Skip to main content
Top
Published in:

26-12-2023 | Ionizing Radiation | RESEARCH

cGAS Mediates the Inflammatory Responses of Human Microglial Cells to Genotoxic DNA Damage

Authors: Alexander J. Suptela, Yasmine Radwan, Christine Richardson, Shan Yan, Kirill A. Afonin, Ian Marriott

Published in: Inflammation | Issue 2/2024

Login to get access

Abstract

Genomic instability is a key driving force for the development and progression of many age-related neurodegenerative diseases and central nervous system (CNS) cancers. Recently, the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), has been shown to detect and respond to self-DNA accumulation resulting from DNA damaging insults in peripheral cell types. cGAS has been shown to be important in the responses of microglia to DNA viruses and amyloid beta, and we have reported that it underlies the responses of human microglia to exogenous DNA. However, the role of this cytosolic sensor in the detection of self-DNA by glia is poorly understood and its ability to mediate the cellular responses of human microglia to genotoxic DNA damage has not been established. Here, we describe the ability of ionizing radiation and oxidative stress to elicit genomic DNA damage in human microglial cells and to stimulate the production of key inflammatory mediators by these cells in an NF-kB dependent manner. Importantly, we have utilized CRISPR/Cas9 and siRNA-mediated knockdown approaches and a pharmacological inhibitor of the cGAS adaptor protein stimulator of interferon genes (STING) to demonstrate that the cGAS-STING pathway plays a critical role in the generation of these microglial immune responses to such genotoxic insults. Together, these studies support the notion that cGAS mediates the detection of cytosolic self-DNA by microglia, providing a potential mechanism linking genomic instability to the development of CNS cancers and neurodegenerative disorders.
Literature
1.
go back to reference Zhu, L.-S., D.-Q. Wang, K. Cui, D. Liu, and L.-Q. Zhu. 2019. Emerging perspectives on DNA double-strand breaks in neurodegenerative diseases. Current Neuropharmacology 17: 1146–1157.PubMedPubMedCentralCrossRef Zhu, L.-S., D.-Q. Wang, K. Cui, D. Liu, and L.-Q. Zhu. 2019. Emerging perspectives on DNA double-strand breaks in neurodegenerative diseases. Current Neuropharmacology 17: 1146–1157.PubMedPubMedCentralCrossRef
2.
go back to reference Coppedè, F., and L. Migliore. 2015. DNA damage in neurodegenerative diseases. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 776: 84–97.PubMedCrossRef Coppedè, F., and L. Migliore. 2015. DNA damage in neurodegenerative diseases. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 776: 84–97.PubMedCrossRef
3.
go back to reference Horn, V., and A. Triantafyllopoulou. 2018. DNA damage signaling and polyploid macrophages in chronic inflammation. Current Opinion in Immunology 50: 55–63.PubMedCrossRef Horn, V., and A. Triantafyllopoulou. 2018. DNA damage signaling and polyploid macrophages in chronic inflammation. Current Opinion in Immunology 50: 55–63.PubMedCrossRef
4.
go back to reference Taffoni, C., A. Steer, J. Marines, H. Chamma, I.K. Vila, and N. Laguette. 2021. nucleic acid immunity and DNA damage response: new friends and old foes. Frontiers in Immunology 12: 1–10.CrossRef Taffoni, C., A. Steer, J. Marines, H. Chamma, I.K. Vila, and N. Laguette. 2021. nucleic acid immunity and DNA damage response: new friends and old foes. Frontiers in Immunology 12: 1–10.CrossRef
5.
go back to reference Li, T., and Z.J. Chen. 2018. The cGAS-cGAMP-STI NG pathway connects DNA damage to inflammation, senescence, and cancer. Journal of Experimental Medicine 215: 1287–1299.PubMedPubMedCentralCrossRef Li, T., and Z.J. Chen. 2018. The cGAS-cGAMP-STI NG pathway connects DNA damage to inflammation, senescence, and cancer. Journal of Experimental Medicine 215: 1287–1299.PubMedPubMedCentralCrossRef
7.
