Skip to main content
Top

Open Access 07-03-2025 | Kawasaki Disease | RESEARCH

USP5 Deletion Inhibits KD Serum Induced-Human Coronary Artery Endothelial Cell Dysfunction by Regulating the NFATC1/TLR4-Mediated NF-κB Signaling Pathway in Kawasaki Disease

Authors: Lidan Yao, Yupeng Lai, Heng Li, Sihan Chen, Xianjia Yu, Ni Zhou, Dandan Lang

Published in: Inflammation

Login to get access

Abstract

Kawasaki disease (KD) is an acute febrile illness characterized by systemic vasculitis, especially in coronary arteries. Previous studies have indicated that nuclear factor of activated T cells, cytoplasmic 1 (NFATC1, also known as NFAT2) plays a crucial role in the pathogenesis of KD. However, the molecular mechanism of NFATC1 involved in KD is poorly defined. Human coronary artery endothelial cells (HCAECs) were treated with 15% serum from KD patients to mimic the inflammatory injury model in vitro. NFATC1 mRNA level was determined using real-time quantitative polymerase chain reaction (RT-qPCR). NFATC1, Bax, Bcl-2, Ubiquitin-specific peptidase 5 (USP5), Toll-like receptor 4 (TLR4), p-P65, P65, p-IκBα, and IκBα protein levels were determined by Western blot. Cell viability, proliferation, and apoptosis were assessed using the Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2’-deoxyuridine (EdU) assay, and flow cytometry. Interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) levels were analyzed using ELISA. ROS and SOD levels were detected using special assay kits. After ubibrowser database analysis, the interaction between USP5 and NFATC1 was verified using Co-immunoprecipitation (CoIP) assay. Meanwhile, the possible interaction between NFATC1 and TLR4 was predicted by STRING databases and identified using CoIP assay. NFATC1 expression was increased in KD patients and KD serum-treated HCAECs. KD serum-mediated HCAEC viability and proliferation inhibition, apoptosis, inflammatory response, and oxidative stress promotion. Furthermore, blocking NFATC1 relieved KD serum-evoked HCAEC injury in vitro. Mechanistically, USP5 triggered the deubiquitination of NFATC1 and prevented its degradation. NFATC1 interacted with TLR4 to regulate its expression in HCAECs. Besides, KD serum activated the nuclear factor kappa-B (NF-κB) signaling pathway by regulating the USP5/NFATC1/TLR4 axis in HCAECs. USP5 deficiency mitigated KD serum-induced inflammation and injury in HCAECs through targeting NFATC1 and TLR4-mediated NF-κB signaling, providing a possible therapeutic target for KD treatment.

