Skip to main content
Top
Published in:

09-07-2022 | Intense Pulsed Light | Original Paper

Posterior segment spectral domain oct in the differential diagnosis of bilateral temporal optic neuropathy and its correlation with visual acuity

Authors: Tom Buelens, Jean-François Fils, François Willermain

Published in: International Ophthalmology | Issue 12/2022

Login to get access

Abstract

Purpose

To identify the underlying etiologies and to evaluate the differential diagnostic value of posterior segment spectral domain OCT measurements and their correlation with best-corrected visual acuity (BCVA) in a group of patients with OCT documented bilateral optic neuropathy limited to the temporal quadrants.

Methods

Retrospective study.

Results

We included 61 patients: 35 presented with presumed “classic” acquired mitochondrial optic neuropathy (MON) (18 nutritional, 11 toxic, 6 mixed toxic-nutritional) and 2 with suspected hereditary MON. Nine patients were identified as ‘MON mimickers’ (especially multiple sclerosis), and 4 were found to have a mixed mechanism, while 11 remained undiagnosed. Across all etiologies, the strongest positive relationship between BCVA and tested OCT parameters was with macular GCL (ganglion cell layer) and GCIPL (combined ganglion cell and inner plexiform layer) volumes rather than peripapillary retinal nerve fiber layer (RNFL) thicknesses (all statistically significant). There was an inverse relationship between BCVA and inner nuclear layer (INL) volumes, with significant differences for BCVA and all tested OCT parameters between eyes with and without INL microcystoid lesions. OCT (absolute values and intereye differences) was not helpful in distinguishing between presumed acquired mitochondrial disease and patients with multiple sclerosis without optic neuritis. However, significantly greater intereye differences in global RNFL and inner plexiform layer and GCIPL volumes were found in patients with a previous history of unilateral optic neuritis.

