Skip to main content
Top

02-09-2024 | Insulins | Mini-Review

Genetics of type-1 diabetes

Authors: Hiroshi Ikegami, Shinsuke Noso

Published in: Diabetology International

Login to get access

Abstract

Type-1 diabetes is a multifactorial disease characterized by genetic and environmental factors that contribute to its development and progression. Despite progress in the management of type-1 diabetes, the final goal of curing the disease is yet to be achieved. To establish effective methods for the prevention, intervention, and cure of the disease, the molecular mechanisms and pathways involved in its development and progression should be clarified. One effective approach is to identify genes responsible for disease susceptibility and apply information obtained from the function of genes in disease etiology for the protection, intervention, and cure of type-1 diabetes. In this review, we discuss the genetic basis of type-1 diabetes, along with prospects for its prevention, intervention, and cure for type-1 diabetes.
Literature
1.
go back to reference Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus; Seino Y, Nanjo K, Tajima N,et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. Diabetol Int. 2010;1:2–20. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus; Seino Y, Nanjo K, Tajima N,et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. Diabetol Int. 2010;1:2–20.
2.
go back to reference Kawasaki E, Maruyama T, Imagawa A, et al. Diagnostic criteria for acute-onset type 1 diabetes mellitus (2012): Report of the Committee of Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus. Diabetol Int. 2013;4:221–5.CrossRef Kawasaki E, Maruyama T, Imagawa A, et al. Diagnostic criteria for acute-onset type 1 diabetes mellitus (2012): Report of the Committee of Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus. Diabetol Int. 2013;4:221–5.CrossRef
3.
go back to reference Imagawa A, Hanafusa T, Awata T, et al. Report on the committee of the Japan Diabetes Society on the Research of fulminant and acute-onset type 1 diabetes mellitus: new diagnostic criteria of fulminant type 1 diabetes mellitus (2012). Diabetol Int. 2012;3:179–83.CrossRef Imagawa A, Hanafusa T, Awata T, et al. Report on the committee of the Japan Diabetes Society on the Research of fulminant and acute-onset type 1 diabetes mellitus: new diagnostic criteria of fulminant type 1 diabetes mellitus (2012). Diabetol Int. 2012;3:179–83.CrossRef
4.
go back to reference Shimada A, Kawasaki E, Abiru N, et al. New diagnostic criteria (2023) for slowly progressive type 1 diabetes (SPIDDM): Report from Committee on Type 1 Diabetes of the Japan Diabetes Society (English version). Diabetol Int. 2024;15:1–4.PubMedCrossRef Shimada A, Kawasaki E, Abiru N, et al. New diagnostic criteria (2023) for slowly progressive type 1 diabetes (SPIDDM): Report from Committee on Type 1 Diabetes of the Japan Diabetes Society (English version). Diabetol Int. 2024;15:1–4.PubMedCrossRef
5.
go back to reference Patterson C, Guariguata L, Dahlquist G, et al. Diabetes in the young - a global view and worldwide estimates of numbers of children with type 1 diabetes. Diabetes Res Clin Pract. 2014;103:161–75.PubMedCrossRef Patterson C, Guariguata L, Dahlquist G, et al. Diabetes in the young - a global view and worldwide estimates of numbers of children with type 1 diabetes. Diabetes Res Clin Pract. 2014;103:161–75.PubMedCrossRef
6.
go back to reference Imagawa A, Hanafusa T. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Prac Endocrinol Metab. 2007;3:36–45.CrossRef Imagawa A, Hanafusa T. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Prac Endocrinol Metab. 2007;3:36–45.CrossRef
7.
go back to reference Ikegami H, Ogihara T. Genetics of insulin-dependent diabetes mellitus. Endocrine J. 1996;43:605–11.CrossRef Ikegami H, Ogihara T. Genetics of insulin-dependent diabetes mellitus. Endocrine J. 1996;43:605–11.CrossRef
8.
go back to reference Ikegami H, Kawabata Y, Noso S, et al. Genetics of type 1 diabetes in Asian and Caucasian populations. Diab Res Clin Prac. 2007;77(Suppl 1):S116–21.CrossRef Ikegami H, Kawabata Y, Noso S, et al. Genetics of type 1 diabetes in Asian and Caucasian populations. Diab Res Clin Prac. 2007;77(Suppl 1):S116–21.CrossRef
9.
