptic mechanisms underlying rapid antidepressant action of ketamine. Am J Psychiatry 169:1150–1156CrossRefPubMed
4.
go back to reference Kavalali ET, Monteggia LM (2015) How does ketamine elicit a rapid antidepressant response? Curr Opin Pharmacol 20:35–39CrossRefPubMed Kavalali ET, Monteggia LM (2015) How does ketamine elicit a rapid antidepressant response? Curr Opin Pharmacol 20:35–39CrossRefPubMed
6.
go back to reference Kavalali ET, Monteggia LM (2023) Rapid homeostatic plasticity and neuropsychiatric therapeutics. Neuropsychopharmacol Reviews 48:54–60CrossRef Kavalali ET, Monteggia LM (2023) Rapid homeostatic plasticity and neuropsychiatric therapeutics. Neuropsychopharmacol Reviews 48:54–60CrossRef
7.
go back to reference Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95CrossRefPubMedPubMedCentral Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95CrossRefPubMedPubMedCentral
8.
go back to reference Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET (2013) Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci 33:6990–7002CrossRefPubMedPubMedCentral Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET (2013) Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci 33:6990–7002CrossRefPubMedPubMedCentral
9.
go back to reference Nosyreva E, Autry AE, Kavalali ET, Monteggia LM (2014) Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade. Front Mol Neurosci 7:94CrossRefPubMedPubMedCentral Nosyreva E, Autry AE, Kavalali ET, Monteggia LM (2014) Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade. Front Mol Neurosci 7:94CrossRefPubMedPubMedCentral
11.
go back to reference Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM (2017) Effects of a ketamine metabolite on synaptic NMDAR function. Nature 546:E1–E3CrossRefPubMed Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM (2017) Effects of a ketamine metabolite on synaptic NMDAR function. Nature 546:E1–E3CrossRefPubMed
12.
go back to reference Kim JW, Herz J, Kavalali ET, Monteggia LM (2021) A key requirement for synaptic Reelin signaling in ketamine-mediated behavioral and synaptic action. Proceedings of the National Academy of Sciences of the USA, 118:e2103079118 Kim JW, Herz J, Kavalali ET, Monteggia LM (2021) A key requirement for synaptic Reelin signaling in ketamine-mediated behavioral and synaptic action. Proceedings of the National Academy of Sciences of the USA, 118:e2103079118
13.
go back to reference Bal M, Leitz J, Reese AL, Ramirez DMO, Durakoglugil M, Herz J, Monteggia LM, Kavalali ET (2013) Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 80:934–946CrossRefPubMed Bal M, Leitz J, Reese AL, Ramirez DMO, Durakoglugil M, Herz J, Monteggia LM, Kavalali ET (2013) Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 80:934–946CrossRefPubMed
14.
go back to reference Chen Y, Beffert U, Ertunc M, Tang T-S, Kavalali ET, Bezprozvanny I, Herz J (2005) Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 25:8209–8216CrossRefPubMedPubMedCentral Chen Y, Beffert U, Ertunc M, Tang T-S, Kavalali ET, Bezprozvanny I, Herz J (2005) Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 25:8209–8216CrossRefPubMedPubMedCentral
15.
go back to reference Lin PY, Ma ZZ, Mahgoup M, Kavalali ET, Monteggia LM (2021) A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep 36:109513CrossRefPubMedPubMedCentral Lin PY, Ma ZZ, Mahgoup M, Kavalali ET, Monteggia LM (2021) A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep 36:109513CrossRefPubMedPubMedCentral
16.
go back to reference Lin PY, Kavalali ET, Monteggia LM (2018) Genetic dissection of Presynaptic and postsynaptic BDNF-TrkB signaling in synaptic efficacy of CA3-CA1 synapses. Cell Rep 24:1550–1561CrossRefPubMedPubMedCentral Lin PY, Kavalali ET, Monteggia LM (2018) Genetic dissection of Presynaptic and postsynaptic BDNF-TrkB signaling in synaptic efficacy of CA3-CA1 synapses. Cell Rep 24:1550–1561CrossRefPubMedPubMedCentral
17.
go back to reference Wang C, Kavalali ET, Monteggia LM (2022) BDNF signaling in context: from synaptic regulation to psychiatric disease. Cell 185:62–76CrossRefPubMed Wang C, Kavalali ET, Monteggia LM (2022) BDNF signaling in context: from synaptic regulation to psychiatric disease. Cell 185:62–76CrossRefPubMed
18.
go back to reference Crawford DC, Ramirez DMO, Trauterman B, Monteggia LM, Kavalali ET (2017) Selective molecular impairment of spontaneous neurotransmission modulates synaptic efficacy. Nat Commun 8:14436CrossRefPubMedPubMedCentral Crawford DC, Ramirez DMO, Trauterman B, Monteggia LM, Kavalali ET (2017) Selective molecular impairment of spontaneous neurotransmission modulates synaptic efficacy. Nat Commun 8:14436CrossRefPubMedPubMedCentral
21.