go back to reference Miller, K.N., S.G. Victorelli, H. Salmonowicz, N. Dasgupta, T. Liu, J.F. Passos, et al. 2021. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184: 5506–5526.PubMedPubMedCentralCrossRef Miller, K.N., S.G. Victorelli, H. Salmonowicz, N. Dasgupta, T. Liu, J.F. Passos, et al. 2021. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184: 5506–5526.PubMedPubMedCentralCrossRef
8.
go back to reference Sun, L., J. Wu, F. Du, X. Chen, and Z.J. Chen. 1979. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013 (339): 786–791. Sun, L., J. Wu, F. Du, X. Chen, and Z.J. Chen. 1979. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013 (339): 786–791.
9.
go back to reference Ablasser, A., M. Goldeck, T. Cavlar, T. Deimling, G. Witte, I. Röhl, et al. 2013. CGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498: 380–384.PubMedPubMedCentralCrossRef Ablasser, A., M. Goldeck, T. Cavlar, T. Deimling, G. Witte, I. Röhl, et al. 2013. CGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498: 380–384.PubMedPubMedCentralCrossRef
10.
go back to reference Sun, W., Y. Li, L. Chen, H. Chen, F. You, X. Zhou, et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proceedings of the National Academy of Sciences 106: 8653–8658.CrossRef Sun, W., Y. Li, L. Chen, H. Chen, F. You, X. Zhou, et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proceedings of the National Academy of Sciences 106: 8653–8658.CrossRef
11.
go back to reference Wu, J., L. Sun, X. Chen, F. Du, H. Shi, C. Chen, et al. 1979. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013 (339): 826–830. Wu, J., L. Sun, X. Chen, F. Du, H. Shi, C. Chen, et al. 1979. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013 (339): 826–830.
12.
go back to reference Zhong, B., Y. Yang, S. Li, Y.Y. Wang, Y. Li, F. Diao, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550.PubMedCrossRef Zhong, B., Y. Yang, S. Li, Y.Y. Wang, Y. Li, F. Diao, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29: 538–550.PubMedCrossRef
13.
go back to reference De Gaetano, A., K. Solodka, G. Zanini, V. Selleri, A.V. Mattioli, M. Nasi, et al. 2021. Molecular mechanisms of mtDNA-mediated inflammation. Cells 10: 2898.PubMed De Gaetano, A., K. Solodka, G. Zanini, V. Selleri, A.V. Mattioli, M. Nasi, et al. 2021. Molecular mechanisms of mtDNA-mediated inflammation. Cells 10: 2898.PubMed
14.
go back to reference Gao, D., T. Li, X.-D. Li, X. Chen, Q.-Z. Li, M. Wight-Carter, et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences 112: E5699–E5705.CrossRef Gao, D., T. Li, X.-D. Li, X. Chen, Q.-Z. Li, M. Wight-Carter, et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences 112: E5699–E5705.CrossRef
15.
go back to reference Mackenzie, K.J., P. Carroll, C.-A.A. Martin, O. Murina, A. Fluteau, D.J. Simpson, et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548: 461–465.PubMedPubMedCentralCrossRef Mackenzie, K.J., P. Carroll, C.-A.A. Martin, O. Murina, A. Fluteau, D.J. Simpson, et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548: 461–465.PubMedPubMedCentralCrossRef
16.
go back to reference Kumar, V. 2021. The trinity of cGAS, TLR9, and ALRs guardians of the cellular galaxy against host-derived self-DNA. Frontiers in Immunology 11: 1–31.CrossRef Kumar, V. 2021. The trinity of cGAS, TLR9, and ALRs guardians of the cellular galaxy against host-derived self-DNA. Frontiers in Immunology 11: 1–31.CrossRef
17.