10.
go back to reference Hyttinen V, Kaprio J, Kinnunen L, et al. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 2003;52:1052–5.PubMedCrossRef Hyttinen V, Kaprio J, Kinnunen L, et al. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 2003;52:1052–5.PubMedCrossRef
11.
go back to reference Ikegami H, Makino S. The NOD mouse and its related strains. In: Sima AAF, Shafrir E, editors. Animal Models of Diabetes A Primer. Amsterdam: Harwood Academic Publishers; 2000. p. 43–61. Ikegami H, Makino S. The NOD mouse and its related strains. In: Sima AAF, Shafrir E, editors. Animal Models of Diabetes A Primer. Amsterdam: Harwood Academic Publishers; 2000. p. 43–61.
12.
go back to reference Komeda K, Noda M, Terao K, et al. Establishment of two substrains, diabetes-prone and non-diabetic, from Long-Evans Tokushima Lean (LETL) rats. Endocr J. 1998;45:737–44.PubMedCrossRef Komeda K, Noda M, Terao K, et al. Establishment of two substrains, diabetes-prone and non-diabetic, from Long-Evans Tokushima Lean (LETL) rats. Endocr J. 1998;45:737–44.PubMedCrossRef
13.
go back to reference Ikegami H, Makino S, Harada M, et al. The cataract Shionogi mouse, a sister strain of the non-obese diabetic mouse: similar class II but different class I gene products. Diabetologia. 1988;31:254–8.PubMedCrossRef Ikegami H, Makino S, Harada M, et al. The cataract Shionogi mouse, a sister strain of the non-obese diabetic mouse: similar class II but different class I gene products. Diabetologia. 1988;31:254–8.PubMedCrossRef
14.
go back to reference Ikegami H, Yano N, Sato T, et al. Immunogenetics and immunopathogenesis of the NOD mouse. In: Eisenbarth GS, editor., et al., Immunotherapy of diabetes and selected autoimmune diseases. Boca Raton: CRC Press; 1989. p. 22–33. Ikegami H, Yano N, Sato T, et al. Immunogenetics and immunopathogenesis of the NOD mouse. In: Eisenbarth GS, editor., et al., Immunotherapy of diabetes and selected autoimmune diseases. Boca Raton: CRC Press; 1989. p. 22–33.
15.
go back to reference Hattori M, Buse JB, Jackson RA, et al. The NOD mouse: recessive diabetogenic gene in the major histocompatibility complex. Science. 1986;231:733–5.PubMedCrossRef Hattori M, Buse JB, Jackson RA, et al. The NOD mouse: recessive diabetogenic gene in the major histocompatibility complex. Science. 1986;231:733–5.PubMedCrossRef
16.
go back to reference Wicker LS, Miller BJ, Coker LZ, et al. Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J Exp Med. 1987;165:1639–54.PubMedCrossRef Wicker LS, Miller BJ, Coker LZ, et al. Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J Exp Med. 1987;165:1639–54.PubMedCrossRef
17.
go back to reference Ikegami H, Makino S. Genetic susceptibility to insulin-dependent diabetes mellitus: from the NOD mouse to man. In: Shafrir E, editor. Frontiers in Diabetes Research: Lessons from Animal Diabetes IV. London: Smith-Gordon; 1993. p. 39–50. Ikegami H, Makino S. Genetic susceptibility to insulin-dependent diabetes mellitus: from the NOD mouse to man. In: Shafrir E, editor. Frontiers in Diabetes Research: Lessons from Animal Diabetes IV. London: Smith-Gordon; 1993. p. 39–50.
18.
go back to reference Ikegami H, Makino S, Ogihara T. Molecular genetics of insulin-dependent diabetes mellitus: analysis of congenic strains. In: Shafrir E, editor. Frontiers in Diabetes Research: Lessons from Animal Diabetes VI. Boston: Birkhauser; 1996. p. 33–46.CrossRef Ikegami H, Makino S, Ogihara T. Molecular genetics of insulin-dependent diabetes mellitus: analysis of congenic strains. In: Shafrir E, editor. Frontiers in Diabetes Research: Lessons from Animal Diabetes VI. Boston: Birkhauser; 1996. p. 33–46.CrossRef
19.