go back to reference Gideons E, Kavalali ET, Monteggia LM (2014) Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci USA 111:8649–8654CrossRefPubMedPubMedCentral Gideons E, Kavalali ET, Monteggia LM (2014) Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci USA 111:8649–8654CrossRefPubMedPubMedCentral
22.
go back to reference Ali F, Gerhard DM, Sweasy K, Pothula S, Pittenger C, Duman RS, Kwan AC (2020) Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nat Commun 11:72CrossRefPubMedPubMedCentral Ali F, Gerhard DM, Sweasy K, Pothula S, Pittenger C, Duman RS, Kwan AC (2020) Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nat Commun 11:72CrossRefPubMedPubMedCentral
24.
go back to reference Reese AL, Kavalali ET (2015) Spontaneous neurotransmission signals through store-driven Ca2 + transients to maintain synaptic homeostasis. eLife10.7554/eLife.09262 Reese AL, Kavalali ET (2015) Spontaneous neurotransmission signals through store-driven Ca2 + transients to maintain synaptic homeostasis. eLife10.7554/eLife.09262
25.
go back to reference Ramirez DMO, Crawford DC, Chanaday NL, Trauterman B, Monteggia LM, Kavalali ET (2017) Loss of Doc2-dependent spontaneous neurotransmission augments glutamatergic synaptic strength. J Neurosci 37:6224–6230CrossRefPubMedPubMedCentral Ramirez DMO, Crawford DC, Chanaday NL, Trauterman B, Monteggia LM, Kavalali ET (2017) Loss of Doc2-dependent spontaneous neurotransmission augments glutamatergic synaptic strength. J Neurosci 37:6224–6230CrossRefPubMedPubMedCentral
26.
27.
go back to reference Suzuki K, Kim JW, Nosyreva E, Kavalali ET, Monteggia LM (2021) Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action. Cell Rep 37:109918CrossRefPubMedPubMedCentral Suzuki K, Kim JW, Nosyreva E, Kavalali ET, Monteggia LM (2021) Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action. Cell Rep 37:109918CrossRefPubMedPubMedCentral
28.
go back to reference Monteggia LM, Kavalali ET (2013) Scopolamine and ketamine: evidence of convergence? Biol Psychiatry 74:712–713CrossRefPubMed Monteggia LM, Kavalali ET (2013) Scopolamine and ketamine: evidence of convergence? Biol Psychiatry 74:712–713CrossRefPubMed
29.
go back to reference Kim JW, Autry AE, Na ES, Adachi M, Bjorkholm C, Kavalali ET, Monteggia LM (2021) Sustained effects of rapidly-acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat Neurosci 24:1100–1109CrossRefPubMedPubMedCentral Kim JW, Autry AE, Na ES, Adachi M, Bjorkholm C, Kavalali ET, Monteggia LM (2021) Sustained effects of rapidly-acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat Neurosci 24:1100–1109CrossRefPubMedPubMedCentral
31.
go back to reference Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, Henn F, Malinow R (2011) Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470:535–539CrossRefPubMedPubMedCentral Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, Henn F, Malinow R (2011) Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470:535–539CrossRefPubMedPubMedCentral
32.
go back to reference Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, Li S, Cui Y, Wang J, Zhu Y, Zhang Y, Ma H, Duan S, Li H, Yang Y, Lingle CJ, Hu H (2023) Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature 622:802–809CrossRefPubMedPubMedCentral Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, Li S, Cui Y, Wang J, Zhu Y, Zhang Y, Ma H, Duan S, Li H, Yang Y, Lingle CJ, Hu H (2023) Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature 622:802–809CrossRefPubMedPubMedCentral
33.
go back to reference Krystal JH, Kavalali ET, Monteggia LM (2024) Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacol Reviews 49:41–50CrossRef Krystal JH, Kavalali ET, Monteggia LM (2024) Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacol Reviews 49:41–50CrossRef
34.
go back to reference Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, Wright N, Lama C, Faltin S, Goff LA, Stein-O’Brien GL, Dölen G (2023) Psychedelics reopen the social reward learning critical period. Nature 618:790–798CrossRefPubMedPubMedCentral Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, Wright N, Lama C, Faltin S, Goff LA, Stein-O’Brien GL, Dölen G (2023) Psychedelics reopen the social reward learning critical period. Nature 618:790–798CrossRefPubMedPubMedCentral
Metadata
Title
Synaptic basis of rapid antidepressant action
Authors
Ege T. Kavalali
Lisa M. Monteggia
Publication date
29-09-2024
Publisher
Springer Berlin Heidelberg
Published in
European Archives of Psychiatry and Clinical Neuroscience
Print ISSN: 0940-1334
Electronic ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-024-01898-6