Skip to main content
Top

12-09-2024 | Insulins | Concise Clinical Review

Insulin resistance, bone health, and fracture risk

Authors: Ferah Armutcu, Eugene McCloskey

Published in: Osteoporosis International

Login to get access

Abstract

Summary

Insulin resistance, defined as an impaired biological response to insulin stimulation in target tissues, arises most frequently in the presence of central obesity. Although obesity is generally associated with increased bone mass, recent data challenge this view and, if complicated by T2DM, obese patients are at high risk for fragility fractures. IR may play a key role in this increased fracture risk through effects on bone quality rather than bone quantity. Further understanding of the mechanisms and approaches to prevent osteoporotic fractures in IR-related diseases is needed.

Clinical relevance

The dramatic increase in obesity and metabolic syndrome (MetS) over the last half-century has led to a worldwide epidemic of type 2 diabetes mellitus (T2DM) as well as in the incidence of insulin resistance (IR). IR is defined as an impaired biological response to insulin stimulation in target tissues and is primarily related to the liver, muscle, and adipose tissue. The most frequent underlying cause is central obesity, and it is known that excess abdominal adipose tissue secretes increased amounts of free fatty acids, which directly affects insulin signalling, reduces glucose uptake in muscle, and triggers excessive triglyceride synthesis and gluconeogenesis in the liver. When pancreatic β cells are unable to secrete the higher levels of insulin needed, T2DM, the main complication of IR, occurs.

Observations

Although obesity is generally associated with increased bone mass, recent data challenge this view and highlight the multifaceted nature of the obesity-bone relationship. Patients with T2DM are at significant risk for well-known complications of diabetes, including retinopathy, nephropathy, macrovascular disease, and neuropathy, but it is clear that they are also at high risk for fragility fractures. Moreover, recent data provide strong evidence that IR may key role in the increased fracture risk observed in both obesity and T2DM.

Conclusions

In this concise review article, the role of IR in increased risk of osteoporotic fractures in MetS, obesity, and T2DM is discussed and summarised, including consideration of the need for fracture risk assessment as a ‘preventive measure’, especially in patients with T2DM and chronic MetS with abdominal obesity. Personalised and targeted diagnostic and therapeutic approaches to prevent osteoporotic fractures in IR-related diseases are needed and could make significant contributions to health outcomes.
Literature
1.
go back to reference Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. The Lancet 393:364–376CrossRef Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. The Lancet 393:364–376CrossRef
2.
go back to reference Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL (2016) Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 13:208–219PubMedCrossRef Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL (2016) Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 13:208–219PubMedCrossRef
3.
go back to reference Leanza G, Maddaloni E, Pitocco D et al (2019) Risk factors for fragility fractures in type 1 diabetes. Bone 125:194–199PubMedCrossRef Leanza G, Maddaloni E, Pitocco D et al (2019) Risk factors for fragility fractures in type 1 diabetes. Bone 125:194–199PubMedCrossRef
4.
go back to reference Weber DR, Haynes K, Leonard MB, Willi SM, Denburg MR (2015) Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care 38:1913–1920PubMedPubMedCentralCrossRef Weber DR, Haynes K, Leonard MB, Willi SM, Denburg MR (2015) Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care 38:1913–1920PubMedPubMedCentralCrossRef
5.
go back to reference Janghorbani M, Feskanich D, Willett WC, Hu F (2006) Prospective study of diabetes and risk of hip fracture. Diabetes Care 29:1573–1578PubMedCrossRef Janghorbani M, Feskanich D, Willett WC, Hu F (2006) Prospective study of diabetes and risk of hip fracture. Diabetes Care 29:1573–1578PubMedCrossRef
6.
go back to reference Khosla S, Samakkarnthai P, Monroe DG, Farr JN (2021) Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat Rev Endocrinol 17:685–697PubMedPubMedCentralCrossRef Khosla S, Samakkarnthai P, Monroe DG, Farr JN (2021) Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat Rev Endocrinol 17:685–697PubMedPubMedCentralCrossRef
8.