Graphical Abstract

USP5 stabilizes NFATC1 by its deubiquitinase activity, thus activating TLR4-mediated NF-κB signaling, ultimately promoting KD serum-induced apoptosis, inflammation, and oxidative stress in HCAECs.
Literature
2.
go back to reference Banday, A.Z., S. Mondal, P. Barman, A. Sil, R. Kumrah, P. Vignesh, and S. Singh. 2021. What lies ahead for young hearts in the 21(st) century - is it double trouble of acute rheumatic fever and Kawasaki disease in developing countries? Frontiers in Cardiovascular Medicine 8:694393.PubMedPubMedCentralCrossRef Banday, A.Z., S. Mondal, P. Barman, A. Sil, R. Kumrah, P. Vignesh, and S. Singh. 2021. What lies ahead for young hearts in the 21(st) century - is it double trouble of acute rheumatic fever and Kawasaki disease in developing countries? Frontiers in Cardiovascular Medicine 8:694393.PubMedPubMedCentralCrossRef
3.
go back to reference Jindal, A.K., R.K. Pilania, A. Prithvi, S. Guleria, and S. Singh. 2019. Kawasaki disease: Characteristics, diagnosis, and unusual presentations. Expert Review of Clinical Immunology 15 (10): 1089–1104.PubMedCrossRef Jindal, A.K., R.K. Pilania, A. Prithvi, S. Guleria, and S. Singh. 2019. Kawasaki disease: Characteristics, diagnosis, and unusual presentations. Expert Review of Clinical Immunology 15 (10): 1089–1104.PubMedCrossRef
4.
go back to reference Saguil, A., M. Fargo, and S. Grogan. 2015. Diagnosis and management of Kawasaki disease. American Family Physician 91 (6): 365–371.PubMed Saguil, A., M. Fargo, and S. Grogan. 2015. Diagnosis and management of Kawasaki disease. American Family Physician 91 (6): 365–371.PubMed
5.
6.
go back to reference Agarwal, S., and D.K. Agrawal. 2016. Kawasaki disease: Etiopathogenesis and novel treatment strategies. Expert Review of Clinical Immunology 13 (3): 247–258.PubMedPubMedCentralCrossRef Agarwal, S., and D.K. Agrawal. 2016. Kawasaki disease: Etiopathogenesis and novel treatment strategies. Expert Review of Clinical Immunology 13 (3): 247–258.PubMedPubMedCentralCrossRef
7.
go back to reference Qiu, Y., Y. Zhang, Y. Li, Y. Hua, and Y. Zhang. 2022. Molecular mechanisms of endothelial dysfunction in Kawasaki-disease-associated vasculitis. Frontiers in Cardiovascular Medicine 9:981010.PubMedPubMedCentralCrossRef Qiu, Y., Y. Zhang, Y. Li, Y. Hua, and Y. Zhang. 2022. Molecular mechanisms of endothelial dysfunction in Kawasaki-disease-associated vasculitis. Frontiers in Cardiovascular Medicine 9:981010.PubMedPubMedCentralCrossRef
8.
go back to reference Liu, X., T. Luo, Z. Fan, J. Li, Y. Zhang, G. Lu, M. Lv, S. Lin, Z. Cai, J. Zhang, K. Zhou, J. Guo, Y. Hua, Y. Zhang, and Y. Li. 2023. Single cell RNA-seq resolution revealed CCR1(+)/SELL(+)/XAF(+) CD14 monocytes mediated vascular endothelial cell injuries in Kawasaki disease and COVID-19. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1869 (5): 166707.PubMedCrossRef Liu, X., T. Luo, Z. Fan, J. Li, Y. Zhang, G. Lu, M. Lv, S. Lin, Z. Cai, J. Zhang, K. Zhou, J. Guo, Y. Hua, Y. Zhang, and Y. Li. 2023. Single cell RNA-seq resolution revealed CCR1(+)/SELL(+)/XAF(+) CD14 monocytes mediated vascular endothelial cell injuries in Kawasaki disease and COVID-19. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1869 (5): 166707.PubMedCrossRef
9.