Conclusions

The strongest positive relationship with BCVA was found for macular GCL and GCIPL volumes. OCT could not differentiate between acquired mitochondrial disease and multiple sclerosis without optic neuritis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang MY, Sadun AA (2013) Drug-related mitochondrial optic neuropathies. J Neuroophthalmol 33:172–178PubMedCrossRef Wang MY, Sadun AA (2013) Drug-related mitochondrial optic neuropathies. J Neuroophthalmol 33:172–178PubMedCrossRef
2.
go back to reference Pilz YL, Bass SJ, Sherman J (2017) A review of mitochondrial optic neuropathies: from inherited to acquired forms. J Optom 10(4):205–214PubMedCrossRef Pilz YL, Bass SJ, Sherman J (2017) A review of mitochondrial optic neuropathies: from inherited to acquired forms. J Optom 10(4):205–214PubMedCrossRef
3.
go back to reference Petzold A, Balcer LJ, Calabresi PA et al (2017) Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 16:797–812PubMedCrossRef Petzold A, Balcer LJ, Calabresi PA et al (2017) Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 16:797–812PubMedCrossRef
4.
go back to reference Oertel FC, Zimmermann HG, Brandt AU, Paul F (2019) Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Rev Neurother 19:31–43PubMedCrossRef Oertel FC, Zimmermann HG, Brandt AU, Paul F (2019) Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Rev Neurother 19:31–43PubMedCrossRef
5.
go back to reference Davion JB, Lopes R, Drumez É et al (2020) Asymptomatic optic nerve lesions: an underestimated cause of silent retinal atrophy in MS. Neurology 94(23):e2468–e2478PubMedCrossRef Davion JB, Lopes R, Drumez É et al (2020) Asymptomatic optic nerve lesions: an underestimated cause of silent retinal atrophy in MS. Neurology 94(23):e2468–e2478PubMedCrossRef
6.
go back to reference Barboni P, Savini G, Valentino ML et al (2005) Retinal nerve fiber layer evaluation by optical coherence tomography in leber’s hereditary optic neuropathy. Ophthalmology 112:120–126PubMedCrossRef Barboni P, Savini G, Valentino ML et al (2005) Retinal nerve fiber layer evaluation by optical coherence tomography in leber’s hereditary optic neuropathy. Ophthalmology 112:120–126PubMedCrossRef
7.
go back to reference Barboni P, Carbonelli M, Savini G et al (2010) Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fibre layer by optical coherence tomography. Ophthalmology 117:623–627PubMedCrossRef Barboni P, Carbonelli M, Savini G et al (2010) Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fibre layer by optical coherence tomography. Ophthalmology 117:623–627PubMedCrossRef
8.
go back to reference Han J, Byun MK, Lee J et al (2015) Longitudinal analysis of retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 253(12):2293–2299PubMedCrossRef Han J, Byun MK, Lee J et al (2015) Longitudinal analysis of retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 253(12):2293–2299PubMedCrossRef
9.
go back to reference Burkholder BM, Osborne B, Loguidice MJ et al (2009) Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 66:1366–1372PubMedCrossRef Burkholder BM, Osborne B, Loguidice MJ et al (2009) Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 66:1366–1372PubMedCrossRef
10.
go back to reference Gelfand JM, Nolan R, Schwartz DM et al (2012) Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 135:1786–1793PubMedPubMedCentralCrossRef Gelfand JM, Nolan R, Schwartz DM et al (2012) Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 135:1786–1793PubMedPubMedCentralCrossRef
11.
go back to reference Kessel L, Hamann S, Wegener M, Tong J, Fraser CL (2018) Microcystic macular oedema in optic neuropathy: case series and literature review. Clin Exp Ophthalmol 46(9):1075–1086PubMedCrossRef Kessel L, Hamann S, Wegener M, Tong J, Fraser CL (2018) Microcystic macular oedema in optic neuropathy: case series and literature review. Clin Exp Ophthalmol 46(9):1075–1086PubMedCrossRef
12.
go back to reference Abegg M, Dysli M, Wolf S, Kowal J, Dufour P, Zinkernagel M (2014) Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 121:142–149PubMedCrossRef Abegg M, Dysli M, Wolf S, Kowal J, Dufour P, Zinkernagel M (2014) Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 121:142–149PubMedCrossRef