go back to reference Jakobs, C., S. Perner, and V. Hornung. 2015. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One 10: e0131702.PubMedPubMedCentralCrossRef Jakobs, C., S. Perner, and V. Hornung. 2015. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One 10: e0131702.PubMedPubMedCentralCrossRef
18.
go back to reference Cox, D.J., R.H. Field, D.G. Williams, M. Baran, A.G. Bowie, C. Cunningham, et al. 2015. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 63: 812–825.PubMedPubMedCentralCrossRef Cox, D.J., R.H. Field, D.G. Williams, M. Baran, A.G. Bowie, C. Cunningham, et al. 2015. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 63: 812–825.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Song, X., F. Ma, and K. Herrup. 2019. Accumulation of cytoplasmic DNA due to ATM deficiency activates the microglial viral response system with neurotoxic consequences. The Journal of Neuroscience 39: 6378–6394.PubMedPubMedCentralCrossRef Song, X., F. Ma, and K. Herrup. 2019. Accumulation of cytoplasmic DNA due to ATM deficiency activates the microglial viral response system with neurotoxic consequences. The Journal of Neuroscience 39: 6378–6394.PubMedPubMedCentralCrossRef
21.
go back to reference Jin, M., H. Shiwaku, H. Tanaka, T. Obita, S. Ohuchi, Y. Yoshioka, et al. 2021. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nature Communications 12: 6565.PubMedPubMedCentralCrossRef Jin, M., H. Shiwaku, H. Tanaka, T. Obita, S. Ohuchi, Y. Yoshioka, et al. 2021. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nature Communications 12: 6565.PubMedPubMedCentralCrossRef
22.
go back to reference Wu, P.J., Y.F. Hung, H.Y. Liu, and Y.P. Hsueh. 2017. Deletion of the inflammasome sensor Aim2 mitigates Aβ deposition and microglial activation but increases inflammatory cytokine expression in an Alzheimer disease mouse model. NeuroImmunoModulation 24: 29–39.PubMedCrossRef Wu, P.J., Y.F. Hung, H.Y. Liu, and Y.P. Hsueh. 2017. Deletion of the inflammasome sensor Aim2 mitigates Aβ deposition and microglial activation but increases inflammatory cytokine expression in an Alzheimer disease mouse model. NeuroImmunoModulation 24: 29–39.PubMedCrossRef
23.
go back to reference Rui, W.J., S. Li, L. Yang, Y. Liu, Y. Fan, Y.C. Hu, et al. 2022. Microglial AIM2 alleviates antiviral-related neuro-inflammation in mouse models of Parkinson’s disease. Glia 70: 2409–2425.PubMedCrossRef Rui, W.J., S. Li, L. Yang, Y. Liu, Y. Fan, Y.C. Hu, et al. 2022. Microglial AIM2 alleviates antiviral-related neuro-inflammation in mouse models of Parkinson’s disease. Glia 70: 2409–2425.PubMedCrossRef
24.
go back to reference Ma, C., S. Li, Y. Hu, Y. Ma, Y. Wu, C. Wu, et al. 2021. AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. Journal of Experimental Medicine 218: e20201796.PubMedPubMedCentralCrossRef Ma, C., S. Li, Y. Hu, Y. Ma, Y. Wu, C. Wu, et al. 2021. AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. Journal of Experimental Medicine 218: e20201796.PubMedPubMedCentralCrossRef
25.
go back to reference Sterka, D., D.M. Rati, and I. Marriott. 2006. Functional expression of NOD2, a novel pattern recognition receptor for bacterial motifs, in primary murine astrocytes. Glia 53: 322–330.PubMedCrossRef Sterka, D., D.M. Rati, and I. Marriott. 2006. Functional expression of NOD2, a novel pattern recognition receptor for bacterial motifs, in primary murine astrocytes. Glia 53: 322–330.PubMedCrossRef
26.