go back to reference Yu, L., Y. Li, Y. Zhang, L. Weng, D. Shuai, J. Zhu, C. Niu, M. Chu, and C. Jia. 2024. Human cytomegalovirus pUL135 protein affects endothelial cell function via CD2AP in Kawasaki disease. International Journal of Cardiology 413:132364.PubMedCrossRef Yu, L., Y. Li, Y. Zhang, L. Weng, D. Shuai, J. Zhu, C. Niu, M. Chu, and C. Jia. 2024. Human cytomegalovirus pUL135 protein affects endothelial cell function via CD2AP in Kawasaki disease. International Journal of Cardiology 413:132364.PubMedCrossRef
10.
go back to reference McCrindle, B.W., A.H. Rowley, J.W. Newburger, J.C. Burns, A.F. Bolger, M. Gewitz, A.L. Baker, M.A. Jackson, M. Takahashi, P.B. Shah, T. Kobayashi, M.H. Wu, T.T. Saji, and E. Pahl. 2017. Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American Heart Association. Circulation 135 (17): e927–e999.PubMedCrossRef McCrindle, B.W., A.H. Rowley, J.W. Newburger, J.C. Burns, A.F. Bolger, M. Gewitz, A.L. Baker, M.A. Jackson, M. Takahashi, P.B. Shah, T. Kobayashi, M.H. Wu, T.T. Saji, and E. Pahl. 2017. Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American Heart Association. Circulation 135 (17): e927–e999.PubMedCrossRef
11.
go back to reference Macian, F. 2005. NFAT proteins: key regulators of T-cell development and function. Nature Reviews Immunology 5 (6): 472–484.PubMedCrossRef Macian, F. 2005. NFAT proteins: key regulators of T-cell development and function. Nature Reviews Immunology 5 (6): 472–484.PubMedCrossRef
12.
go back to reference El Chami, H., and P.M. Hassoun. 2012. Immune and inflammatory mechanisms in pulmonary arterial hypertension. Progress in Cardiovascular Diseases 55 (2): 218–228.PubMedPubMedCentralCrossRef El Chami, H., and P.M. Hassoun. 2012. Immune and inflammatory mechanisms in pulmonary arterial hypertension. Progress in Cardiovascular Diseases 55 (2): 218–228.PubMedPubMedCentralCrossRef
13.
go back to reference Minami, T. 2014. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? Journal of Biochemistry 155 (4): 217–226.PubMedCrossRef Minami, T. 2014. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? Journal of Biochemistry 155 (4): 217–226.PubMedCrossRef
14.
go back to reference Wang, Y., J. Hu, J. Liu, Z. Geng, Y. Tao, F. Zheng, Y. Wang, S. Fu, W. Wang, C. Xie, Y. Zhang, and F. Gong. 2020. The role of Ca(2+)/NFAT in dysfunction and inflammation of human coronary endothelial cells induced by Sera from patients with Kawasaki disease. Scientific Reports 10 (1): 4706.PubMedPubMedCentralCrossRef Wang, Y., J. Hu, J. Liu, Z. Geng, Y. Tao, F. Zheng, Y. Wang, S. Fu, W. Wang, C. Xie, Y. Zhang, and F. Gong. 2020. The role of Ca(2+)/NFAT in dysfunction and inflammation of human coronary endothelial cells induced by Sera from patients with Kawasaki disease. Scientific Reports 10 (1): 4706.PubMedPubMedCentralCrossRef
15.
go back to reference Huang, H., J. Dong, J. Jiang, F. Yang, Y. Zheng, S. Wang, N. Wang, J. Ma, M. Hou, Y. Ding, L. Meng, W. Zhuo, D. Yang, W. Qian, Q. Chen, G. You, G. Qian, L. Gu, and H. Lv. 2023. The role of FOXO4/NFAT2 signaling pathway in dysfunction of human coronary endothelial cells and inflammatory infiltration of vasculitis in Kawasaki disease. Frontiers in Immunology 13:1090056.PubMedPubMedCentralCrossRef Huang, H., J. Dong, J. Jiang, F. Yang, Y. Zheng, S. Wang, N. Wang, J. Ma, M. Hou, Y. Ding, L. Meng, W. Zhuo, D. Yang, W. Qian, Q. Chen, G. You, G. Qian, L. Gu, and H. Lv. 2023. The role of FOXO4/NFAT2 signaling pathway in dysfunction of human coronary endothelial cells and inflammatory infiltration of vasculitis in Kawasaki disease. Frontiers in Immunology 13:1090056.PubMedPubMedCentralCrossRef
