Skip to main content
Top
Published in:

01-04-2023 | Original Article

Influence of Recent Trial History on Interval Timing

Authors: Taorong Xie, Can Huang, Yijie Zhang, Jing Liu, Haishan Yao

Published in: Neuroscience Bulletin | Issue 4/2023

Login to get access

Abstract

Interval timing is involved in a variety of cognitive behaviors such as associative learning and decision-making. While it has been shown that time estimation is adaptive to the temporal context, it remains unclear how interval timing behavior is influenced by recent trial history. Here we found that, in mice trained to perform a licking-based interval timing task, a decrease of inter-reinforcement interval in the previous trial rapidly shifted the time of anticipatory licking earlier. Optogenetic inactivation of the anterior lateral motor cortex (ALM), but not the medial prefrontal cortex, for a short time before reward delivery caused a decrease in the peak time of anticipatory licking in the next trial. Electrophysiological recordings from the ALM showed that the response profiles preceded by short and long inter-reinforcement intervals exhibited task-engagement-dependent temporal scaling. Thus, interval timing is adaptive to recent experience of the temporal interval, and ALM activity during time estimation reflects recent experience of interval.
Appendix
Available only for authorised users
Literature
1.
go back to reference Issa JB, Tocker G, Hasselmo ME, Heys JG, Dombeck DA. Navigating through time: A spatial navigation perspective on how the brain may encode time. Annu Rev Neurosci 2020, 43: 73–93.PubMedPubMedCentralCrossRef Issa JB, Tocker G, Hasselmo ME, Heys JG, Dombeck DA. Navigating through time: A spatial navigation perspective on how the brain may encode time. Annu Rev Neurosci 2020, 43: 73–93.PubMedPubMedCentralCrossRef
2.
go back to reference Buhusi C, Meck W. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 2005, 6: 755–765.PubMedCrossRef Buhusi C, Meck W. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 2005, 6: 755–765.PubMedCrossRef
4.
5.
go back to reference Meck WH. Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res 1996, 3: 227–242.PubMedCrossRef Meck WH. Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res 1996, 3: 227–242.PubMedCrossRef
6.
go back to reference Wang J, Narain D, Hosseini EA, Jazayeri M. Flexible timing by temporal scaling of cortical responses. Nat Neurosci 2018, 21: 102–110.PubMedCrossRef Wang J, Narain D, Hosseini EA, Jazayeri M. Flexible timing by temporal scaling of cortical responses. Nat Neurosci 2018, 21: 102–110.PubMedCrossRef
7.
go back to reference Bakhurin KI, Goudar V, Shobe JL, Claar LD, Buonomano DV, Masmanidis SC. Differential encoding of time by prefrontal and striatal network dynamics. J Neurosci 2017, 37: 854–870.PubMedPubMedCentralCrossRef Bakhurin KI, Goudar V, Shobe JL, Claar LD, Buonomano DV, Masmanidis SC. Differential encoding of time by prefrontal and striatal network dynamics. J Neurosci 2017, 37: 854–870.PubMedPubMedCentralCrossRef
9.
go back to reference Gibbon J. Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 1977, 84: 279–325.CrossRef Gibbon J. Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 1977, 84: 279–325.CrossRef
10.
go back to reference Matell MS, Meck WH. Neuropsychological mechanisms of interval timing behavior. Bioessays 2000, 22: 94–103.PubMedCrossRef Matell MS, Meck WH. Neuropsychological mechanisms of interval timing behavior. Bioessays 2000, 22: 94–103.PubMedCrossRef
11.
go back to reference Toda K, Lusk NA, Watson GDR, Kim N, Lu DY, Li HE. Nigrotectal stimulation stops interval timing in mice. Curr Biol 2017, 27: 3763-3770.e3.PubMedCrossRef Toda K, Lusk NA, Watson GDR, Kim N, Lu DY, Li HE. Nigrotectal stimulation stops interval timing in mice. Curr Biol 2017, 27: 3763-3770.e3.PubMedCrossRef