go back to reference Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308PubMedPubMedCentralCrossRef Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308PubMedPubMedCentralCrossRef
9.
go back to reference Thomas DM, Hards DK, Rogers SD, Ng KW, Best JD (1996) Insulin receptor expression in bone. J Bone Miner Res 11:1312–1320PubMedCrossRef Thomas DM, Hards DK, Rogers SD, Ng KW, Best JD (1996) Insulin receptor expression in bone. J Bone Miner Res 11:1312–1320PubMedCrossRef
10.
12.
go back to reference Nolan CJ, Prentki M (2019) Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: time for a conceptual framework shift. Diab Vasc Dis Res 16:118–127PubMedCrossRef Nolan CJ, Prentki M (2019) Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: time for a conceptual framework shift. Diab Vasc Dis Res 16:118–127PubMedCrossRef
13.
go back to reference James DE, Stockli J, Birnbaum MJ (2021) The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol 22:751–771PubMedCrossRef James DE, Stockli J, Birnbaum MJ (2021) The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol 22:751–771PubMedCrossRef
14.
go back to reference Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, Yin X, Xu Q (2023) Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne) 14:1161521PubMedCrossRef Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, Yin X, Xu Q (2023) Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne) 14:1161521PubMedCrossRef
15.
go back to reference Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H (2022) Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 7:216–216PubMedPubMedCentralCrossRef Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H (2022) Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 7:216–216PubMedPubMedCentralCrossRef
16.
go back to reference Xourafa G, Korbmacher M, Roden M (2023) Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 20:27–49PubMedCrossRef Xourafa G, Korbmacher M, Roden M (2023) Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 20:27–49PubMedCrossRef
17.
go back to reference Ferron M, Lacombe J (2014) Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys 561:137–146PubMedCrossRef Ferron M, Lacombe J (2014) Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys 561:137–146PubMedCrossRef
18.
go back to reference Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50:568–575PubMedCrossRef Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50:568–575PubMedCrossRef
19.
go back to reference Han Y, You X, Xing W, Zhang Z, Zou W (2018) Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 6:16–16PubMedPubMedCentralCrossRef Han Y, You X, Xing W, Zhang Z, Zou W (2018) Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 6:16–16PubMedPubMedCentralCrossRef
20.
go back to reference Anastasilakis AD, Tsourdi E, Tabacco G, Naciu AM, Napoli N, Vescini F, Palermo A (2021) The impact of antiosteoporotic drugs on glucose metabolism and fracture risk in diabetes: good or bad news? J Clin Med 10:996PubMedPubMedCentralCrossRef Anastasilakis AD, Tsourdi E, Tabacco G, Naciu AM, Napoli N, Vescini F, Palermo A (2021) The impact of antiosteoporotic drugs on glucose metabolism and fracture risk in diabetes: good or bad news? J Clin Med 10:996PubMedPubMedCentralCrossRef
23.
go back to reference Guntur AR, Le PT, Farber CR, Rosen CJ (2014) Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology 155:1589–1595PubMedPubMedCentralCrossRef Guntur AR, Le PT, Farber CR, Rosen CJ (2014) Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology 155:1589–1595PubMedPubMedCentralCrossRef
24.
25.
go back to reference Fulzele K, Riddle RC, DiGirolamo DJ et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319PubMedPubMedCentralCrossRef Fulzele K, Riddle RC, DiGirolamo DJ et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319PubMedPubMedCentralCrossRef
26.
go back to reference Oh JH, Lee NK (2017) Up-regulation of RANK expression via ERK1/2 by insulin contributes to the enhancement of osteoclast differentiation. Mol Cells 40:371–377PubMedPubMedCentralCrossRef Oh JH, Lee NK (2017) Up-regulation of RANK expression via ERK1/2 by insulin contributes to the enhancement of osteoclast differentiation. Mol Cells 40:371–377PubMedPubMedCentralCrossRef
27.
go back to reference Conte C, Epstein S, Napoli N (2018) Insulin resistance and bone: a biological partnership. Acta Diabetol 55:305–314PubMedCrossRef Conte C, Epstein S, Napoli N (2018) Insulin resistance and bone: a biological partnership. Acta Diabetol 55:305–314PubMedCrossRef
28.