16.
go back to reference Sun, M., and X. Zhang. 2022. Current methodologies in protein ubiquitination characterization: from ubiquitinated protein to ubiquitin chain architecture. Cell & Bioscience 12 (1): 126.CrossRef Sun, M., and X. Zhang. 2022. Current methodologies in protein ubiquitination characterization: from ubiquitinated protein to ubiquitin chain architecture. Cell & Bioscience 12 (1): 126.CrossRef
17.
go back to reference Fujita, Y., R. Tinoco, Y. Li, D. Senft, and Z.A. Ronai. 2019. Ubiquitin ligases in cancer immunotherapy - balancing antitumor and autoimmunity. Trends in Molecular Medicine 25 (5): 428–443.PubMedPubMedCentralCrossRef Fujita, Y., R. Tinoco, Y. Li, D. Senft, and Z.A. Ronai. 2019. Ubiquitin ligases in cancer immunotherapy - balancing antitumor and autoimmunity. Trends in Molecular Medicine 25 (5): 428–443.PubMedPubMedCentralCrossRef
18.
go back to reference Snyder, N.A., and G.M. Silva. 2021. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. Journal of Biological Chemistry 297 (3): 101077.PubMedPubMedCentralCrossRef Snyder, N.A., and G.M. Silva. 2021. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. Journal of Biological Chemistry 297 (3): 101077.PubMedPubMedCentralCrossRef
20.
go back to reference Zhang, W., J. Zhao, L. Deng, N. Ishimwe, J. Pauli, W. Wu, S. Shan, W. Kempf, M.D. Ballantyne, D. Kim, Q. Lyu, M. Bennett, J. Rodor, A.W. Turner, Y.W. Lu, P. Gao, M. Choi, G. Warthi, H.W. Kim, M.M. Barroso, W.B. Bryant, C.L. Miller, N.L. Weintraub, L. Maegdefessel, J.M. Miano, A.H. Baker, and X. Long. 2023. INKILN is a novel long noncoding RNA promoting vascular smooth muscle inflammation via scaffolding MKL1 and USP10. Circulation 148 (1): 47–67.PubMedPubMedCentralCrossRef Zhang, W., J. Zhao, L. Deng, N. Ishimwe, J. Pauli, W. Wu, S. Shan, W. Kempf, M.D. Ballantyne, D. Kim, Q. Lyu, M. Bennett, J. Rodor, A.W. Turner, Y.W. Lu, P. Gao, M. Choi, G. Warthi, H.W. Kim, M.M. Barroso, W.B. Bryant, C.L. Miller, N.L. Weintraub, L. Maegdefessel, J.M. Miano, A.H. Baker, and X. Long. 2023. INKILN is a novel long noncoding RNA promoting vascular smooth muscle inflammation via scaffolding MKL1 and USP10. Circulation 148 (1): 47–67.PubMedPubMedCentralCrossRef
21.
go back to reference Cheng, N., and J. Trejo. 2023. An siRNA library screen identifies CYLD and USP34 as deubiquitinases that regulate GPCR-p38 MAPK signaling and distinct inflammatory responses. Journal of Biological Chemistry 299 (12): 105370.PubMedPubMedCentralCrossRef Cheng, N., and J. Trejo. 2023. An siRNA library screen identifies CYLD and USP34 as deubiquitinases that regulate GPCR-p38 MAPK signaling and distinct inflammatory responses. Journal of Biological Chemistry 299 (12): 105370.PubMedPubMedCentralCrossRef
22.
go back to reference Ning, F., H. Xin, J. Liu, C. Lv, X. Xu, M. Wang, Y. Wang, W. Zhang, and X. Zhang. 2020. Structure and function of USP5: Insight into physiological and pathophysiological roles. Pharmacological Research 157:104557.PubMedCrossRef Ning, F., H. Xin, J. Liu, C. Lv, X. Xu, M. Wang, Y. Wang, W. Zhang, and X. Zhang. 2020. Structure and function of USP5: Insight into physiological and pathophysiological roles. Pharmacological Research 157:104557.PubMedCrossRef
