Skip to main content
Top

09-06-2024 | Maternal-Fetal Medicine

Investigation of the genetic and clinical features of laterality disorders in prenatal diagnosis: discovery of a novel compound heterozygous mutation in the DNAH11 gene

Authors: Simin Zhang, Jingjing Wang, Lijuan Sun, Jijing Han, Xiaowei Xiong, Dan Xiao, Qingqing Wu

Published in: Archives of Gynecology and Obstetrics

Login to get access

Abstract

Background

Left–right laterality disorders are a heterogeneous group of disorders caused by an altered position or orientation of the thoracic and intra-abdominal organs and vasculature across the left–right axis. They mainly include situs inversus and heterotaxy. Those disorders are complicated by cardiovascular abnormalities significantly more frequently than situs solitus.

Methods

In this study, 16 patients with a fetal diagnosis of laterality disorder with congenital heart defects (CHD) were evaluated with a single nucleotide polymorphism array (SNP-arry) combined with whole-exome sequencing (WES).

Results

Although the diagnostic rate of copy number variations was 0 and the diagnostic rate of WES was 6.3% (1/16), the likely pathogenic gene DNAH11 and the candidate gene OFD1 were ultimately identified. In addition, novel compound heterozygous mutations in the DNAH11 gene and novel hemizygous variants in the OFD1 gene were found. Among the combined CHD, a single atrium/single ventricle had the highest incidence (50%, 8/16), followed by atrioventricular septal defects (37.5%, 6/16). Notably, two rare cases of common pulmonary vein atresia (CPVA) were also found on autopsy.