29.
go back to reference Barrett-Connor E, Kritz-Silverstein D (1996) Does hyperinsulinemia preserve bone? Diabetes Care 19:1388–1392PubMedCrossRef Barrett-Connor E, Kritz-Silverstein D (1996) Does hyperinsulinemia preserve bone? Diabetes Care 19:1388–1392PubMedCrossRef
30.
go back to reference Stolk RP, Van Daele PLA, Pols HAP, Burger H, Hofman A, Birkenhäger JC, Lamberts SWJ, Grobbee DE (1996) Hyperinsulinemia and bone mineral density in an elderly population: the Rotterdam study. Bone 18:545–549PubMedCrossRef Stolk RP, Van Daele PLA, Pols HAP, Burger H, Hofman A, Birkenhäger JC, Lamberts SWJ, Grobbee DE (1996) Hyperinsulinemia and bone mineral density in an elderly population: the Rotterdam study. Bone 18:545–549PubMedCrossRef
31.
go back to reference Arikan S, Tuzcu A, Bahceci M, Ozmen S, Gokalp D (2012) Insulin resistance in type 2 diabetes mellitus may be related to bone mineral density. J Clin Densitom 15:186–190PubMedCrossRef Arikan S, Tuzcu A, Bahceci M, Ozmen S, Gokalp D (2012) Insulin resistance in type 2 diabetes mellitus may be related to bone mineral density. J Clin Densitom 15:186–190PubMedCrossRef
32.
go back to reference Ma W, Zhou X, Huang X, Xiong Y (2023) Causal relationship between body mass index, type 2 diabetes and bone mineral density: Mendelian randomization. PLoS ONE 18:e0290530–e0290530PubMedPubMedCentralCrossRef Ma W, Zhou X, Huang X, Xiong Y (2023) Causal relationship between body mass index, type 2 diabetes and bone mineral density: Mendelian randomization. PLoS ONE 18:e0290530–e0290530PubMedPubMedCentralCrossRef
33.
go back to reference Song J, Zhang R, Lv L, Liang J, Wang W, Liu R, Dang X (2020) The relationship between body mass index and bone mineral density: a Mendelian randomization study. Calcif Tissue Int 107:440–445PubMedCrossRef Song J, Zhang R, Lv L, Liang J, Wang W, Liu R, Dang X (2020) The relationship between body mass index and bone mineral density: a Mendelian randomization study. Calcif Tissue Int 107:440–445PubMedCrossRef
34.
go back to reference Zhou H, Li C, Song W, Wei M, Cui Y, Huang Q, Wang Q (2021) Increasing fasting glucose and fasting insulin associated with elevated bone mineral density—evidence from cross-sectional and MR studies. Osteoporos Int 32:1153–1164PubMedCrossRef Zhou H, Li C, Song W, Wei M, Cui Y, Huang Q, Wang Q (2021) Increasing fasting glucose and fasting insulin associated with elevated bone mineral density—evidence from cross-sectional and MR studies. Osteoporos Int 32:1153–1164PubMedCrossRef
35.
go back to reference Ahmad OS, Leong A, Miller JA, Morris JA, Forgetta V, Mujammami M, Richards JB (2016) A Mendelian randomization study of the effect of type-2 diabetes and glycemic traits on bone mineral density. J Bone Miner Res 32:1072–1081CrossRef Ahmad OS, Leong A, Miller JA, Morris JA, Forgetta V, Mujammami M, Richards JB (2016) A Mendelian randomization study of the effect of type-2 diabetes and glycemic traits on bone mineral density. J Bone Miner Res 32:1072–1081CrossRef
36.