go back to reference Kawabata Y, Ikegami H, Awata T, et al. Differential association of HLA with three subtypes of type 1 diabetes: fulminant, slowly progressive and acute-onset. Diabetologia. 2009;52:2513–21.PubMedCrossRef Kawabata Y, Ikegami H, Awata T, et al. Differential association of HLA with three subtypes of type 1 diabetes: fulminant, slowly progressive and acute-onset. Diabetologia. 2009;52:2513–21.PubMedCrossRef
20.
go back to reference Awata T, Kawasaki E, Ikegami H, et al. Insulin gene/IDDM2 locus in Japanese type 1 diabetes: contribution of class I alleles and influence of class I subdivision in susceptibility to type 1 diabetes. J Clin Endocrinol Metab. 2007;92:1791–5.PubMedCrossRef Awata T, Kawasaki E, Ikegami H, et al. Insulin gene/IDDM2 locus in Japanese type 1 diabetes: contribution of class I alleles and influence of class I subdivision in susceptibility to type 1 diabetes. J Clin Endocrinol Metab. 2007;92:1791–5.PubMedCrossRef
21.
go back to reference Acha-Orbea H, McDevitt HO. The first external domain of the nonobese diabetic mouse class II I-A beta chain is unique. Proc Natl Acad Sci USA. 1987;84:2435–9.PubMedPubMedCentralCrossRef Acha-Orbea H, McDevitt HO. The first external domain of the nonobese diabetic mouse class II I-A beta chain is unique. Proc Natl Acad Sci USA. 1987;84:2435–9.PubMedPubMedCentralCrossRef
22.
go back to reference Ikegami H, Eisenbarth GS, Hattori M. Major histocompatibility complex-linked diabetogenic gene of the nonobese diabetic mouse: analysis of genomic DNA amplified by the polymerase chain reaction. J Clin Invest. 1990;85:18–24.PubMedPubMedCentralCrossRef Ikegami H, Eisenbarth GS, Hattori M. Major histocompatibility complex-linked diabetogenic gene of the nonobese diabetic mouse: analysis of genomic DNA amplified by the polymerase chain reaction. J Clin Invest. 1990;85:18–24.PubMedPubMedCentralCrossRef
23.
go back to reference Ikegami H, Makino S, Yamato E, et al. Identification of a new susceptibility locus for insulin-dependent diabetes mellitus by ancestral haplotype congenic mapping. J Clin Invest. 1995;96:1936–42.PubMedPubMedCentralCrossRef Ikegami H, Makino S, Yamato E, et al. Identification of a new susceptibility locus for insulin-dependent diabetes mellitus by ancestral haplotype congenic mapping. J Clin Invest. 1995;96:1936–42.PubMedPubMedCentralCrossRef
24.
go back to reference Inoue K, Ikegami H, Fujisawa T, et al. Allelic variation in class I K gene as candidate for second component of MHC-linked susceptibility to type 1 diabetes in NOD mouse. Diabetologia. 2004;47:739–47.PubMedCrossRef Inoue K, Ikegami H, Fujisawa T, et al. Allelic variation in class I K gene as candidate for second component of MHC-linked susceptibility to type 1 diabetes in NOD mouse. Diabetologia. 2004;47:739–47.PubMedCrossRef
25.
go back to reference Hattori M, Yamato E, Itoh N, et al. Cutting edge: homologous recombination of the MHC class I K region defines new MHC-linked diabetogenic susceptibility gene(s) in nonobese diabetic mice. J Immunol. 1999;163:1721–4.PubMedCrossRef Hattori M, Yamato E, Itoh N, et al. Cutting edge: homologous recombination of the MHC class I K region defines new MHC-linked diabetogenic susceptibility gene(s) in nonobese diabetic mice. J Immunol. 1999;163:1721–4.PubMedCrossRef
26.
go back to reference Awata T, Kuzuya T, Matsuda A, et al. Genetic analysis of HLA class II alleles and susceptibility to type 1 (insulin-dependent) diabetes mellitus in Japanese subjects. Diabetologia. 1992;35:419–24.PubMedCrossRef Awata T, Kuzuya T, Matsuda A, et al. Genetic analysis of HLA class II alleles and susceptibility to type 1 (insulin-dependent) diabetes mellitus in Japanese subjects. Diabetologia. 1992;35:419–24.PubMedCrossRef
27.