23.
go back to reference Gao, S.T., X. Xin, Z.Y. Wang, Y.Y. Hu, and Q. Feng. 2024. USP5: Comprehensive insights into structure, function, biological and disease-related implications, and emerging therapeutic opportunities. Molecular and Cellular Probes 73:101944.PubMedCrossRef Gao, S.T., X. Xin, Z.Y. Wang, Y.Y. Hu, and Q. Feng. 2024. USP5: Comprehensive insights into structure, function, biological and disease-related implications, and emerging therapeutic opportunities. Molecular and Cellular Probes 73:101944.PubMedCrossRef
24.
go back to reference Shi, S., X. Pan, M. Chen, L. Zhang, S. Zhang, X. Wang, S. Shi, Z. Chen, W. Lin, and Y. Jiang. 2023. USP5 promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein. Hepatology Communications 7 (8): e0193.PubMedPubMedCentralCrossRef Shi, S., X. Pan, M. Chen, L. Zhang, S. Zhang, X. Wang, S. Shi, Z. Chen, W. Lin, and Y. Jiang. 2023. USP5 promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein. Hepatology Communications 7 (8): e0193.PubMedPubMedCentralCrossRef
25.
go back to reference Guo, H., R. Liu, H. Lv, Q. Huo, Y. Yao, and X. Lu. 2024. USP5 facilitates diabetic retinopathy development by stabilizing ROBO4 via deubiquitination. Cellular Signalling 120:111225.PubMedCrossRef Guo, H., R. Liu, H. Lv, Q. Huo, Y. Yao, and X. Lu. 2024. USP5 facilitates diabetic retinopathy development by stabilizing ROBO4 via deubiquitination. Cellular Signalling 120:111225.PubMedCrossRef
26.
go back to reference Huang, C., W. Wang, H. Huang, J. Jiang, Y. Ding, X. Li, J. Ma, M. Hou, X. Pu, G. Qian, and H. Lv. 2022. Kawasaki disease: ubiquitin-specific protease 5 promotes endothelial inflammation via TNFα-mediated signaling. Pediatric Research 93 (7): 1883–1890.PubMedCrossRef Huang, C., W. Wang, H. Huang, J. Jiang, Y. Ding, X. Li, J. Ma, M. Hou, X. Pu, G. Qian, and H. Lv. 2022. Kawasaki disease: ubiquitin-specific protease 5 promotes endothelial inflammation via TNFα-mediated signaling. Pediatric Research 93 (7): 1883–1890.PubMedCrossRef
27.
go back to reference Kumrah, R., T. Goyal, A. Rawat, and S. Singh. 2024. Markers of endothelial dysfunction in Kawasaki disease: An update. Clinical Reviews in Allergy & Immunology 66 (1): 99–111.CrossRef Kumrah, R., T. Goyal, A. Rawat, and S. Singh. 2024. Markers of endothelial dysfunction in Kawasaki disease: An update. Clinical Reviews in Allergy & Immunology 66 (1): 99–111.CrossRef
28.
go back to reference Aoyagi, R., H. Hamada, Y. Sato, H. Suzuki, Y. Onouchi, R. Ebata, K. Nagashima, M. Terauchi, M. Terai, H. Hanaoka, and A. Hata. 2015. Study protocol for a phase III multicentre, randomised, open-label, blinded-end point trial to evaluate the efficacy and safety of immunoglobulin plus cyclosporin A in patients with severe Kawasaki disease (KAICA Trial). BMJ Open 5 (12): e009562.PubMedPubMedCentralCrossRef Aoyagi, R., H. Hamada, Y. Sato, H. Suzuki, Y. Onouchi, R. Ebata, K. Nagashima, M. Terauchi, M. Terai, H. Hanaoka, and A. Hata. 2015. Study protocol for a phase III multicentre, randomised, open-label, blinded-end point trial to evaluate the efficacy and safety of immunoglobulin plus cyclosporin A in patients with severe Kawasaki disease (KAICA Trial). BMJ Open 5 (12): e009562.PubMedPubMedCentralCrossRef