13.
go back to reference Wolff B, Azar G, Vasseur V, Sahel JA, Vignal C, Mauget-Faysse M (2014) Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study. J Ophthalmol 2014:395189PubMedPubMedCentralCrossRef Wolff B, Azar G, Vasseur V, Sahel JA, Vignal C, Mauget-Faysse M (2014) Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study. J Ophthalmol 2014:395189PubMedPubMedCentralCrossRef
14.
go back to reference Pott JW, de Vries-Knoppert WA, Petzold A (2016) The prevalence of microcystic macular changes on optical coherence tomography of the macular region in optic nerve atrophy of non-neuritis origin: a prospective study. Br J Ophthalmol 100:216–221PubMedCrossRef Pott JW, de Vries-Knoppert WA, Petzold A (2016) The prevalence of microcystic macular changes on optical coherence tomography of the macular region in optic nerve atrophy of non-neuritis origin: a prospective study. Br J Ophthalmol 100:216–221PubMedCrossRef
15.
16.
go back to reference Suda K, Akagi T, Nakanishi H et al (2018) Evaluation of structure-function relationships in longitudinal changes of glaucoma using the spectralis oct follow-up mode. Sci Rep 8(1):17158PubMedPubMedCentralCrossRef Suda K, Akagi T, Nakanishi H et al (2018) Evaluation of structure-function relationships in longitudinal changes of glaucoma using the spectralis oct follow-up mode. Sci Rep 8(1):17158PubMedPubMedCentralCrossRef
17.
go back to reference Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815PubMedCrossRef Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809–1815PubMedCrossRef
18.
go back to reference Nakanishi H et al (2016) Clustering of combined 24–2 and 10–2 visual field grids and their relationship with circumpapillary retinal nerve fiber layer thickness. Investig Ophthalmol Vis Sci 57:3203–3210CrossRef Nakanishi H et al (2016) Clustering of combined 24–2 and 10–2 visual field grids and their relationship with circumpapillary retinal nerve fiber layer thickness. Investig Ophthalmol Vis Sci 57:3203–3210CrossRef
19.
go back to reference Kim JH, Lee HS, Kim NR, Seong GJ, Kim CY (2014) Relationship between visual acuity and retinal structures measured by spectral domain optical coherence tomography in patients with open-angle glaucoma. Investig Ophthalmol Vis Sci 55(8):4801–4811CrossRef Kim JH, Lee HS, Kim NR, Seong GJ, Kim CY (2014) Relationship between visual acuity and retinal structures measured by spectral domain optical coherence tomography in patients with open-angle glaucoma. Investig Ophthalmol Vis Sci 55(8):4801–4811CrossRef
20.
go back to reference Soltan-Sanjari M, Parvaresh MM, Maleki A, Ghasemi-Falavarjani K, Bakhtiari P (2008) Correlation between retinal nerve fiber layer thickness by optical coherence tomography and perimetric parameters in optic atrophy. J Ophthalmic Vis Res 3(2):91–94PubMedPubMedCentral Soltan-Sanjari M, Parvaresh MM, Maleki A, Ghasemi-Falavarjani K, Bakhtiari P (2008) Correlation between retinal nerve fiber layer thickness by optical coherence tomography and perimetric parameters in optic atrophy. J Ophthalmic Vis Res 3(2):91–94PubMedPubMedCentral
21.
go back to reference Rebolleda G, Sánchez-Sánchez C, González-López JJ, Contreras I, Muñoz-Negrete FJ (2015) Papillomacular bundle and inner retinal thicknesses correlate with visual acuity in nonarteritic anterior ischemic optic neuropathy. Investig Ophthalmol Vis Sci 56(2):682–692CrossRef Rebolleda G, Sánchez-Sánchez C, González-López JJ, Contreras I, Muñoz-Negrete FJ (2015) Papillomacular bundle and inner retinal thicknesses correlate with visual acuity in nonarteritic anterior ischemic optic neuropathy. Investig Ophthalmol Vis Sci 56(2):682–692CrossRef
22.
go back to reference Park JY, Choi J, Oh WH, Kim JS (2016) Influence of RNFL thickness on visual acuity and visual field in bilateral temporal optic atrophy. J Korean Ophthalmol Soc 57(6):969–976CrossRef Park JY, Choi J, Oh WH, Kim JS (2016) Influence of RNFL thickness on visual acuity and visual field in bilateral temporal optic atrophy. J Korean Ophthalmol Soc 57(6):969–976CrossRef