Conclusion

This study identified the types of CHD with a high incidence in patients with laterality disorders. It is clear that WES is an effective tool for diagnosing laterality disorders and can play an important role in future research.
Literature
1.
go back to reference Jacobs JP, Anderson RH, Weinberg PM, Walters HL 3rd, Tchervenkov CI, Del Duca D, Franklin RC, Aiello VD, Béland MJ, Colan SD et al (2007) The nomenclature, definition and classification of cardiac structures in the setting of heterotaxy. Cardiol Young 17(Suppl 2):1–28PubMed Jacobs JP, Anderson RH, Weinberg PM, Walters HL 3rd, Tchervenkov CI, Del Duca D, Franklin RC, Aiello VD, Béland MJ, Colan SD et al (2007) The nomenclature, definition and classification of cardiac structures in the setting of heterotaxy. Cardiol Young 17(Suppl 2):1–28PubMed
2.
go back to reference Deng H, Xia H, Deng S (2015) Genetic basis of human left-right asymmetry disorders. Expert Rev Mol Med 16:e19PubMedCrossRef Deng H, Xia H, Deng S (2015) Genetic basis of human left-right asymmetry disorders. Expert Rev Mol Med 16:e19PubMedCrossRef
3.
go back to reference Soofi M, Alpert MA, Barbadora J, Mukerji B, Mukerji V (2021) Human laterality disorders: pathogenesis, clinical manifestations, diagnosis, and management. Am J Med Sci 362(3):233–242PubMedCrossRef Soofi M, Alpert MA, Barbadora J, Mukerji B, Mukerji V (2021) Human laterality disorders: pathogenesis, clinical manifestations, diagnosis, and management. Am J Med Sci 362(3):233–242PubMedCrossRef
4.
go back to reference Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, Rossier C, Jorissen M, Armengot M, Meeks M et al (2002) Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA 99(16):10282–10286PubMedPubMedCentralCrossRef Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, Rossier C, Jorissen M, Armengot M, Meeks M et al (2002) Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA 99(16):10282–10286PubMedPubMedCentralCrossRef
6.
go back to reference Applegate KE, Goske MJ, Pierce G, Murphy D (1999) Situs revisited: imaging of the heterotaxy syndrome. Radiographics Rev Publ Radiol Soc N Am 19(4):837–852 (discussion 853-834) Applegate KE, Goske MJ, Pierce G, Murphy D (1999) Situs revisited: imaging of the heterotaxy syndrome. Radiographics Rev Publ Radiol Soc N Am 19(4):837–852 (discussion 853-834)
7.
go back to reference Lin AE, Ticho BS, Houde K, Westgate MN, Holmes LB (2000) Heterotaxy: associated conditions and hospital-based prevalence in newborns. Genet Med 2(3):157–172PubMedCrossRef Lin AE, Ticho BS, Houde K, Westgate MN, Holmes LB (2000) Heterotaxy: associated conditions and hospital-based prevalence in newborns. Genet Med 2(3):157–172PubMedCrossRef
8.
go back to reference Balan A, Lazoura O, Padley SP, Rubens M, Nicol ED (2012) Atrial isomerism: a pictorial review. J Cardiovasc Comput Tomogr 6(2):127–136PubMedCrossRef Balan A, Lazoura O, Padley SP, Rubens M, Nicol ED (2012) Atrial isomerism: a pictorial review. J Cardiovasc Comput Tomogr 6(2):127–136PubMedCrossRef
9.
go back to reference Sharma S, Devine W, Anderson RH, Zuberbuhler JR (1987) Identification and analysis of left atrial isomerism. Am J Cardiol 60(14):1157–1160PubMedCrossRef Sharma S, Devine W, Anderson RH, Zuberbuhler JR (1987) Identification and analysis of left atrial isomerism. Am J Cardiol 60(14):1157–1160PubMedCrossRef
10.
go back to reference Kosaki K, Casey B (1998) Genetics of human left-right axis malformations. Semin Cell Dev Biol 9(1):89–99PubMedCrossRef Kosaki K, Casey B (1998) Genetics of human left-right axis malformations. Semin Cell Dev Biol 9(1):89–99PubMedCrossRef
11.
go back to reference Belmont JW, Mohapatra B, Towbin JA, Ware SM (2004) Molecular genetics of heterotaxy syndromes. Curr Opin Cardiol 19(3):216–220PubMedCrossRef Belmont JW, Mohapatra B, Towbin JA, Ware SM (2004) Molecular genetics of heterotaxy syndromes. Curr Opin Cardiol 19(3):216–220PubMedCrossRef
12.
go back to reference Sutherland MJ, Ware SM (2009) Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet Part C Sem Med Genet 151c(4):307–317CrossRef Sutherland MJ, Ware SM (2009) Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet Part C Sem Med Genet 151c(4):307–317CrossRef
13.