go back to reference Guan J, Liu T, Chen H, Yang K (2024) Association of type 2 diabetes mellitus and bone mineral density: a two-sample Mendelian randomization study. BMC Musculoskelet Disord 25:130–130PubMedPubMedCentralCrossRef Guan J, Liu T, Chen H, Yang K (2024) Association of type 2 diabetes mellitus and bone mineral density: a two-sample Mendelian randomization study. BMC Musculoskelet Disord 25:130–130PubMedPubMedCentralCrossRef
37.
go back to reference Mitchell A, Larsson SC, Fall T, Melhus H, Michaelsson K, Byberg L (2021) Fasting glucose, bone area and bone mineral density: a Mendelian randomisation study. Diabetologia 64:1348–1357PubMedPubMedCentralCrossRef Mitchell A, Larsson SC, Fall T, Melhus H, Michaelsson K, Byberg L (2021) Fasting glucose, bone area and bone mineral density: a Mendelian randomisation study. Diabetologia 64:1348–1357PubMedPubMedCentralCrossRef
38.
go back to reference Srikanthan P, Crandall CJ, Miller-Martinez D, Seeman TE, Greendale GA, Binkley N, Karlamangla AS (2014) Insulin resistance and bone strength: findings from the study of midlife in the United States. J Bone Miner Res 29:796–803PubMedCrossRef Srikanthan P, Crandall CJ, Miller-Martinez D, Seeman TE, Greendale GA, Binkley N, Karlamangla AS (2014) Insulin resistance and bone strength: findings from the study of midlife in the United States. J Bone Miner Res 29:796–803PubMedCrossRef
39.
go back to reference Shieh A, Greendale GA, Cauley JA, Srikanthan P, Karlamangla AS (2022) Longitudinal associations of insulin resistance with change in bone mineral density in midlife women. JCI Insight 7:e162085PubMedPubMedCentralCrossRef Shieh A, Greendale GA, Cauley JA, Srikanthan P, Karlamangla AS (2022) Longitudinal associations of insulin resistance with change in bone mineral density in midlife women. JCI Insight 7:e162085PubMedPubMedCentralCrossRef
40.
go back to reference Rønne MS, Heidemann M, Lylloff L et al (2019) Bone mass development is sensitive to insulin resistance in adolescent boys. Bone 122:1–7PubMedCrossRef Rønne MS, Heidemann M, Lylloff L et al (2019) Bone mass development is sensitive to insulin resistance in adolescent boys. Bone 122:1–7PubMedCrossRef
41.
go back to reference Napoli N, Conte C, Pedone C, Strotmeyer ES, Barbour KE, Black DM, Samelson EJ, Schwartz AV (2019) Effect of insulin resistance on BMD and fracture risk in older adults. J Clin Endocrinol Metab 104:3303–3310PubMedPubMedCentralCrossRef Napoli N, Conte C, Pedone C, Strotmeyer ES, Barbour KE, Black DM, Samelson EJ, Schwartz AV (2019) Effect of insulin resistance on BMD and fracture risk in older adults. J Clin Endocrinol Metab 104:3303–3310PubMedPubMedCentralCrossRef
42.
go back to reference Ciarambino T, Crispino P, Guarisco G, Giordano M (2023) Gender differences in insulin resistance: new knowledge and perspectives. Curr Issues Mol Biol 45:7845–7861PubMedPubMedCentralCrossRef Ciarambino T, Crispino P, Guarisco G, Giordano M (2023) Gender differences in insulin resistance: new knowledge and perspectives. Curr Issues Mol Biol 45:7845–7861PubMedPubMedCentralCrossRef
43.