23.
go back to reference Kim BG, Park JY, Oh WH, Choi J (2020) Retinal ganglion cell layer thicknesses and visual functions in patients with bilateral temporal optic atrophy. J Korean Ophthalmol Soc 61(1):92–100CrossRef Kim BG, Park JY, Oh WH, Choi J (2020) Retinal ganglion cell layer thicknesses and visual functions in patients with bilateral temporal optic atrophy. J Korean Ophthalmol Soc 61(1):92–100CrossRef
24.
go back to reference Heidelberg Engineering GmbH (2016) Spectralis HRA + OCT User manual software version 6.5 Articl No. 97290–011 INT.AE 16. Heidelberg Heidelberg Engineering GmbH (2016) Spectralis HRA + OCT User manual software version 6.5 Articl No. 97290–011 INT.AE 16. Heidelberg
25.
go back to reference Ctori I, Huntjens B (2015) Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software. PLoS ONE 10(6):e0129005PubMedPubMedCentralCrossRef Ctori I, Huntjens B (2015) Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software. PLoS ONE 10(6):e0129005PubMedPubMedCentralCrossRef
26.
go back to reference Atan D (2020) Challenges and opportunities in the diagnosis of nutritional optic neuropathy. Expert Rev Ophthalmol 15(2):67–70CrossRef Atan D (2020) Challenges and opportunities in the diagnosis of nutritional optic neuropathy. Expert Rev Ophthalmol 15(2):67–70CrossRef
28.
go back to reference Chan NCY, Chan CKM (2018) The role of optical coherence tomography in the acute management of neuro-ophthalmic diseases. Asia Pac J Ophthalmol (Phila) 7(4):265–270 Chan NCY, Chan CKM (2018) The role of optical coherence tomography in the acute management of neuro-ophthalmic diseases. Asia Pac J Ophthalmol (Phila) 7(4):265–270
29.
go back to reference Tsai RK, Lee YH (1997) Reversibility of ethambutol optic neuropathy. J Ocul Pharmacol Ther 13(5):473–477PubMedCrossRef Tsai RK, Lee YH (1997) Reversibility of ethambutol optic neuropathy. J Ocul Pharmacol Ther 13(5):473–477PubMedCrossRef
30.
go back to reference Beck RW, Cleary PA, Backlund JC (1994) The course of visual recovery after optic neuritis. Experience of the optic neuritis treatment trial. Ophthalmology 101:1771–1778PubMedCrossRef Beck RW, Cleary PA, Backlund JC (1994) The course of visual recovery after optic neuritis. Experience of the optic neuritis treatment trial. Ophthalmology 101:1771–1778PubMedCrossRef
31.
go back to reference Takada R, Takagi M, Oshima A, Miki A, Usui T, Hasegawa S, Abe H (2005) Delayed visual recovery from severe ethambutol optic neuropathy in two patients with atypical mycobacterium infection. Neuro Ophthalmology 29:187–193CrossRef Takada R, Takagi M, Oshima A, Miki A, Usui T, Hasegawa S, Abe H (2005) Delayed visual recovery from severe ethambutol optic neuropathy in two patients with atypical mycobacterium infection. Neuro Ophthalmology 29:187–193CrossRef
32.
go back to reference Lamirel C, Newman NJ, Biousse V (2010) Optical coherence tomography (OCT) in optic neuritis and multiple sclerosis. Rev Neurol (Paris) 166(12):978–986CrossRef Lamirel C, Newman NJ, Biousse V (2010) Optical coherence tomography (OCT) in optic neuritis and multiple sclerosis. Rev Neurol (Paris) 166(12):978–986CrossRef
33.
go back to reference Pro MJ, Pons ME, Liebmann JM et al (2006) Imaging of the optic disc and retinal nerve fiber layer in acute optic neuritis. J Neurol Sci 250(1–2):114–119PubMedCrossRef Pro MJ, Pons ME, Liebmann JM et al (2006) Imaging of the optic disc and retinal nerve fiber layer in acute optic neuritis. J Neurol Sci 250(1–2):114–119PubMedCrossRef
34.
go back to reference Barboni P, Carbonelli M, Savini G et al (2010) Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology 117:623–627PubMedCrossRef Barboni P, Carbonelli M, Savini G et al (2010) Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology 117:623–627PubMedCrossRef
35.
go back to reference Tieger MG, Hedges TR III, Ho J et al (2017) Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuro Ophthalmol 37(1):7–12CrossRef Tieger MG, Hedges TR III, Ho J et al (2017) Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuro Ophthalmol 37(1):7–12CrossRef
36.