go back to reference Ikegami H, Kawaguchi Y, Yamato E, et al. Analysis by the polymerase chain reaction of histocompatibility leucocyte antigen-DR9-linked susceptibility to insulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1992;75:1381–5.PubMed Ikegami H, Kawaguchi Y, Yamato E, et al. Analysis by the polymerase chain reaction of histocompatibility leucocyte antigen-DR9-linked susceptibility to insulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1992;75:1381–5.PubMed
28.
go back to reference Kawabata Y, Ikegami H, Kawaguchi Y, et al. Asian-specific HLA haplotypes reveal heterogeneity of the contribution of HLA-DR and -DQ haplotypes to susceptibility to type 1 diabetes. Diabetes. 2002;51:545–51.PubMedCrossRef Kawabata Y, Ikegami H, Kawaguchi Y, et al. Asian-specific HLA haplotypes reveal heterogeneity of the contribution of HLA-DR and -DQ haplotypes to susceptibility to type 1 diabetes. Diabetes. 2002;51:545–51.PubMedCrossRef
29.
go back to reference Fujisawa T, Ikegami H, Yamato E, et al. Class I HLA is associated with age-at-onset of IDDM, while class II HLA confers susceptibility to IDDM. Diabetologia. 1995;38:1494. Fujisawa T, Ikegami H, Yamato E, et al. Class I HLA is associated with age-at-onset of IDDM, while class II HLA confers susceptibility to IDDM. Diabetologia. 1995;38:1494.
30.
go back to reference Kawabata Y, Ikegami H, Kawaguchi Y, et al. Age-related association of MHC class I chain-related gene A (MICA) with type I (insulin-dependent) diabetes mellitus. Hum Immunol. 2000;61:624.PubMedCrossRef Kawabata Y, Ikegami H, Kawaguchi Y, et al. Age-related association of MHC class I chain-related gene A (MICA) with type I (insulin-dependent) diabetes mellitus. Hum Immunol. 2000;61:624.PubMedCrossRef
31.
go back to reference Nejentsev S, Howson JM, Walker NM, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. 2007;450:887–92.PubMedPubMedCentralCrossRef Nejentsev S, Howson JM, Walker NM, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. 2007;450:887–92.PubMedPubMedCentralCrossRef
32.
go back to reference Julier C, Hyer RN, Davies J, et al. Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature. 1991;354:155–9.PubMedCrossRef Julier C, Hyer RN, Davies J, et al. Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature. 1991;354:155–9.PubMedCrossRef
33.
go back to reference Lucassen AM, Julier C, Beressi JP, et al. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1kb segment of DNA spanning the insulin gene and associated with VNTR. Nat Genet. 1993;4:305–10.PubMedCrossRef Lucassen AM, Julier C, Beressi JP, et al. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1kb segment of DNA spanning the insulin gene and associated with VNTR. Nat Genet. 1993;4:305–10.PubMedCrossRef
34.
go back to reference Kawaguchi Y, Ikegami H, Shen G-Q, et al. Insulin gene region contributes to genetic susceptibility to, but may not to low incidence of, insulin-dependent diabetes mellitus in Japanese. Biochem Biophys Res Commun. 1997;233:283–7.PubMedCrossRef Kawaguchi Y, Ikegami H, Shen G-Q, et al. Insulin gene region contributes to genetic susceptibility to, but may not to low incidence of, insulin-dependent diabetes mellitus in Japanese. Biochem Biophys Res Commun. 1997;233:283–7.PubMedCrossRef
35.
go back to reference Vafiadia P, Bennett ST, Todd JA, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997;15:289–92.CrossRef Vafiadia P, Bennett ST, Todd JA, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997;15:289–92.CrossRef
36.
go back to reference Pugliese A, Zeller M, Fernandez A Jr, et al. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15:293–6.PubMedCrossRef Pugliese A, Zeller M, Fernandez A Jr, et al. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15:293–6.PubMedCrossRef
37.