go back to reference Zhan H, Liu X, Piao S, Rong X, Guo J (2023) Association between triglyceride-glucose index and bone mineral density in US adults: a cross sectional study. J Orthop Surg Res 18:810–810PubMedPubMedCentralCrossRef Zhan H, Liu X, Piao S, Rong X, Guo J (2023) Association between triglyceride-glucose index and bone mineral density in US adults: a cross sectional study. J Orthop Surg Res 18:810–810PubMedPubMedCentralCrossRef
44.
go back to reference Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F (2008) The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord 6:299–304PubMedCrossRef Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F (2008) The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord 6:299–304PubMedCrossRef
45.
go back to reference Huang R, Cheng Z, Jin X, Yu X, Yu J, Guo Y, Zong L, Sheng J, Liu X, Wang S (2022) Usefulness of four surrogate indexes of insulin resistance in middle-aged population in Hefei, China. Ann Med 54:622–632PubMedPubMedCentralCrossRef Huang R, Cheng Z, Jin X, Yu X, Yu J, Guo Y, Zong L, Sheng J, Liu X, Wang S (2022) Usefulness of four surrogate indexes of insulin resistance in middle-aged population in Hefei, China. Ann Med 54:622–632PubMedPubMedCentralCrossRef
46.
go back to reference Son D-H, Lee HS, Lee Y-J, Lee J-H, Han J-H (2022) Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome. Nutr Metab Cardiovasc Dis 32:596–604PubMedCrossRef Son D-H, Lee HS, Lee Y-J, Lee J-H, Han J-H (2022) Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome. Nutr Metab Cardiovasc Dis 32:596–604PubMedCrossRef
47.
go back to reference Pan J, Huang X, Wang Q, Sun J, Zhai Z, Mo J, Huang J, Lu W (2023) Triglyceride glucose index is strongly associated with a fragility fracture in postmenopausal elderly females with type 2 diabetes mellitus combined with osteoporosis: a 6-year follow-up study. Clin Interv Aging 18:1841–1849PubMedPubMedCentralCrossRef Pan J, Huang X, Wang Q, Sun J, Zhai Z, Mo J, Huang J, Lu W (2023) Triglyceride glucose index is strongly associated with a fragility fracture in postmenopausal elderly females with type 2 diabetes mellitus combined with osteoporosis: a 6-year follow-up study. Clin Interv Aging 18:1841–1849PubMedPubMedCentralCrossRef
48.
go back to reference Yoon JH, Hong AR, Choi W, Park JY, Kim HK, Kang H-C (2020) Association of triglyceride-glucose index with bone mineral density in non-diabetic koreans: KNHANES 2008–2011. Calcif Tissue Int 108:176–187PubMedCrossRef Yoon JH, Hong AR, Choi W, Park JY, Kim HK, Kang H-C (2020) Association of triglyceride-glucose index with bone mineral density in non-diabetic koreans: KNHANES 2008–2011. Calcif Tissue Int 108:176–187PubMedCrossRef
49.
go back to reference Zhuo M, Chen Z, Zhong M-L et al (2023) Association of insulin resistance with bone mineral density in a nationwide health check-up population in China. Bone 170:116703PubMedCrossRef Zhuo M, Chen Z, Zhong M-L et al (2023) Association of insulin resistance with bone mineral density in a nationwide health check-up population in China. Bone 170:116703PubMedCrossRef
50.
go back to reference Jang M, Kim H, Lea S, Oh S, Kim JS, Oh B (2018) Effect of duration of diabetes on bone mineral density: a population study on East Asian males. BMC Endocr Disord 18:61PubMedPubMedCentralCrossRef Jang M, Kim H, Lea S, Oh S, Kim JS, Oh B (2018) Effect of duration of diabetes on bone mineral density: a population study on East Asian males. BMC Endocr Disord 18:61PubMedPubMedCentralCrossRef
51.