go back to reference Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investig Ophthalmol Vis Sci 41(3):741–748 Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investig Ophthalmol Vis Sci 41(3):741–748
37.
go back to reference Nieves-Moreno M, Martínez-de-la-Casa JM, Cifuentes-Canorea P et al (2017) Normative database for separate inner retinal layers thickness using spectral domain optical coherence tomography in Caucasian population. PLoS ONE 12(7):e0180450PubMedPubMedCentralCrossRef Nieves-Moreno M, Martínez-de-la-Casa JM, Cifuentes-Canorea P et al (2017) Normative database for separate inner retinal layers thickness using spectral domain optical coherence tomography in Caucasian population. PLoS ONE 12(7):e0180450PubMedPubMedCentralCrossRef
38.
go back to reference Nolan-Kenney RC, Liu M, Akhand O et al (2019) Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: an international study. Ann Neurol 85(5):618–629PubMedCrossRef Nolan-Kenney RC, Liu M, Akhand O et al (2019) Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: an international study. Ann Neurol 85(5):618–629PubMedCrossRef
39.
go back to reference Coric D, Balk LJ, Uitdehaag BMJ, Petzold A (2017) Diagnostic accuracy of optical coherence tomography inter-eye percentage difference for optic neuritis in multiple sclerosis. Eur J Neurol 24(12):1479–1484PubMedCrossRef Coric D, Balk LJ, Uitdehaag BMJ, Petzold A (2017) Diagnostic accuracy of optical coherence tomography inter-eye percentage difference for optic neuritis in multiple sclerosis. Eur J Neurol 24(12):1479–1484PubMedCrossRef
40.
go back to reference Sigler EJ (2014) Microcysts in the inner nuclear layer, a nonspecific SD-OCT sign of cystoid macular edema. Investig Ophthalmol Vis Sci 55(5):3282–3284CrossRef Sigler EJ (2014) Microcysts in the inner nuclear layer, a nonspecific SD-OCT sign of cystoid macular edema. Investig Ophthalmol Vis Sci 55(5):3282–3284CrossRef
43.
go back to reference Kashani AH, Zimmer-Galler IE, Shah SM et al (2010) Retinal thickness analysis by race, gender, and age using Stratus OCT. Am J Ophthalmol 149(3):496-502.e1PubMedCrossRef Kashani AH, Zimmer-Galler IE, Shah SM et al (2010) Retinal thickness analysis by race, gender, and age using Stratus OCT. Am J Ophthalmol 149(3):496-502.e1PubMedCrossRef
44.
go back to reference Kelty PJ, Payne JF, Trivedi RH, Kelty J, Bowie EM, Burger BM (2008) Macular thickness assessment in healthy eyes based on ethnicity using Stratus OCT optical coherence tomography. Investig Ophthalmol Vis Sci 49(6):2668–2672CrossRef Kelty PJ, Payne JF, Trivedi RH, Kelty J, Bowie EM, Burger BM (2008) Macular thickness assessment in healthy eyes based on ethnicity using Stratus OCT optical coherence tomography. Investig Ophthalmol Vis Sci 49(6):2668–2672CrossRef
45.
go back to reference Khawaja AP, Chua S, Hysi PG et al (2020) Comparison of associations with different macular inner retinal thickness parameters in a large cohort: the uk biobank. Ophthalmology 127(1):62–71PubMedCrossRef Khawaja AP, Chua S, Hysi PG et al (2020) Comparison of associations with different macular inner retinal thickness parameters in a large cohort: the uk biobank. Ophthalmology 127(1):62–71PubMedCrossRef
46.
go back to reference Hu H, Jiang H, Gameiro GR, Hernandez J, Delgado S, Wang J (2019) Focal Thickness Reduction of the Ganglion Cell-Inner Plexiform Layer Best Discriminates Prior Optic Neuritis in Patients With Multiple Sclerosis. Invest Ophthalmol Vis Sci 60(13):4257–4269PubMedPubMedCentralCrossRef Hu H, Jiang H, Gameiro GR, Hernandez J, Delgado S, Wang J (2019) Focal Thickness Reduction of the Ganglion Cell-Inner Plexiform Layer Best Discriminates Prior Optic Neuritis in Patients With Multiple Sclerosis. Invest Ophthalmol Vis Sci 60(13):4257–4269PubMedPubMedCentralCrossRef
Metadata
Title
Posterior segment spectral domain oct in the differential diagnosis of bilateral temporal optic neuropathy and its correlation with visual acuity
Authors
Tom Buelens
Jean-François Fils
François Willermain
Publication date
09-07-2022
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 12/2022
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-022-02408-0