go back to reference Versacci P, Pugnaloni F, Digilio MC, Putotto C, Unolt M, Calcagni G, Baban A, Marino B (2018) Some isolated cardiac malformations can be related to laterality defects. J Cardiovasc Dev Dis 5(2):24PubMedPubMedCentral Versacci P, Pugnaloni F, Digilio MC, Putotto C, Unolt M, Calcagni G, Baban A, Marino B (2018) Some isolated cardiac malformations can be related to laterality defects. J Cardiovasc Dev Dis 5(2):24PubMedPubMedCentral
14.
go back to reference Li AH, Hanchard NA, Azamian M, D’Alessandro LCA, Coban-Akdemir Z, Lopez KN, Hall NJ, Dickerson H, Nicosia A, Fernbach S et al (2019) Genetic architecture of laterality defects revealed by whole exome sequencing. Eur J Hum Genet EJHG 27(4):563–573PubMedCrossRef Li AH, Hanchard NA, Azamian M, D’Alessandro LCA, Coban-Akdemir Z, Lopez KN, Hall NJ, Dickerson H, Nicosia A, Fernbach S et al (2019) Genetic architecture of laterality defects revealed by whole exome sequencing. Eur J Hum Genet EJHG 27(4):563–573PubMedCrossRef
15.
go back to reference Carmen Prodan N, Hoopmann M, Jonaityte G, Oliver Kagan K (2023) How to do a second trimester anomaly scan. Arch Gynecol Obstet 307(4):1285–1290PubMedCrossRef Carmen Prodan N, Hoopmann M, Jonaityte G, Oliver Kagan K (2023) How to do a second trimester anomaly scan. Arch Gynecol Obstet 307(4):1285–1290PubMedCrossRef
16.
go back to reference Quaresima P, Fesslova V, Farina A, Kagan KO, Candiani M, Morelli M, Crispi F, Cavoretto PI (2023) How to do a fetal cardiac scan. Arch Gynecol Obstet 307(4):1269–1276PubMedCrossRef Quaresima P, Fesslova V, Farina A, Kagan KO, Candiani M, Morelli M, Crispi F, Cavoretto PI (2023) How to do a fetal cardiac scan. Arch Gynecol Obstet 307(4):1269–1276PubMedCrossRef
17.
go back to reference Aylsworth AS (2001) Clinical aspects of defects in the determination of laterality. Am J Med Genet 101(4):345–355PubMedCrossRef Aylsworth AS (2001) Clinical aspects of defects in the determination of laterality. Am J Med Genet 101(4):345–355PubMedCrossRef
18.
go back to reference Shapiro AJ, Davis SD, Ferkol T, Dell SD, Rosenfeld M, Olivier KN, Sagel SD, Milla C, Zariwala MA, Wolf W et al (2014) Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 146(5):1176–1186PubMedPubMedCentralCrossRef Shapiro AJ, Davis SD, Ferkol T, Dell SD, Rosenfeld M, Olivier KN, Sagel SD, Milla C, Zariwala MA, Wolf W et al (2014) Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 146(5):1176–1186PubMedPubMedCentralCrossRef
19.
go back to reference Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, Robinson BV, Minnix SL, Olbrich H, Severin T et al (2007) Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115(22):2814–2821PubMedCrossRef Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, Robinson BV, Minnix SL, Olbrich H, Severin T et al (2007) Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115(22):2814–2821PubMedCrossRef
20.
go back to reference Wang Y, Guo Z, Ye B, Liu L, Mao X, Luo Y, Gao S, He G, Bian S (2023) Association of SARS-CoV-2 infection during early weeks of gestation with situs inversus. N Engl J Med 389(18):1722–1724PubMedPubMedCentralCrossRef Wang Y, Guo Z, Ye B, Liu L, Mao X, Luo Y, Gao S, He G, Bian S (2023) Association of SARS-CoV-2 infection during early weeks of gestation with situs inversus. N Engl J Med 389(18):1722–1724PubMedPubMedCentralCrossRef
22.
go back to reference Yi T, Sun H, Fu Y, Hao X, Sun L, Zhang Y, Han J, Gu X, Liu X, Guo Y et al (2022) Genetic and clinical features of heterotaxy in a prenatal cohort. Front Genet 13:818241PubMedPubMedCentralCrossRef Yi T, Sun H, Fu Y, Hao X, Sun L, Zhang Y, Han J, Gu X, Liu X, Guo Y et al (2022) Genetic and clinical features of heterotaxy in a prenatal cohort. Front Genet 13:818241PubMedPubMedCentralCrossRef
23.
go back to reference Bolkier Y, Barel O, Marek-Yagel D, Atias-Varon D, Kagan M, Vardi A, Mishali D, Katz U, Salem Y, Tirosh-Wagner T et al (2022) Whole-exome sequencing reveals a monogenic cause in 56% of individuals with laterality disorders and associated congenital heart defects. J Med Genet 59(7):691–696PubMedCrossRef Bolkier Y, Barel O, Marek-Yagel D, Atias-Varon D, Kagan M, Vardi A, Mishali D, Katz U, Salem Y, Tirosh-Wagner T et al (2022) Whole-exome sequencing reveals a monogenic cause in 56% of individuals with laterality disorders and associated congenital heart defects. J Med Genet 59(7):691–696PubMedCrossRef