29.
go back to reference Sun, Y., Y. Tao, Z. Geng, F. Zheng, Y. Wang, Y. Wang, S. Fu, W. Wang, C. Xie, Y. Zhang, and F. Gong. 2023. The activation of CaN/NFAT signaling pathway in macrophages aggravated Lactobacillus casei cell wall extract-induced Kawasaki disease vasculitis. Cytokine 169:156304.PubMedCrossRef Sun, Y., Y. Tao, Z. Geng, F. Zheng, Y. Wang, Y. Wang, S. Fu, W. Wang, C. Xie, Y. Zhang, and F. Gong. 2023. The activation of CaN/NFAT signaling pathway in macrophages aggravated Lactobacillus casei cell wall extract-induced Kawasaki disease vasculitis. Cytokine 169:156304.PubMedCrossRef
30.
go back to reference Inoue, Y., H. Kimura, M. Kato, Y. Okada, and A. Morikawa. 2001. Sera from patients with Kawasaki disease induce intercellular adhesion molecule-1 but not Fas in human endothelial cells. International Archives of Allergy and Immunology 125 (3): 250–255.PubMedCrossRef Inoue, Y., H. Kimura, M. Kato, Y. Okada, and A. Morikawa. 2001. Sera from patients with Kawasaki disease induce intercellular adhesion molecule-1 but not Fas in human endothelial cells. International Archives of Allergy and Immunology 125 (3): 250–255.PubMedCrossRef
31.
go back to reference Huang, X.B., S. Zhao, Z.Y. Liu, Y.Y. Xu, and F. Deng. 2023. Serum amyloid A as a biomarker for immunoglobulin resistance in Kawasaki disease. Annals of Medicine 55 (2): 2264315.PubMedPubMedCentralCrossRef Huang, X.B., S. Zhao, Z.Y. Liu, Y.Y. Xu, and F. Deng. 2023. Serum amyloid A as a biomarker for immunoglobulin resistance in Kawasaki disease. Annals of Medicine 55 (2): 2264315.PubMedPubMedCentralCrossRef
32.
go back to reference Kaneko, S., M. Shimizu, A. Shimbo, H. Irabu, K. Yokoyama, K. Furuno, T. Tanaka, K. Ueno, S. Fujita, N. Iwata, J. Fujimura, K. Akamine, M. Mizuta, Y. Nakagishi, T. Minato, K. Watanabe, A. Kobayashi, T. Endo, K. Tabata, M. Mori, and T. Morio. 2023. Clinical significance of serum cytokine profiles for differentiating between Kawasaki disease and its mimickers. Cytokine 169:156280.PubMedCrossRef Kaneko, S., M. Shimizu, A. Shimbo, H. Irabu, K. Yokoyama, K. Furuno, T. Tanaka, K. Ueno, S. Fujita, N. Iwata, J. Fujimura, K. Akamine, M. Mizuta, Y. Nakagishi, T. Minato, K. Watanabe, A. Kobayashi, T. Endo, K. Tabata, M. Mori, and T. Morio. 2023. Clinical significance of serum cytokine profiles for differentiating between Kawasaki disease and its mimickers. Cytokine 169:156280.PubMedCrossRef
33.
go back to reference Liu, J., Y. Cheng, M. Zheng, B. Yuan, Z. Wang, X. Li, J. Yin, M. Ye, and Y. Song. 2021. Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduction and Targeted Therapy 6 (1): 28.PubMedPubMedCentralCrossRef Liu, J., Y. Cheng, M. Zheng, B. Yuan, Z. Wang, X. Li, J. Yin, M. Ye, and Y. Song. 2021. Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduction and Targeted Therapy 6 (1): 28.PubMedPubMedCentralCrossRef
34.
go back to reference Liu, F., J. Chen, K. Li, H. Li, Y. Zhu, Y. Zhai, B. Lu, Y. Fan, Z. Liu, X. Chen, X. Jia, Z. Dong, and K. Liu. 2024. Ubiquitination and deubiquitination in cancer: From mechanisms to novel therapeutic approaches. Molecular Cancer 23 (1): 148.PubMedPubMedCentralCrossRef Liu, F., J. Chen, K. Li, H. Li, Y. Zhu, Y. Zhai, B. Lu, Y. Fan, Z. Liu, X. Chen, X. Jia, Z. Dong, and K. Liu. 2024. Ubiquitination and deubiquitination in cancer: From mechanisms to novel therapeutic approaches. Molecular Cancer 23 (1): 148.PubMedPubMedCentralCrossRef