38.
go back to reference Noso S, Kataoka K, Kawabata Y, et al. Insulin transactivator MafA regulates intra-thymic expression of insulin and affects susceptibility to type 1 diabetes. Diabetes. 2010;59:2579–87.PubMedPubMedCentralCrossRef Noso S, Kataoka K, Kawabata Y, et al. Insulin transactivator MafA regulates intra-thymic expression of insulin and affects susceptibility to type 1 diabetes. Diabetes. 2010;59:2579–87.PubMedPubMedCentralCrossRef
39.
go back to reference Noso S, Kawabata Y, Babaya N, et al. Association study of MAFA and MAFB, genes related to organ-specific autoimmunity, with susceptibility to type 1 diabetes in Japanese and Caucasian populations. J Genet Syndr Gene Ther. 2013;4:204.CrossRef Noso S, Kawabata Y, Babaya N, et al. Association study of MAFA and MAFB, genes related to organ-specific autoimmunity, with susceptibility to type 1 diabetes in Japanese and Caucasian populations. J Genet Syndr Gene Ther. 2013;4:204.CrossRef
40.
go back to reference Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type 1 diabetes. Nat Genet. 2004;36:337–8.PubMedCrossRef Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type 1 diabetes. Nat Genet. 2004;36:337–8.PubMedCrossRef
41.
go back to reference Ueda H, Howson JMM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11.PubMedCrossRef Ueda H, Howson JMM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11.PubMedCrossRef
42.
go back to reference Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007;39:1074–82.PubMedCrossRef Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007;39:1074–82.PubMedCrossRef
43.
go back to reference Ikegami H, Awata T, Kawasaki E, et al. The association of CTLA4 polymorphism with type 1 diabetes is concentrated in patients complicated with autoimmune thyroid disease: a multi-center collaborative study in Japan. J Clin Endocrinol Metab. 2006;91:1087–92.PubMedCrossRef Ikegami H, Awata T, Kawasaki E, et al. The association of CTLA4 polymorphism with type 1 diabetes is concentrated in patients complicated with autoimmune thyroid disease: a multi-center collaborative study in Japan. J Clin Endocrinol Metab. 2006;91:1087–92.PubMedCrossRef
44.
go back to reference Kawasaki E, Awata T, Ikegami H, et al. Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase (PTPN22) gene: Association between promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet. 2006;140:586–93.PubMedCrossRef Kawasaki E, Awata T, Ikegami H, et al. Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase (PTPN22) gene: Association between promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet. 2006;140:586–93.PubMedCrossRef
45.
go back to reference Awata T, Kawasaki E, Tanaka S, et al. Association of type 1 diabetes with two loci on 12q13 and 16p13 and the influence coexisting thyroid autoimmunity in Japanese. J Clin Endocrinol Metab. 2009;94:231–5.PubMedCrossRef Awata T, Kawasaki E, Tanaka S, et al. Association of type 1 diabetes with two loci on 12q13 and 16p13 and the influence coexisting thyroid autoimmunity in Japanese. J Clin Endocrinol Metab. 2009;94:231–5.PubMedCrossRef
46.
go back to reference Kawasaki E, Awata T, Ikegami H, et al. Genetic association between the IL2RA and mode of onset of type 1 diabetes in the Japanese population. J Clin Endocrinol Metab. 2009;94:947–52.PubMedCrossRef Kawasaki E, Awata T, Ikegami H, et al. Genetic association between the IL2RA and mode of onset of type 1 diabetes in the Japanese population. J Clin Endocrinol Metab. 2009;94:947–52.PubMedCrossRef
47.
go back to reference Yamashita H, Awata T, Kawasaki E, et al. Analysis of the HLA and non-HLA susceptibility loci in Japanese type 1 diabetes. Diabetes Metab Res Rev. 2011;27:844–8.PubMedCrossRef Yamashita H, Awata T, Kawasaki E, et al. Analysis of the HLA and non-HLA susceptibility loci in Japanese type 1 diabetes. Diabetes Metab Res Rev. 2011;27:844–8.PubMedCrossRef
48.
go back to reference Ikegami H, Noso S, Babaya N, et al. Genetic basis of type 1 diabetes: similarities and differences between East and West. Rev Diabet Stud. 2008;5:64–72.PubMedPubMedCentralCrossRef Ikegami H, Noso S, Babaya N, et al. Genetic basis of type 1 diabetes: similarities and differences between East and West. Rev Diabet Stud. 2008;5:64–72.PubMedPubMedCentralCrossRef
51.
go back to reference Davies JL, Kawaguchi Y, Bennett ST, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature. 1994;371:130–6.PubMedCrossRef Davies JL, Kawaguchi Y, Bennett ST, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature. 1994;371:130–6.PubMedCrossRef
52.
go back to reference Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39:857–64.PubMedPubMedCentralCrossRef Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39:857–64.PubMedPubMedCentralCrossRef
53.
go back to reference Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.PubMedPubMedCentralCrossRef Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.PubMedPubMedCentralCrossRef
54.
