Skip to main content
Top
Published in: Neurological Sciences 11/2023

28-06-2023 | Intellectual Disability | Original Article

Alopecia areata-like pattern of baldness: the most recent update and the expansion of novel phenotype and genotype in the CTNNB1 gene

Authors: Aysan Moeinafshar, Sahand Tehrani Fateh, Hossein Sadeghi, Parvaneh Karimzadeh, Reza Mirfakhraie, Farzad Hashemi-Gorji, Pegah Larki, Mohammad Miryounesi, Mohammad-Reza Ghasemi

Published in: Neurological Sciences | Issue 11/2023

Login to get access

Abstract

Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV) is a rare autosomal dominant genetic disorder caused by genetic alterations in the CTNNB1 gene. CTNNB1 is a gene that encodes β-catenin, an effector protein in the canonical Wnt pathway involved in stem cell differentiation and proliferation, synaptogenesis, and a wide range of essential cellular mechanisms. Mutations in this gene are also found in specific malignancies as well as exudative vitreoretinopathy. To date, only a limited number of cases of this disease have been reported, and though they share some phenotypic manifestations such as intellectual disability, developmental delay, microcephaly, behavioral abnormalities, and dystonia, the variety of phenotypic traits of these patients shows extreme heterogeneity. In this study, two cases of NEDSDV with de novo CTNNB1 mutations: c.1420C>T(p.R474X) and c.1377_1378Del(p.Ala460Serfs*29), found with whole exome sequencing (WES) have been reported and the clinical and paraclinical characteristics of these patients have been described. Due to such a wide range of clinical characteristics, the identification of new patients and novel variants is of great importance in order to establish a more complete phenotypic spectrum, as well as to conclude the genotype-phenotype correlations in these cases.
Literature
3.
go back to reference Noelanders R, Vleminckx K (2017) How Wnt signaling builds the brain: bridging development and disease. Neuroscientist 23:314–329 PubMedCrossRef Noelanders R, Vleminckx K (2017) How Wnt signaling builds the brain: bridging development and disease. Neuroscientist 23:314–329 PubMedCrossRef
4.
go back to reference Mo Z, Zeng Z et al (2022) Activation of Wnt/beta-catenin signaling pathway as a promising therapeutic candidate for cerebral ischemia/reperfusion injury. Front Pharmacol 13:914537 PubMedPubMedCentralCrossRef Mo Z, Zeng Z et al (2022) Activation of Wnt/beta-catenin signaling pathway as a promising therapeutic candidate for cerebral ischemia/reperfusion injury. Front Pharmacol 13:914537 PubMedPubMedCentralCrossRef
6.
go back to reference Spagnoli C, Salerno GG et al (2022) Novel CTNNB1 variant leading to neurodevelopmental disorder with spastic diplegia and visual defects plus peripheral neuropathy: a case report. Am J Med Genet A 188:3118–3120 PubMedCrossRef Spagnoli C, Salerno GG et al (2022) Novel CTNNB1 variant leading to neurodevelopmental disorder with spastic diplegia and visual defects plus peripheral neuropathy: a case report. Am J Med Genet A 188:3118–3120 PubMedCrossRef
7.
go back to reference Bulot V, Ramond F, Mauguiere F, Mazzola L (2022) Startle disease: an overlooked symptom of CTNNB1-related neurodevelopmental disorder with spastic diplegia and visual defects. Neurol Genet 8:e200039 PubMedPubMedCentralCrossRef Bulot V, Ramond F, Mauguiere F, Mazzola L (2022) Startle disease: an overlooked symptom of CTNNB1-related neurodevelopmental disorder with spastic diplegia and visual defects. Neurol Genet 8:e200039 PubMedPubMedCentralCrossRef
8.
go back to reference Dashti S, Salehpour S et al (2022) Identification of a novel de novo mutation in the CTNNB1 gene in an Iranian patient with intellectual disability. Neurol Sci 43:2859–2863 PubMedCrossRef Dashti S, Salehpour S et al (2022) Identification of a novel de novo mutation in the CTNNB1 gene in an Iranian patient with intellectual disability. Neurol Sci 43:2859–2863 PubMedCrossRef
9.
11.
go back to reference McKenna A, Hanna M et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303 PubMedPubMedCentralCrossRef McKenna A, Hanna M et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303 PubMedPubMedCentralCrossRef
12.
13.
go back to reference Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362 PubMedCrossRef Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362 PubMedCrossRef
14.
go back to reference Shihab HA, Gough J et al (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34:57–65 PubMedCrossRef Shihab HA, Gough J et al (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 34:57–65 PubMedCrossRef