go back to reference Sterka, D., and I. Marriott. 2006. Characterization of nucleotide-binding oligomerization domain (NOD) protein expression in primary murine microglia. Journal of Neuroimmunology 179: 65–75.PubMedCrossRef Sterka, D., and I. Marriott. 2006. Characterization of nucleotide-binding oligomerization domain (NOD) protein expression in primary murine microglia. Journal of Neuroimmunology 179: 65–75.PubMedCrossRef
27.
go back to reference Furr, S.R., V. Chauhan, D. Sterka, V. Grdzelishvili, and I. Marriott. 2008. Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. Journal of Neurovirology 14: 503–513.PubMedCrossRef Furr, S.R., V. Chauhan, D. Sterka, V. Grdzelishvili, and I. Marriott. 2008. Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. Journal of Neurovirology 14: 503–513.PubMedCrossRef
28.
go back to reference Gao, P., M. Ascano, Y. Wu, W. Barchet, B.L. Gaffney, T. Zillinger, et al. 2013. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153: 1094–1107.PubMedPubMedCentralCrossRef Gao, P., M. Ascano, Y. Wu, W. Barchet, B.L. Gaffney, T. Zillinger, et al. 2013. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153: 1094–1107.PubMedPubMedCentralCrossRef
29.
go back to reference Orzalli, M.H., N.M. Broekema, B.A. Diner, D.C. Hancks, N.C. Elde, I.M. Cristea, et al. 2015. CGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proceedings of the National Academy of Sciences 112: E1773–E1781.CrossRef Orzalli, M.H., N.M. Broekema, B.A. Diner, D.C. Hancks, N.C. Elde, I.M. Cristea, et al. 2015. CGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proceedings of the National Academy of Sciences 112: E1773–E1781.CrossRef
30.
go back to reference Ruangkiattikul, N., A. Nerlich, K. Abdissa, S. Lienenklaus, A. Suwandi, N. Janze, et al. 2017. cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 8: 1303–1315.PubMedPubMedCentralCrossRef Ruangkiattikul, N., A. Nerlich, K. Abdissa, S. Lienenklaus, A. Suwandi, N. Janze, et al. 2017. cGAS-STING-TBK1-IRF3/7 induced interferon-β contributes to the clearing of non tuberculous mycobacterial infection in mice. Virulence 8: 1303–1315.PubMedPubMedCentralCrossRef
31.
go back to reference Aguirre, S., P. Luthra, M.T. Sanchez-Aparicio, A.M. Maestre, J. Patel, F. Lamothe, et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nature Microbiology 2: 1–11.CrossRef Aguirre, S., P. Luthra, M.T. Sanchez-Aparicio, A.M. Maestre, J. Patel, F. Lamothe, et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nature Microbiology 2: 1–11.CrossRef
32.
go back to reference Wong, E.B., B. Montoya, M. Ferez, C. Stotesbury, and L.J. Sigal. 2019. Resistance to ectromelia virus infection requires cGAS in bone marrow-derived cells which can be bypassed with cGAMP therapy. PLoS Pathogens 15: e1008239.PubMedPubMedCentralCrossRef Wong, E.B., B. Montoya, M. Ferez, C. Stotesbury, and L.J. Sigal. 2019. Resistance to ectromelia virus infection requires cGAS in bone marrow-derived cells which can be bypassed with cGAMP therapy. PLoS Pathogens 15: e1008239.PubMedPubMedCentralCrossRef
33.
go back to reference Wu, Y., K. Song, W. Hao, J. Li, L. Wang, and S. Li. 2022. Nuclear soluble cGAS senses double-stranded DNA virus infection. Communications Biology 5: 1–13.CrossRef Wu, Y., K. Song, W. Hao, J. Li, L. Wang, and S. Li. 2022. Nuclear soluble cGAS senses double-stranded DNA virus infection. Communications Biology 5: 1–13.CrossRef
34.