55.
go back to reference Robertson CC, Inshaw JRJ, Onengut-Gumuscu S, et al. Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nat Genet. 2021;53:962–71.PubMedPubMedCentralCrossRef Robertson CC, Inshaw JRJ, Onengut-Gumuscu S, et al. Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nat Genet. 2021;53:962–71.PubMedPubMedCentralCrossRef
56.
go back to reference Todd JA, Mijovic C, Fletcher J, et al. Identification of susceptibility loci for insulin-dependent diabetes mellitus by trans-racial gene mapping. Nature. 1989;338:587–9.PubMedCrossRef Todd JA, Mijovic C, Fletcher J, et al. Identification of susceptibility loci for insulin-dependent diabetes mellitus by trans-racial gene mapping. Nature. 1989;338:587–9.PubMedCrossRef
57.
go back to reference Ikegami H, Noso S, Babaya N, et al. Genetics and pathogenesis of type 1 diabetes: prospects for prevention and intervention. J Diabetes Investig. 2011;2:415–20.PubMedPubMedCentralCrossRef Ikegami H, Noso S, Babaya N, et al. Genetics and pathogenesis of type 1 diabetes: prospects for prevention and intervention. J Diabetes Investig. 2011;2:415–20.PubMedPubMedCentralCrossRef
58.
go back to reference Kawabata Y, Nishida N, Awata T, et al. A genome-wide association study confirming a strong effect of HLA and identifying variants in CSAD/lnc-ITGB7–1 on chromosome 12q13.13 associated with susceptibility to fulminant type 1 diabetes. Diabetes. 2019;68:665–75.PubMedCrossRef Kawabata Y, Nishida N, Awata T, et al. A genome-wide association study confirming a strong effect of HLA and identifying variants in CSAD/lnc-ITGB7–1 on chromosome 12q13.13 associated with susceptibility to fulminant type 1 diabetes. Diabetes. 2019;68:665–75.PubMedCrossRef
60.
go back to reference Arany E, Strutt B, Romanus P, et al. Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia. 2004;47:1831–7.PubMedCrossRef Arany E, Strutt B, Romanus P, et al. Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia. 2004;47:1831–7.PubMedCrossRef
61.
go back to reference Lin S, Yang J, Wu G, et al. Inhibitory effects of taurine on STZ-induced apoptosis of pancreatic islet cells. Adv Exp Med Biol. 2013;775:287–97.PubMedCrossRef Lin S, Yang J, Wu G, et al. Inhibitory effects of taurine on STZ-induced apoptosis of pancreatic islet cells. Adv Exp Med Biol. 2013;775:287–97.PubMedCrossRef
62.
go back to reference Nakatsuru Y, Murase-Mishiba B-T M, et al. Taurine improves glucose tolerance in STZ-induced insulin-deficient diabetic mice. Diabetol Int. 2018;9:234–42.PubMedPubMedCentralCrossRef Nakatsuru Y, Murase-Mishiba B-T M, et al. Taurine improves glucose tolerance in STZ-induced insulin-deficient diabetic mice. Diabetol Int. 2018;9:234–42.PubMedPubMedCentralCrossRef
63.
go back to reference Noso S, Babaya N, Hiromine Y, et al. Metabolic signatures of β-cell destruction in type 1 diabetes. J Diabetes Investig. 2023;14:48–57.PubMedCrossRef Noso S, Babaya N, Hiromine Y, et al. Metabolic signatures of β-cell destruction in type 1 diabetes. J Diabetes Investig. 2023;14:48–57.PubMedCrossRef
65.
go back to reference Olson ND, Wagner J, Dwarshuis N, et al. Variant calling and benchmarking in an era of complete human genome sequences. Nat Rev Genet. 2023;24:464–83.PubMedCrossRef Olson ND, Wagner J, Dwarshuis N, et al. Variant calling and benchmarking in an era of complete human genome sequences. Nat Rev Genet. 2023;24:464–83.PubMedCrossRef
66.
go back to reference Kishi A, Kawabata Y, Ugi S, et al. The onset of diabetes in three out of four sisters: a Japanese family with type 1 diabetes. a case report. Endocr J. 2009;56:767–72.PubMedCrossRef Kishi A, Kawabata Y, Ugi S, et al. The onset of diabetes in three out of four sisters: a Japanese family with type 1 diabetes. a case report. Endocr J. 2009;56:767–72.PubMedCrossRef
67.