15.
go back to reference Quang D, Chen Y, Xie X (2015) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31:761–763 PubMedCrossRef Quang D, Chen Y, Xie X (2015) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31:761–763 PubMedCrossRef
16.
go back to reference Richards S, Aziz N et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–423 PubMedPubMedCentralCrossRef Richards S, Aziz N et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–423 PubMedPubMedCentralCrossRef
17.
go back to reference Nollet F, Berx G, Molemans F, van Roy F (1996) Genomic organization of the human beta-catenin gene (CTNNB1). Genomics 32:413–424 PubMedCrossRef Nollet F, Berx G, Molemans F, van Roy F (1996) Genomic organization of the human beta-catenin gene (CTNNB1). Genomics 32:413–424 PubMedCrossRef
18.
go back to reference Bailey A, Norris AL et al (1995) Yeast artificial chromosome cloning of the beta-catenin locus on human chromosome 3p21-22. Chromosome Res 3:201–203 PubMedCrossRef Bailey A, Norris AL et al (1995) Yeast artificial chromosome cloning of the beta-catenin locus on human chromosome 3p21-22. Chromosome Res 3:201–203 PubMedCrossRef
19.
go back to reference Trent JM, Wiltshire R et al (1995) The gene for the APC-binding protein beta-catenin (CTNNB1) maps to chromosome 3p22, a region frequently altered in human malignancies. Cytogenet Cell Genet 71:343–344 PubMedCrossRef Trent JM, Wiltshire R et al (1995) The gene for the APC-binding protein beta-catenin (CTNNB1) maps to chromosome 3p22, a region frequently altered in human malignancies. Cytogenet Cell Genet 71:343–344 PubMedCrossRef
21.
22.
go back to reference Kobayashi M, Honma T et al (2000) Nuclear translocation of beta-catenin in colorectal cancer. Br J Cancer 82:1689–1693 PubMedPubMedCentral Kobayashi M, Honma T et al (2000) Nuclear translocation of beta-catenin in colorectal cancer. Br J Cancer 82:1689–1693 PubMedPubMedCentral
23.
go back to reference Simcha I, Shtutman M et al (1998) Differential nuclear translocation and transactivation potential of beta-catenin and plakoglobin. J Cell Biol 141:1433–1448 PubMedPubMedCentralCrossRef Simcha I, Shtutman M et al (1998) Differential nuclear translocation and transactivation potential of beta-catenin and plakoglobin. J Cell Biol 141:1433–1448 PubMedPubMedCentralCrossRef
24.
25.
go back to reference Kuechler A, Willemsen MH et al (2015) De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet 134:97–109 PubMedCrossRef Kuechler A, Willemsen MH et al (2015) De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet 134:97–109 PubMedCrossRef
26.
go back to reference Kharbanda M, Pilz DT et al (2017) Clinical features associated with CTNNB1 de novo loss of function mutations in ten individuals. Eur J Med Genet 60:130–135 PubMedCrossRef Kharbanda M, Pilz DT et al (2017) Clinical features associated with CTNNB1 de novo loss of function mutations in ten individuals. Eur J Med Genet 60:130–135 PubMedCrossRef
27.
go back to reference Vissers L, van Nimwegen KJM et al (2017) A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet Med 19:1055–1063 PubMedPubMedCentralCrossRef Vissers L, van Nimwegen KJM et al (2017) A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet Med 19:1055–1063 PubMedPubMedCentralCrossRef
28.
go back to reference Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545 PubMedCrossRef Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545 PubMedCrossRef
29.
go back to reference Yan D, Sun Y et al (2022) Genetic and clinical characteristics of 24 mainland Chinese patients with CTNNB1 loss-of-function variants. Mol Genet Genomic Med 10:e2067 PubMedPubMedCentralCrossRef Yan D, Sun Y et al (2022) Genetic and clinical characteristics of 24 mainland Chinese patients with CTNNB1 loss-of-function variants. Mol Genet Genomic Med 10:e2067 PubMedPubMedCentralCrossRef
31.
go back to reference Namazzi G, Hildenwall H et al (2019) Prevalence and associated factors of neurodevelopmental disability among infants in eastern Uganda: a population based study. BMC Pediatr 19:379 PubMedPubMedCentralCrossRef Namazzi G, Hildenwall H et al (2019) Prevalence and associated factors of neurodevelopmental disability among infants in eastern Uganda: a population based study. BMC Pediatr 19:379 PubMedPubMedCentralCrossRef
32.