go back to reference Reinert, L.S., K. Lopušná, H. Winther, C. Sun, M.K. Thomsen, R. Nandakumar, et al. 2016. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nature Communications 7: 13348.PubMedPubMedCentralCrossRef Reinert, L.S., K. Lopušná, H. Winther, C. Sun, M.K. Thomsen, R. Nandakumar, et al. 2016. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nature Communications 7: 13348.PubMedPubMedCentralCrossRef
35.
go back to reference Zhang, Q., Z. Tang, R. An, L. Ye, and B. Zhong. 2020. USP29 maintains the stability of cGAS and promotes cellular antiviral responses and autoimmunity. Cell Research 30: 914–927.PubMedPubMedCentralCrossRef Zhang, Q., Z. Tang, R. An, L. Ye, and B. Zhong. 2020. USP29 maintains the stability of cGAS and promotes cellular antiviral responses and autoimmunity. Cell Research 30: 914–927.PubMedPubMedCentralCrossRef
36.
go back to reference Fruhwürth, S., L.S. Reinert, C. Öberg, M. Sakr, M. Henricsson, H. Zetterberg, et al. 2023. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. https://www.science.org.CrossRef Fruhwürth, S., L.S. Reinert, C. Öberg, M. Sakr, M. Henricsson, H. Zetterberg, et al. 2023. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. https://​www.​science.​org.CrossRef
37.
40.
go back to reference Gulen, M.F., N. Samson, A. Keller, M. Schwabenland, C. Liu, S. Glück, et al. 2023. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 620: 374–380.PubMedPubMedCentralCrossRef Gulen, M.F., N. Samson, A. Keller, M. Schwabenland, C. Liu, S. Glück, et al. 2023. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 620: 374–380.PubMedPubMedCentralCrossRef
41.
go back to reference Johnson, M.B., J.R. Halman, A.R. Burmeister, S. Currin, E.F. Khisamutdinov, K.A. Afonin, et al. 2020. Retinoic acid inducible gene-I mediated detection of bacterial nucleic acids in human microglial cells. Journal of Neuroinflammation 17: 1–14.CrossRef Johnson, M.B., J.R. Halman, A.R. Burmeister, S. Currin, E.F. Khisamutdinov, K.A. Afonin, et al. 2020. Retinoic acid inducible gene-I mediated detection of bacterial nucleic acids in human microglial cells. Journal of Neuroinflammation 17: 1–14.CrossRef
42.
go back to reference Burmeister, A.R., M.B. Johnson, V.S. Chauhan, M.J. Moerdyk-Schauwecker, A.D. Young, I.D. Cooley, et al. 2017. Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P. Journal of Neuroinflammation 14: 245.PubMedPubMedCentralCrossRef Burmeister, A.R., M.B. Johnson, V.S. Chauhan, M.J. Moerdyk-Schauwecker, A.D. Young, I.D. Cooley, et al. 2017. Human microglia and astrocytes constitutively express the neurokinin-1 receptor and functionally respond to substance P. Journal of Neuroinflammation 14: 245.PubMedPubMedCentralCrossRef
44.
go back to reference Garcia-Mesa, Y., T.R. Jay, M.A. Checkley, B. Luttge, C. Dobrowolski, S. Valadkhan, et al. 2017. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. Journal of Neurovirology 23: 47–66.PubMedCrossRef Garcia-Mesa, Y., T.R. Jay, M.A. Checkley, B. Luttge, C. Dobrowolski, S. Valadkhan, et al. 2017. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. Journal of Neurovirology 23: 47–66.PubMedCrossRef
45.
go back to reference Moravan, M.J., J.A. Olschowka, J.P. Williams, and M.K. O’Banion. 2011. Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiation Research 176: 459–473.PubMedPubMedCentralCrossRef Moravan, M.J., J.A. Olschowka, J.P. Williams, and M.K. O’Banion. 2011. Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiation Research 176: 459–473.PubMedPubMedCentralCrossRef
46.