go back to reference Majumdar SR, Leslie WD, Lix LM, Morin SN, Johansson H, Oden A, McCloskey EV, Kanis JA (2016) Longer duration of diabetes strongly impacts fracture risk assessment: the Manitoba BMD cohort. J Clin Endocrinol Metab 101:4489–4496PubMedPubMedCentralCrossRef Majumdar SR, Leslie WD, Lix LM, Morin SN, Johansson H, Oden A, McCloskey EV, Kanis JA (2016) Longer duration of diabetes strongly impacts fracture risk assessment: the Manitoba BMD cohort. J Clin Endocrinol Metab 101:4489–4496PubMedPubMedCentralCrossRef
52.
go back to reference Starup-Linde J, Eriksen SA, Lykkeboe S, Handberg A, Vestergaard P (2014) Biochemical markers of bone turnover in diabetes patients—a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int 25:1697–1708PubMedCrossRef Starup-Linde J, Eriksen SA, Lykkeboe S, Handberg A, Vestergaard P (2014) Biochemical markers of bone turnover in diabetes patients—a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int 25:1697–1708PubMedCrossRef
53.
go back to reference Hygum K, Starup-Linde J, Harslof T, Vestergaard P, Langdahl BL (2017) Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover - a systematic review and meta-analysis. Eur J Endocrinol 176:R137–R157PubMedCrossRef Hygum K, Starup-Linde J, Harslof T, Vestergaard P, Langdahl BL (2017) Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover - a systematic review and meta-analysis. Eur J Endocrinol 176:R137–R157PubMedCrossRef
54.
go back to reference Guo H, Wang C, Jiang B et al (2021) Association of insulin resistance and β-cell function with bone turnover biomarkers in dysglycemia patients. Front Endocrinol (Lausanne) 12:554604–554604PubMedCrossRef Guo H, Wang C, Jiang B et al (2021) Association of insulin resistance and β-cell function with bone turnover biomarkers in dysglycemia patients. Front Endocrinol (Lausanne) 12:554604–554604PubMedCrossRef
55.
go back to reference Fuglsang-Nielsen R, Rakvaag E, Vestergaard P, Hartmann B, Holst JJ, Hermansen K, Gregersen S, Starup-Linde J (2020) Consumption of nutrients and insulin resistance suppress markers of bone turnover in subjects with abdominal obesity. Bone 133:115230PubMedCrossRef Fuglsang-Nielsen R, Rakvaag E, Vestergaard P, Hartmann B, Holst JJ, Hermansen K, Gregersen S, Starup-Linde J (2020) Consumption of nutrients and insulin resistance suppress markers of bone turnover in subjects with abdominal obesity. Bone 133:115230PubMedCrossRef
56.
go back to reference Vestergaard P (2006) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444PubMedCrossRef Vestergaard P (2006) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444PubMedCrossRef
57.
go back to reference Schwartz AV, Vittinghoff E, Bauer DC et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305:2184–2192PubMedPubMedCentralCrossRef Schwartz AV, Vittinghoff E, Bauer DC et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305:2184–2192PubMedPubMedCentralCrossRef
59.
go back to reference Vilaca T, Schini M, Harnan S, Sutton A, Poku E, Allen IE, Cummings SR, Eastell R (2020) The risk of hip and non-vertebral fractures in type 1 and type 2 diabetes: a systematic review and meta-analysis update. Bone 137:115457PubMedCrossRef Vilaca T, Schini M, Harnan S, Sutton A, Poku E, Allen IE, Cummings SR, Eastell R (2020) The risk of hip and non-vertebral fractures in type 1 and type 2 diabetes: a systematic review and meta-analysis update. Bone 137:115457PubMedCrossRef
60.
go back to reference Shevroja E, Reginster J-Y, Lamy O et al (2023) Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging. Osteoporos Int 34:1501–1529PubMedPubMedCentralCrossRef Shevroja E, Reginster J-Y, Lamy O et al (2023) Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging. Osteoporos Int 34:1501–1529PubMedPubMedCentralCrossRef
61.