go back to reference Mamidala MP, Polinedi A et al (2013) Prenatal, perinatal and neonatal risk factors of autism spectrum disorder: a comprehensive epidemiological assessment from India. Res Dev Disabil 34:3004–3013 PubMedCrossRef Mamidala MP, Polinedi A et al (2013) Prenatal, perinatal and neonatal risk factors of autism spectrum disorder: a comprehensive epidemiological assessment from India. Res Dev Disabil 34:3004–3013 PubMedCrossRef
33.
go back to reference Sachdeva S, Amir A et al (2010) Global developmental delay and its determinants among urban infants and toddlers: a cross sectional study. Indian J Pediatr 77:975–980 PubMedCrossRef Sachdeva S, Amir A et al (2010) Global developmental delay and its determinants among urban infants and toddlers: a cross sectional study. Indian J Pediatr 77:975–980 PubMedCrossRef
34.
go back to reference Liu J, Xiao Q et al (2022) Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 7:3 PubMedPubMedCentralCrossRef Liu J, Xiao Q et al (2022) Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 7:3 PubMedPubMedCentralCrossRef
35.
go back to reference Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109 PubMedCrossRef Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109 PubMedCrossRef
36.
37.
38.
go back to reference Akoumianakis I, Polkinghorne M, Antoniades C (2022) Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 19:783–797 PubMedPubMedCentralCrossRef Akoumianakis I, Polkinghorne M, Antoniades C (2022) Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 19:783–797 PubMedPubMedCentralCrossRef
39.
go back to reference Chavali M, Klingener M et al (2018) Non-canonical Wnt signaling regulates neural stem cell quiescence during homeostasis and after demyelination. Nat Commun 9:36 PubMedPubMedCentralCrossRef Chavali M, Klingener M et al (2018) Non-canonical Wnt signaling regulates neural stem cell quiescence during homeostasis and after demyelination. Nat Commun 9:36 PubMedPubMedCentralCrossRef
40.
go back to reference Davidson KC, Jamshidi P et al (2007) Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Mol Cell Neurosci 36:408–415 PubMedCrossRef Davidson KC, Jamshidi P et al (2007) Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Mol Cell Neurosci 36:408–415 PubMedCrossRef
41.
go back to reference Dravid G, Ye Z et al (2005) Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23:1489–1501 PubMedCrossRef Dravid G, Ye Z et al (2005) Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23:1489–1501 PubMedCrossRef
42.
go back to reference Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol 6:64–74 PubMedCrossRef Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol 6:64–74 PubMedCrossRef
44.
go back to reference Lickert H, Kutsch S et al (2002) Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell 3:171–181 PubMedCrossRef Lickert H, Kutsch S et al (2002) Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell 3:171–181 PubMedCrossRef
45.
go back to reference Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346:847–850 PubMedCrossRef Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346:847–850 PubMedCrossRef
46.
go back to reference Wickham RJ, Alexander JM et al (2019) Learning impairments and molecular changes in the brain caused by beta-catenin loss. Hum Mol Genet 28:2965–2975 PubMedPubMedCentralCrossRef Wickham RJ, Alexander JM et al (2019) Learning impairments and molecular changes in the brain caused by beta-catenin loss. Hum Mol Genet 28:2965–2975 PubMedPubMedCentralCrossRef
47.
go back to reference Brigidi GS, Bamji SX (2011) Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol 21:208–214 PubMedCrossRef Brigidi GS, Bamji SX (2011) Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol 21:208–214 PubMedCrossRef
48.
go back to reference Kayumi S, Perez-Jurado LA et al (2022) Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants. Genet Med 24:2351–2366 PubMedCrossRef Kayumi S, Perez-Jurado LA et al (2022) Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants. Genet Med 24:2351–2366 PubMedCrossRef
Metadata
Title
Alopecia areata-like pattern of baldness: the most recent update and the expansion of novel phenotype and genotype in the CTNNB1 gene
Authors
Aysan Moeinafshar
Sahand Tehrani Fateh
Hossein Sadeghi
Parvaneh Karimzadeh
Reza Mirfakhraie
Farzad Hashemi-Gorji
Pegah Larki
Mohammad Miryounesi
Mohammad-Reza Ghasemi
Publication date
28-06-2023
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 11/2023
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-023-06922-6

Other articles of this Issue 11/2023

Neurological Sciences 11/2023 Go to the issue