go back to reference Mueller, S., G. Millonig, and G.N. Waite. 2009. The GOX/CAT system: a novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Advances in Medical Sciences 54: 121–135.PubMedCrossRef Mueller, S., G. Millonig, and G.N. Waite. 2009. The GOX/CAT system: a novel enzymatic method to independently control hydrogen peroxide and hypoxia in cell culture. Advances in Medical Sciences 54: 121–135.PubMedCrossRef
47.
go back to reference Porciani, D., L. Tedeschi, L. Marchetti, L. Citti, V. Piazza, F. Beltram, et al. 2015. Aptamer-mediated codelivery of doxorubicin and NF-κB decoy enhances chemosensitivity of pancreatic tumor cells. Molecular Therapy-Nucleic Acids 4: e235.PubMedPubMedCentralCrossRef Porciani, D., L. Tedeschi, L. Marchetti, L. Citti, V. Piazza, F. Beltram, et al. 2015. Aptamer-mediated codelivery of doxorubicin and NF-κB decoy enhances chemosensitivity of pancreatic tumor cells. Molecular Therapy-Nucleic Acids 4: e235.PubMedPubMedCentralCrossRef
48.
go back to reference Ke, W., E. Hong, R.F. Saito, M.C. Rangel, J. Wang, M. Viard, et al. 2019. RNA-DNA fibers and polygons with controlled immunorecognition activate RNAi, FRET and transcriptional regulation of NF-κB in human cells. Nucleic Acids Research 47: 1350–1361.PubMedCrossRef Ke, W., E. Hong, R.F. Saito, M.C. Rangel, J. Wang, M. Viard, et al. 2019. RNA-DNA fibers and polygons with controlled immunorecognition activate RNAi, FRET and transcriptional regulation of NF-κB in human cells. Nucleic Acids Research 47: 1350–1361.PubMedCrossRef
49.
go back to reference Shlyakhtenko, L.S., A.A. Gall, A. Filonov, Z. Cerovac, A. Lushnikov, and Y.L. Lyubchenko. 2003. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97: 279–287.PubMedCrossRef Shlyakhtenko, L.S., A.A. Gall, A. Filonov, Z. Cerovac, A. Lushnikov, and Y.L. Lyubchenko. 2003. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97: 279–287.PubMedCrossRef
50.
go back to reference Ran, F.A., P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, and F. Zhang. 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8: 2281–2308.PubMedPubMedCentralCrossRef Ran, F.A., P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, and F. Zhang. 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8: 2281–2308.PubMedPubMedCentralCrossRef
51.
go back to reference Einor, D., A. Bonisoli-Alquati, D. Costantini, T.A. Mousseau, and A.P. Møller. 2016. Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis. Science of the Total Environment 548–549: 463–471.PubMedCrossRef Einor, D., A. Bonisoli-Alquati, D. Costantini, T.A. Mousseau, and A.P. Møller. 2016. Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis. Science of the Total Environment 548–549: 463–471.PubMedCrossRef
52.
go back to reference Maekawa, H., T. Inoue, H. Ouchi, T.M. Jao, R. Inoue, H. Nishi, et al. 2019. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Reports 29: 1261–1273.e6. Maekawa, H., T. Inoue, H. Ouchi, T.M. Jao, R. Inoue, H. Nishi, et al. 2019. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Reports 29: 1261–1273.e6.
53.
go back to reference Liu, S., M. Feng, and W. Guan. 2016. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. International Journal of Cancer 139: 736–741.PubMedCrossRef Liu, S., M. Feng, and W. Guan. 2016. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. International Journal of Cancer 139: 736–741.PubMedCrossRef
54.