go back to reference de Araújo IM, Parreiras-e-Silva LT, Carvalho AL, Elias J, Salmon CEG, de Paula FJA (2020) Insulin resistance negatively affects bone quality not quantity: the relationship between bone and adipose tissue. Osteoporos Int 31:1125–1133PubMedCrossRef de Araújo IM, Parreiras-e-Silva LT, Carvalho AL, Elias J, Salmon CEG, de Paula FJA (2020) Insulin resistance negatively affects bone quality not quantity: the relationship between bone and adipose tissue. Osteoporos Int 31:1125–1133PubMedCrossRef
62.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRef
63.
go back to reference Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85:2402–2410PubMedCrossRef Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85:2402–2410PubMedCrossRef
64.
go back to reference Bello-Chavolla OY, Almeda-Valdes P, Gomez-Velasco D et al (2018) METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur J Endocrinol 178:533–544PubMedCrossRef Bello-Chavolla OY, Almeda-Valdes P, Gomez-Velasco D et al (2018) METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur J Endocrinol 178:533–544PubMedCrossRef
65.
go back to reference Hnilicova P, Kantorova E, Sutovsky S, Grofik M, Zelenak K, Kurca E, Zilka N, Parvanovova P, Kolisek M (2023) Imaging methods applicable in the diagnostics of Alzheimer’s disease, considering the involvement of insulin resistance. Int J Mol Sci 24:3325PubMedPubMedCentralCrossRef Hnilicova P, Kantorova E, Sutovsky S, Grofik M, Zelenak K, Kurca E, Zilka N, Parvanovova P, Kolisek M (2023) Imaging methods applicable in the diagnostics of Alzheimer’s disease, considering the involvement of insulin resistance. Int J Mol Sci 24:3325PubMedPubMedCentralCrossRef
67.
go back to reference Chen Q, Liu T, Zhou H, Peng H, Yan C (2019) Risk of fractures associated with dipeptidyl peptidase-4 inhibitor treatment: a systematic review and meta-analysis of randomized controlled trials. Diabetes Ther 10:1879–1892PubMedPubMedCentralCrossRef Chen Q, Liu T, Zhou H, Peng H, Yan C (2019) Risk of fractures associated with dipeptidyl peptidase-4 inhibitor treatment: a systematic review and meta-analysis of randomized controlled trials. Diabetes Ther 10:1879–1892PubMedPubMedCentralCrossRef
68.
go back to reference Mabilleau G, Bouvard B (2020) Update on: effects of anti-diabetic drugs on bone metabolism. Expert Rev Endocrinol Metab 15:415–430PubMedCrossRef Mabilleau G, Bouvard B (2020) Update on: effects of anti-diabetic drugs on bone metabolism. Expert Rev Endocrinol Metab 15:415–430PubMedCrossRef
69.
go back to reference Hidayat K, Du X, Wu MJ, Shi BM (2019) The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: systematic review and meta-analysis of observational studies. Obes Rev 20:1494–1503PubMedCrossRef Hidayat K, Du X, Wu MJ, Shi BM (2019) The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: systematic review and meta-analysis of observational studies. Obes Rev 20:1494–1503PubMedCrossRef
70.
go back to reference Cheng L, Hu Y, Li YY, Cao X, Bai N, Lu TT, Li GQ, Li N, Wang AN, Mao XM (2019) Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes/Metabolism Research and Reviews 35(7):e3168PubMedCrossRef Cheng L, Hu Y, Li YY, Cao X, Bai N, Lu TT, Li GQ, Li N, Wang AN, Mao XM (2019) Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes/Metabolism Research and Reviews 35(7):e3168PubMedCrossRef
71.
go back to reference Zhu Z-N, Jiang Y-F, Ding T (2014) Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 68:115–123PubMedCrossRef Zhu Z-N, Jiang Y-F, Ding T (2014) Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 68:115–123PubMedCrossRef
72.