24.
go back to reference Kosaki K, Ikeda K, Miyakoshi K, Ueno M, Kosaki R, Takahashi D, Tanaka M, Torikata C, Yoshimura Y, Takahashi T (2004) Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality. Am J Med Genet Part A 129a(3):308–311PubMedCrossRef Kosaki K, Ikeda K, Miyakoshi K, Ueno M, Kosaki R, Takahashi D, Tanaka M, Torikata C, Yoshimura Y, Takahashi T (2004) Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality. Am J Med Genet Part A 129a(3):308–311PubMedCrossRef
25.
go back to reference Wessels MW, den Hollander NS, Willems PJ (2003) Mild fetal cerebral ventriculomegaly as a prenatal sonographic marker for Kartagener syndrome. Prenat Diagn 23(3):239–242PubMedCrossRef Wessels MW, den Hollander NS, Willems PJ (2003) Mild fetal cerebral ventriculomegaly as a prenatal sonographic marker for Kartagener syndrome. Prenat Diagn 23(3):239–242PubMedCrossRef
26.
go back to reference Tan SY, Rosenthal J, Zhao XQ, Francis RJ, Chatterjee B, Sabol SL, Linask KL, Bracero L, Connelly PS, Daniels MP et al (2007) Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J Clin Investig 117(12):3742–3752PubMedPubMedCentral Tan SY, Rosenthal J, Zhao XQ, Francis RJ, Chatterjee B, Sabol SL, Linask KL, Bracero L, Connelly PS, Daniels MP et al (2007) Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J Clin Investig 117(12):3742–3752PubMedPubMedCentral
27.
go back to reference Supp DM, Witte DP, Potter SS, Brueckner M (1997) Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 389(6654):963–966PubMedPubMedCentralCrossRef Supp DM, Witte DP, Potter SS, Brueckner M (1997) Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 389(6654):963–966PubMedPubMedCentralCrossRef
28.
go back to reference Chapelin C, Duriez B, Magnino F, Goossens M, Escudier E, Amselem S (1997) Isolation of several human axonemal dynein heavy chain genes: genomic structure of the catalytic site, phylogenetic analysis and chromosomal assignment. FEBS Lett 412(2):325–330PubMedCrossRef Chapelin C, Duriez B, Magnino F, Goossens M, Escudier E, Amselem S (1997) Isolation of several human axonemal dynein heavy chain genes: genomic structure of the catalytic site, phylogenetic analysis and chromosomal assignment. FEBS Lett 412(2):325–330PubMedCrossRef
29.
go back to reference Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin G, Tissier S, Duquesnoy P, Copin B, Chantot S et al (2019) Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia. Am J Hum Genet 105(1):198–212PubMedPubMedCentralCrossRef Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin G, Tissier S, Duquesnoy P, Copin B, Chantot S et al (2019) Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia. Am J Hum Genet 105(1):198–212PubMedPubMedCentralCrossRef
30.
go back to reference Nonaka S, Shiratori H, Saijoh Y, Hamada H (2002) Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418(6893):96–99PubMedCrossRef Nonaka S, Shiratori H, Saijoh Y, Hamada H (2002) Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418(6893):96–99PubMedCrossRef
31.
go back to reference McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114(1):61–73PubMedCrossRef McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114(1):61–73PubMedCrossRef
32.
go back to reference Liu S, Chen W, Zhan Y, Li S, Ma X, Ma D, Sheng W, Huang G (2019) DNAH11 variants and its association with congenital heart disease and heterotaxy syndrome. Sci Rep 9(1):6683PubMedPubMedCentralCrossRef Liu S, Chen W, Zhan Y, Li S, Ma X, Ma D, Sheng W, Huang G (2019) DNAH11 variants and its association with congenital heart disease and heterotaxy syndrome. Sci Rep 9(1):6683PubMedPubMedCentralCrossRef
33.
go back to reference Dong S, Bei F, Yu T, Sun L, Chen X, Yan H (2022) A novel compound heterozygous mutation in the DNAH11 gene found in neonatal twins with primary ciliary dyskinesis. Front Genet 13:814511PubMedPubMedCentralCrossRef Dong S, Bei F, Yu T, Sun L, Chen X, Yan H (2022) A novel compound heterozygous mutation in the DNAH11 gene found in neonatal twins with primary ciliary dyskinesis. Front Genet 13:814511PubMedPubMedCentralCrossRef
34.