55.
go back to reference de Oliveira Mann, C.C., and P.J. Kranzusch. 2017. cGAS conducts micronuclei DNA surveillance. Trends in Cell Biology 27: 697–698.PubMedCrossRef de Oliveira Mann, C.C., and P.J. Kranzusch. 2017. cGAS conducts micronuclei DNA surveillance. Trends in Cell Biology 27: 697–698.PubMedCrossRef
56.
go back to reference Zhao, Y., B. Liu, L. Xu, S. Yu, J. Fu, J. Wang, et al. 2021. ROS-induced mtDNA release: the emerging messenger for communication between neurons and innate immune cells during neurodegenerative disorder progression. Antioxidants 10: 1917.PubMedPubMedCentralCrossRef Zhao, Y., B. Liu, L. Xu, S. Yu, J. Fu, J. Wang, et al. 2021. ROS-induced mtDNA release: the emerging messenger for communication between neurons and innate immune cells during neurodegenerative disorder progression. Antioxidants 10: 1917.PubMedPubMedCentralCrossRef
57.
go back to reference Motwani, M., and K.A. Fitzgerald. 2017. cGAS Micro-manages genotoxic stress. Immunity 47: 616–617.PubMedCrossRef Motwani, M., and K.A. Fitzgerald. 2017. cGAS Micro-manages genotoxic stress. Immunity 47: 616–617.PubMedCrossRef
58.
go back to reference Bakhoum, S.F., B. Ngo, A.M. Laughney, J.A. Cavallo, C.J. Murphy, P. Ly, et al. 2018. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553: 467–472.PubMedPubMedCentralCrossRef Bakhoum, S.F., B. Ngo, A.M. Laughney, J.A. Cavallo, C.J. Murphy, P. Ly, et al. 2018. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553: 467–472.PubMedPubMedCentralCrossRef
59.
go back to reference Sharma, M., S. Rajendrarao, N. Shahani, U.N. Ramírez-Jarquín, and S. Subramaniam. 2020. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proceedings of the National Academy of Sciences 117: 15989–15999.CrossRef Sharma, M., S. Rajendrarao, N. Shahani, U.N. Ramírez-Jarquín, and S. Subramaniam. 2020. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proceedings of the National Academy of Sciences 117: 15989–15999.CrossRef
60.
go back to reference Mohr, L., E. Toufektchan, P. von Morgen, K. Chu, A. Kapoor, and J. Maciejowski. 2021. ER-directed TREX1 limits cGAS activation at micronuclei. Molecular Cell 81: 724–738.e9.PubMedPubMedCentralCrossRef Mohr, L., E. Toufektchan, P. von Morgen, K. Chu, A. Kapoor, and J. Maciejowski. 2021. ER-directed TREX1 limits cGAS activation at micronuclei. Molecular Cell 81: 724–738.e9.PubMedPubMedCentralCrossRef
61.
go back to reference Harding, S.M., J.L. Benci, J. Irianto, D.E. Discher, A.J. Minn, and R.A. Greenberg. 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548: 466–470.PubMedPubMedCentralCrossRef Harding, S.M., J.L. Benci, J. Irianto, D.E. Discher, A.J. Minn, and R.A. Greenberg. 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548: 466–470.PubMedPubMedCentralCrossRef
62.
go back to reference Zhao, M., F. Wang, J. Wu, Y. Cheng, Y. Cao, X. Wu, et al. 2021. CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 17: 3976–3991.PubMedPubMedCentralCrossRef Zhao, M., F. Wang, J. Wu, Y. Cheng, Y. Cao, X. Wu, et al. 2021. CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 17: 3976–3991.PubMedPubMedCentralCrossRef
63.
go back to reference West, A.P., W. Khoury-Hanold, M. Staron, M.C. Tal, C.M. Pineda, S.M. Lang, et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520: 553–557.PubMedPubMedCentralCrossRef West, A.P., W. Khoury-Hanold, M. Staron, M.C. Tal, C.M. Pineda, S.M. Lang, et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520: 553–557.PubMedPubMedCentralCrossRef
64.
go back to reference Guo, Y., R. Gu, D. Gan, F. Hu, G. Li, and G. Xu. 2020. Mitochondrial DNA drives noncanonical inflammation activation via cGAS–STING signaling pathway in retinal microvascular endothelial cells. Cell Communication and Signaling 18: 1–12. Guo, Y., R. Gu, D. Gan, F. Hu, G. Li, and G. Xu. 2020. Mitochondrial DNA drives noncanonical inflammation activation via cGAS–STING signaling pathway in retinal microvascular endothelial cells. Cell Communication and Signaling 18: 1–12.