go back to reference Ina Y, Kawabata Y, Sakamoto R, et al. A rare HLA genotype in two siblings with type 1 diabetes in a Japanese family clustered with type 1 diabetes. J Diabetes Investig. 2017;8:762–5.PubMedPubMedCentralCrossRef Ina Y, Kawabata Y, Sakamoto R, et al. A rare HLA genotype in two siblings with type 1 diabetes in a Japanese family clustered with type 1 diabetes. J Diabetes Investig. 2017;8:762–5.PubMedPubMedCentralCrossRef
68.
go back to reference Ikegami H. Molecular genetics of type 1 diabetes. J Jpn Diabetes Soc. 2024;67:1–7. Ikegami H. Molecular genetics of type 1 diabetes. J Jpn Diabetes Soc. 2024;67:1–7.
69.
go back to reference Noso S, Hosomichi K, Babaya N, et al. Whole-exome sequencing in rare families identified novel genetic variants for familial type 1 diabetes. Diabetologia. 2017;60(Suppl1):S24–5. Noso S, Hosomichi K, Babaya N, et al. Whole-exome sequencing in rare families identified novel genetic variants for familial type 1 diabetes. Diabetologia. 2017;60(Suppl1):S24–5.
70.
go back to reference Ikegami H, Babaya N, Noso S. Beta-cell failure in diabetes: common susceptibility and mechanisms shared between type 1 and type 2 diabetes. J Diabetes Investig. 2021;12:1526–39.PubMedPubMedCentralCrossRef Ikegami H, Babaya N, Noso S. Beta-cell failure in diabetes: common susceptibility and mechanisms shared between type 1 and type 2 diabetes. J Diabetes Investig. 2021;12:1526–39.PubMedPubMedCentralCrossRef
71.
go back to reference Willyard C. Can autoimmune diseases be cured? Scientists see hope at last Nature. 2024;625:646–8. Willyard C. Can autoimmune diseases be cured? Scientists see hope at last Nature. 2024;625:646–8.
72.
go back to reference Dolgin E. How a pioneering diabetes drug offers hope for preventing autoimmune disorders. Nature. 2023;614:404–6.PubMedCrossRef Dolgin E. How a pioneering diabetes drug offers hope for preventing autoimmune disorders. Nature. 2023;614:404–6.PubMedCrossRef
73.
go back to reference Uno S, Imagawa A, Kozawa J, et al. Complete loss of insulin secretion capacity in type 1A diabetes patients during long-term follow up. J Diabetes Investig. 2018;9:806–12.PubMedCrossRef Uno S, Imagawa A, Kozawa J, et al. Complete loss of insulin secretion capacity in type 1A diabetes patients during long-term follow up. J Diabetes Investig. 2018;9:806–12.PubMedCrossRef
74.
go back to reference Keenan HA, Sun JK, Levine J, et al. Residual insulin production and pancreatic ß-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59:2846–53.PubMedPubMedCentralCrossRef Keenan HA, Sun JK, Levine J, et al. Residual insulin production and pancreatic ß-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59:2846–53.PubMedPubMedCentralCrossRef
75.
go back to reference Niwano F, Babaya N, Hiromine Y, et al. Glucose metabolism after pancreatectomy: opposite extremes between pancreaticoduodenectomy and distal pancreatectomy. J Clin Endocrinol Metab. 2021;106:e2203–14.PubMedPubMedCentralCrossRef Niwano F, Babaya N, Hiromine Y, et al. Glucose metabolism after pancreatectomy: opposite extremes between pancreaticoduodenectomy and distal pancreatectomy. J Clin Endocrinol Metab. 2021;106:e2203–14.PubMedPubMedCentralCrossRef
76.
go back to reference Niwano F, Babaya N, Hiromine Y, et al. Three-year observation of glucose metabolism after pancreaticoduodenectomy: A single-center prospective study in Japan. J Clin Endocrinol Metab. 2022;107:3362–9.PubMedPubMedCentralCrossRef Niwano F, Babaya N, Hiromine Y, et al. Three-year observation of glucose metabolism after pancreaticoduodenectomy: A single-center prospective study in Japan. J Clin Endocrinol Metab. 2022;107:3362–9.PubMedPubMedCentralCrossRef
78.