35.
go back to reference Newton, K., and A.D. Gitlin. 2022. Deubiquitinases in cell death and inflammation. Biochemical Journal 479 (10): 1103–1119.PubMedCrossRef Newton, K., and A.D. Gitlin. 2022. Deubiquitinases in cell death and inflammation. Biochemical Journal 479 (10): 1103–1119.PubMedCrossRef
36.
go back to reference Luo, X.B., J.C. Xi, Z. Liu, Y. Long, L.T. Li, Z.P. Luo, and D.H. Liu. 2020. Proinflammatory effects of ubiquitin-specific protease 5 (USP5) in rheumatoid arthritis fibroblast-like synoviocytes. Mediators of Inflammation 2020:8295149.PubMedPubMedCentralCrossRef Luo, X.B., J.C. Xi, Z. Liu, Y. Long, L.T. Li, Z.P. Luo, and D.H. Liu. 2020. Proinflammatory effects of ubiquitin-specific protease 5 (USP5) in rheumatoid arthritis fibroblast-like synoviocytes. Mediators of Inflammation 2020:8295149.PubMedPubMedCentralCrossRef
37.
go back to reference Kim, H.J., H. Kim, J.H. Lee, and C. Hwangbo. 2023. Toll-like receptor 4 (TLR4): New insight immune and aging. Immunity & Ageing 20 (1): 67.CrossRef Kim, H.J., H. Kim, J.H. Lee, and C. Hwangbo. 2023. Toll-like receptor 4 (TLR4): New insight immune and aging. Immunity & Ageing 20 (1): 67.CrossRef
38.
go back to reference Si, F., Y. Lu, Y. Wen, T. Chen, Y. Zhang, and Y. Yang. 2023. Cathelicidin (LL-37) causes expression of inflammatory factors in coronary artery endothelial cells of Kawasaki disease by activating TLR4-NF-κB-NLRP3 signaling. Immunity, Inflammation and Disease 11 (9): e1032.PubMedPubMedCentralCrossRef Si, F., Y. Lu, Y. Wen, T. Chen, Y. Zhang, and Y. Yang. 2023. Cathelicidin (LL-37) causes expression of inflammatory factors in coronary artery endothelial cells of Kawasaki disease by activating TLR4-NF-κB-NLRP3 signaling. Immunity, Inflammation and Disease 11 (9): e1032.PubMedPubMedCentralCrossRef
39.
go back to reference Gao, F., F. Si, S. Feng, Q. Yi, and R. Liu. 2016. Resistin enhances inflammatory cytokine production in coronary artery tissues by activating the NF-κB signaling. BioMed Research International 2016:3296437.PubMedPubMedCentralCrossRef Gao, F., F. Si, S. Feng, Q. Yi, and R. Liu. 2016. Resistin enhances inflammatory cytokine production in coronary artery tissues by activating the NF-κB signaling. BioMed Research International 2016:3296437.PubMedPubMedCentralCrossRef
Metadata
Title
USP5 Deletion Inhibits KD Serum Induced-Human Coronary Artery Endothelial Cell Dysfunction by Regulating the NFATC1/TLR4-Mediated NF-κB Signaling Pathway in Kawasaki Disease
Authors
Lidan Yao
Yupeng Lai
Heng Li
Sihan Chen
Xianjia Yu
Ni Zhou
Dandan Lang
Publication date
07-03-2025
Publisher
Springer US
Published in
Inflammation
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-025-02276-7

Elevate your expertise in aplastic anemia (Link opens in a new window)

Transform the way you care for your patients with aplastic anemia with our 3-module series using real-world case studies and expert insights. Discover why early diagnosis matters, explore the benefits and risks of current treatments, and develop tailored approaches for complex cases. 

Supported by:
  • Pfizer
Developed by: Springer Healthcare IME
Learn more

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now
Video