go back to reference Tang Z, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T, Franco B, Zhong Q (2013) Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502(7470):254–257PubMedPubMedCentralCrossRef Tang Z, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T, Franco B, Zhong Q (2013) Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502(7470):254–257PubMedPubMedCentralCrossRef
35.
go back to reference Ferrante MI, Romio L, Castro S, Collins JE, Goulding DA, Stemple DL, Woolf AS, Wilson SW (2009) Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum Mol Genet 18(2):289–303PubMedCrossRef Ferrante MI, Romio L, Castro S, Collins JE, Goulding DA, Stemple DL, Woolf AS, Wilson SW (2009) Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum Mol Genet 18(2):289–303PubMedCrossRef
36.
go back to reference Zhu L, Belmont JW, Ware SM (2006) Genetics of human heterotaxias. Eur J Hum Genet EJHG 14(1):17–25PubMedCrossRef Zhu L, Belmont JW, Ware SM (2006) Genetics of human heterotaxias. Eur J Hum Genet EJHG 14(1):17–25PubMedCrossRef
37.
go back to reference Breuer K, Riedhammer KM, Müller N, Schaidinger B, Dombrowsky G, Dittrich S, Zeidler S, Bauer UMM, Westphal DS, Meitinger T et al (2022) Exome sequencing in individuals with cardiovascular laterality defects identifies potential candidate genes. Eur J Hum Genet EJHG 30(8):946–954PubMedCrossRef Breuer K, Riedhammer KM, Müller N, Schaidinger B, Dombrowsky G, Dittrich S, Zeidler S, Bauer UMM, Westphal DS, Meitinger T et al (2022) Exome sequencing in individuals with cardiovascular laterality defects identifies potential candidate genes. Eur J Hum Genet EJHG 30(8):946–954PubMedCrossRef
38.
go back to reference Chen W, Zhang Y, Shen L, Zhu J, Cai K, Lu Z, Zeng W, Zhao J, Zhou X (2022) Biallelic DNAH9 mutations are identified in Chinese patients with defective left-right patterning and cilia-related complex congenital heart disease. Hum Genet 141(8):1339–1353PubMedCrossRef Chen W, Zhang Y, Shen L, Zhu J, Cai K, Lu Z, Zeng W, Zhao J, Zhou X (2022) Biallelic DNAH9 mutations are identified in Chinese patients with defective left-right patterning and cilia-related complex congenital heart disease. Hum Genet 141(8):1339–1353PubMedCrossRef
39.
go back to reference Shearer RF, Saunders DN (2016) Regulation of primary cilia formation by the ubiquitin-proteasome system. Biochem Soc Trans 44(5):1265–1271PubMedCrossRef Shearer RF, Saunders DN (2016) Regulation of primary cilia formation by the ubiquitin-proteasome system. Biochem Soc Trans 44(5):1265–1271PubMedCrossRef
40.
go back to reference Inversetti A, Fesslova V, Deprest J, Candiani M, Giorgione V, Cavoretto P (2020) Prenatal growth in fetuses with isolated cyanotic and non-cyanotic congenital heart defects. Fetal Diagn Ther 47(5):411–419PubMedCrossRef Inversetti A, Fesslova V, Deprest J, Candiani M, Giorgione V, Cavoretto P (2020) Prenatal growth in fetuses with isolated cyanotic and non-cyanotic congenital heart defects. Fetal Diagn Ther 47(5):411–419PubMedCrossRef
41.
go back to reference Giorgione V, Fesslova V, Boveri S, Candiani M, Khalil A, Cavoretto P (2020) Adverse perinatal outcome and placental abnormalities in pregnancies with major fetal congenital heart defects: a retrospective case-control study. Prenat Diagn 40(11):1390–1397PubMedCrossRef Giorgione V, Fesslova V, Boveri S, Candiani M, Khalil A, Cavoretto P (2020) Adverse perinatal outcome and placental abnormalities in pregnancies with major fetal congenital heart defects: a retrospective case-control study. Prenat Diagn 40(11):1390–1397PubMedCrossRef
42.
go back to reference Vaideeswar P, Tullu MS, Sathe PA, Nanavati R (2008) Atresia of the common pulmonary vein–a rare congenital anomaly. Congenit Heart Dis 3(6):431–434PubMedCrossRef Vaideeswar P, Tullu MS, Sathe PA, Nanavati R (2008) Atresia of the common pulmonary vein–a rare congenital anomaly. Congenit Heart Dis 3(6):431–434PubMedCrossRef
43.
Metadata
Title
Investigation of the genetic and clinical features of laterality disorders in prenatal diagnosis: discovery of a novel compound heterozygous mutation in the DNAH11 gene
Authors
Simin Zhang
Jingjing Wang
Lijuan Sun
Jijing Han
Xiaowei Xiong
Dan Xiao
Qingqing Wu
Publication date
09-06-2024
Publisher
Springer Berlin Heidelberg
Published in
Archives of Gynecology and Obstetrics
Print ISSN: 0932-0067
Electronic ISSN: 1432-0711
DOI
https://doi.org/10.1007/s00404-024-07574-3