go back to reference Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR (2008) Use of thiazolidinediones and fracture risk. Arch Intern Med 168:820–825PubMedCrossRef Meier C, Kraenzlin ME, Bodmer M, Jick SS, Jick H, Meier CR (2008) Use of thiazolidinediones and fracture risk. Arch Intern Med 168:820–825PubMedCrossRef
73.
go back to reference Davies MJ, Aroda VR, Collins BS et al (2022) Management of hyperglycemia in type 2 diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 45:2753–2786PubMedPubMedCentralCrossRef Davies MJ, Aroda VR, Collins BS et al (2022) Management of hyperglycemia in type 2 diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 45:2753–2786PubMedPubMedCentralCrossRef
75.
go back to reference Kanis JA, Johansson H, Oden A, McCloskey EV (2009) Assessment of fracture risk. Eur J Radiol 71:392–397PubMedCrossRef Kanis JA, Johansson H, Oden A, McCloskey EV (2009) Assessment of fracture risk. Eur J Radiol 71:392–397PubMedCrossRef
76.
go back to reference Nguyen ND, Ahlborg HG, Center JR, Eisman JA, Nguyen TV (2007) Residual lifetime risk of fractures in women and men. J Bone Miner Res 22:781–788PubMedCrossRef Nguyen ND, Ahlborg HG, Center JR, Eisman JA, Nguyen TV (2007) Residual lifetime risk of fractures in women and men. J Bone Miner Res 22:781–788PubMedCrossRef
77.
78.
go back to reference Watts NB (2011) The fracture risk assessment tool (FRAX<sup>®</sup>): applications in clinical practice. J Womens Health 20:525–531CrossRef Watts NB (2011) The fracture risk assessment tool (FRAX<sup>®</sup>): applications in clinical practice. J Womens Health 20:525–531CrossRef
79.
go back to reference Schini M, Johansson H, Harvey NC, Lorentzon M, Kanis JA, McCloskey EV (2024) An overview of the use of the fracture risk assessment tool (FRAX) in osteoporosis. J Endocrinol Invest 47:501–511PubMedCrossRef Schini M, Johansson H, Harvey NC, Lorentzon M, Kanis JA, McCloskey EV (2024) An overview of the use of the fracture risk assessment tool (FRAX) in osteoporosis. J Endocrinol Invest 47:501–511PubMedCrossRef
80.
go back to reference Eller-Vainicher C, Cairoli E, Grassi G, Grassi F, Catalano A, Merlotti D, Falchetti A, Gaudio A, Chiodini I, Gennari L (2020) Pathophysiology and management of type 2 diabetes mellitus bone fragility. J Diabetes Res 2020:7608964–7608964PubMedPubMedCentralCrossRef Eller-Vainicher C, Cairoli E, Grassi G, Grassi F, Catalano A, Merlotti D, Falchetti A, Gaudio A, Chiodini I, Gennari L (2020) Pathophysiology and management of type 2 diabetes mellitus bone fragility. J Diabetes Res 2020:7608964–7608964PubMedPubMedCentralCrossRef
81.
go back to reference Leslie WD, Johansson H, McCloskey EV, Harvey NC, Kanis JA, Hans D (2018) Comparison of methods for improving fracture risk assessment in diabetes: the Manitoba BMD registry. J Bone Miner Res 33:1923–1930PubMedCrossRef Leslie WD, Johansson H, McCloskey EV, Harvey NC, Kanis JA, Hans D (2018) Comparison of methods for improving fracture risk assessment in diabetes: the Manitoba BMD registry. J Bone Miner Res 33:1923–1930PubMedCrossRef
Metadata
Title
Insulin resistance, bone health, and fracture risk
Authors
Ferah Armutcu
Eugene McCloskey
Publication date
12-09-2024
Publisher
Springer London
Published in
Osteoporosis International
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-024-07227-w