go back to reference Baumel-Alterzon S, Katz LS, Brill G, et al. Nrf2: the master and captain of beta cell fate. Trends Endocrinol Metab. 2021;32:7–19.PubMedCrossRef Baumel-Alterzon S, Katz LS, Brill G, et al. Nrf2: the master and captain of beta cell fate. Trends Endocrinol Metab. 2021;32:7–19.PubMedCrossRef
79.
go back to reference Meyerovich K, Ortis F, Allagnat F, et al. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol. 2016;57:R1–17.PubMedCrossRef Meyerovich K, Ortis F, Allagnat F, et al. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol. 2016;57:R1–17.PubMedCrossRef
80.
go back to reference Hotta M, Tashiro F, Ikegami H, Niwa H, Ogihara T, Yodoi J, Miyazaki J-I. Pancreatic beta-cell-specific expression of thioredoxin, an antioxidative and anti-apoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med. 1998;188:1445–51.PubMedPubMedCentralCrossRef Hotta M, Tashiro F, Ikegami H, Niwa H, Ogihara T, Yodoi J, Miyazaki J-I. Pancreatic beta-cell-specific expression of thioredoxin, an antioxidative and anti-apoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J Exp Med. 1998;188:1445–51.PubMedPubMedCentralCrossRef
81.
go back to reference Yamamoto M, Yamato E, Shu-Ichi T, Tashiro F, Ikegami H, Yodoi J, Miyazaki J. Transgenic Expression of Antioxidant Protein Thioredoxin in Pancreatic β Cells Prevents Progression of Type 2 Diabetes Mellitus. Antioxid Redox Sig. 2008;10:43–50.CrossRef Yamamoto M, Yamato E, Shu-Ichi T, Tashiro F, Ikegami H, Yodoi J, Miyazaki J. Transgenic Expression of Antioxidant Protein Thioredoxin in Pancreatic β Cells Prevents Progression of Type 2 Diabetes Mellitus. Antioxid Redox Sig. 2008;10:43–50.CrossRef
82.
go back to reference Ikegami H, Fujisawa T, Ogihara T. Mouse models of type 1 and type 2 diabetes derived from the same closed colony: genetic susceptibility shared between two types of diabetes? ILAR J. 2004;45:267–76.CrossRef Ikegami H, Fujisawa T, Ogihara T. Mouse models of type 1 and type 2 diabetes derived from the same closed colony: genetic susceptibility shared between two types of diabetes? ILAR J. 2004;45:267–76.CrossRef
83.
go back to reference Dooley J, Tian L, Schonefeldt S, et al. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat Genet. 2016;48:519–27.PubMedPubMedCentralCrossRef Dooley J, Tian L, Schonefeldt S, et al. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat Genet. 2016;48:519–27.PubMedPubMedCentralCrossRef
84.
go back to reference Rutsch N, Chamberlain CE, Dixon W, et al. Diabetes with multiple autoimmune and inflammatory conditions linked to an activating SKAP2 mutation. Diabetes Care. 2021;44:1816–25.PubMedPubMedCentralCrossRef Rutsch N, Chamberlain CE, Dixon W, et al. Diabetes with multiple autoimmune and inflammatory conditions linked to an activating SKAP2 mutation. Diabetes Care. 2021;44:1816–25.PubMedPubMedCentralCrossRef
85.
go back to reference Hebbar P, Nizam R, John SE, et al. Linkage analysis using whole exome sequencing data implicates SLC17A1, SLC17A3, TATDN2 and TMEM131L in type 1 diabetes in Kuwaiti families. Sci Rep. 2023;13:14978.PubMedPubMedCentralCrossRef Hebbar P, Nizam R, John SE, et al. Linkage analysis using whole exome sequencing data implicates SLC17A1, SLC17A3, TATDN2 and TMEM131L in type 1 diabetes in Kuwaiti families. Sci Rep. 2023;13:14978.PubMedPubMedCentralCrossRef
Metadata
Title
Genetics of type-1 diabetes
Authors
Hiroshi Ikegami
Shinsuke Noso
Publication date
02-09-2024
Publisher
Springer Nature Singapore
Keywords
Insulins
Insulins
Published in
Diabetology International
Print ISSN: 2190-1678
Electronic ISSN: 2190-1686
DOI
https://doi.org/10.1007/s13340-024-00754-1

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more