65.
go back to reference Huang, L.S., Z. Hong, W. Wu, S. Xiong, M. Zhong, X. Gao, et al. 2020. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 52: 475–486.e5.PubMedPubMedCentralCrossRef Huang, L.S., Z. Hong, W. Wu, S. Xiong, M. Zhong, X. Gao, et al. 2020. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 52: 475–486.e5.PubMedPubMedCentralCrossRef
66.
go back to reference Nadalutti, C.A., S. Ayala-Peña, and J.H. Santos. 2022. Mitochondrial DNA damage as driver of cellular outcomes. American Journal of Physiology. Cell Physiology 322: C136–C150.PubMedCrossRef Nadalutti, C.A., S. Ayala-Peña, and J.H. Santos. 2022. Mitochondrial DNA damage as driver of cellular outcomes. American Journal of Physiology. Cell Physiology 322: C136–C150.PubMedCrossRef
67.
go back to reference Zhang, W., G. Li, R. Luo, J. Lei, Y. Song, B. Wang, et al. 2022. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Experimental & Molecular Medicine 54: 129–142.CrossRef Zhang, W., G. Li, R. Luo, J. Lei, Y. Song, B. Wang, et al. 2022. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Experimental & Molecular Medicine 54: 129–142.CrossRef
68.
go back to reference Chen, H., H. Chen, J. Zhang, Y. Wang, A. Simoneau, H. Yang, et al. 2020. cGAS suppresses genomic instability as a decelerator of replication forks. Science Advances 6: eabb8941.PubMedPubMedCentralCrossRef Chen, H., H. Chen, J. Zhang, Y. Wang, A. Simoneau, H. Yang, et al. 2020. cGAS suppresses genomic instability as a decelerator of replication forks. Science Advances 6: eabb8941.PubMedPubMedCentralCrossRef
69.
go back to reference Liu, H., H. Zhang, X. Wu, D. Ma, J. Wu, L. Wang, et al. 2018. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563: 131–136.PubMedCrossRef Liu, H., H. Zhang, X. Wu, D. Ma, J. Wu, L. Wang, et al. 2018. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563: 131–136.PubMedCrossRef
70.
go back to reference Jiang, H., X. Xue, S. Panda, A. Kawale, R.M. Hooy, F. Liang, et al. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO Journal 38: 1–17.CrossRef Jiang, H., X. Xue, S. Panda, A. Kawale, R.M. Hooy, F. Liang, et al. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO Journal 38: 1–17.CrossRef
71.
go back to reference Hinkle, J.T., J. Patel, N. Panicker, S.S. Karuppagounder, D. Biswas, B. Belingon, et al. 2022. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proceedings of the National Academy of Sciences 119: 1–8.CrossRef Hinkle, J.T., J. Patel, N. Panicker, S.S. Karuppagounder, D. Biswas, B. Belingon, et al. 2022. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proceedings of the National Academy of Sciences 119: 1–8.CrossRef
Metadata
Title
cGAS Mediates the Inflammatory Responses of Human Microglial Cells to Genotoxic DNA Damage
Authors
Alexander J. Suptela
Yasmine Radwan
Christine Richardson
Shan Yan
Kirill A. Afonin
Ian Marriott
Publication date
26-12-2023
Publisher
Springer US
Published in
Inflammation / Issue 2/2024
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01946-8

Other articles of this Issue 2/2024

Inflammation 2/2024 Go to the issue

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more