12.
go back to reference Weber EH. Annotationes Anatomicae et Physiologicae (Anatomical and Physiological Obervations). Lipsiae (Leipzig), Germany, 1851. Weber EH. Annotationes Anatomicae et Physiologicae (Anatomical and Physiological Obervations). Lipsiae (Leipzig), Germany, 1851.
14.
15.
go back to reference Higa JJ. Rapid timing of a single transition in interfood interval duration by rats. Animal Learn Behav 1997, 25: 177–184.CrossRef Higa JJ. Rapid timing of a single transition in interfood interval duration by rats. Animal Learn Behav 1997, 25: 177–184.CrossRef
16.
go back to reference Akrami A, Kopec CD, Diamond ME, Brody CD. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 2018, 554: 368–372.PubMedCrossRef Akrami A, Kopec CD, Diamond ME, Brody CD. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 2018, 554: 368–372.PubMedCrossRef
17.
go back to reference Abrahamyan A, Silva LL, Dakin SC, Carandini M, Gardner JL. Adaptable history biases in human perceptual decisions. Proc Natl Acad Sci U S A 2016, 113: E3548–E3557.PubMedPubMedCentralCrossRef Abrahamyan A, Silva LL, Dakin SC, Carandini M, Gardner JL. Adaptable history biases in human perceptual decisions. Proc Natl Acad Sci U S A 2016, 113: E3548–E3557.PubMedPubMedCentralCrossRef
19.
go back to reference Jiang WQ, Liu J, Zhang DH, Xie TR, Yao HS. Short-term influence of recent trial history on perceptual choice changes with stimulus strength. Neuroscience 2019, 409: 1–15.PubMedCrossRef Jiang WQ, Liu J, Zhang DH, Xie TR, Yao HS. Short-term influence of recent trial history on perceptual choice changes with stimulus strength. Neuroscience 2019, 409: 1–15.PubMedCrossRef
20.
go back to reference Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci 2013, 36: 313–336.PubMedCrossRef Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci 2013, 36: 313–336.PubMedCrossRef
21.
go back to reference Sun HJ, Ma X, Tang LY, Han JQ, Zhao YW, Xu XJ, et al. Modulation of beta oscillations for implicit motor timing in primate sensorimotor cortex during movement preparation. Neurosci Bull 2019, 35: 826–840.PubMedPubMedCentralCrossRef Sun HJ, Ma X, Tang LY, Han JQ, Zhao YW, Xu XJ, et al. Modulation of beta oscillations for implicit motor timing in primate sensorimotor cortex during movement preparation. Neurosci Bull 2019, 35: 826–840.PubMedPubMedCentralCrossRef
22.
go back to reference Wiener M, Turkeltaub P, Coslett HB. The image of time: A voxel-wise meta-analysis. NeuroImage 2010, 49: 1728–1740.PubMedCrossRef Wiener M, Turkeltaub P, Coslett HB. The image of time: A voxel-wise meta-analysis. NeuroImage 2010, 49: 1728–1740.PubMedCrossRef
23.
go back to reference Mita A, Mushiake H, Shima K, Matsuzaka Y, Jun TJ. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci 2009, 12: 502–507.PubMedCrossRef Mita A, Mushiake H, Shima K, Matsuzaka Y, Jun TJ. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci 2009, 12: 502–507.PubMedCrossRef
24.
go back to reference Merchant H, Pérez O, Zarco W, Gámez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci 2013, 33: 9082–9096.PubMedPubMedCentralCrossRef Merchant H, Pérez O, Zarco W, Gámez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci 2013, 33: 9082–9096.PubMedPubMedCentralCrossRef
25.
26.
go back to reference Barthas F, Kwan AC. Secondary motor cortex: Where ‘sensory’ meets ‘motor’ in the rodent frontal cortex. Trends Neurosci 2017, 40: 181–193.PubMedCrossRef Barthas F, Kwan AC. Secondary motor cortex: Where ‘sensory’ meets ‘motor’ in the rodent frontal cortex. Trends Neurosci 2017, 40: 181–193.PubMedCrossRef
27.
go back to reference Reep RL, Corwin JV, Hashimoto A, Watson RT. Efferent connections of the rostral portion of medial agranular cortex in rats. Brain Res Bull 1987, 19: 203–221.PubMedCrossRef Reep RL, Corwin JV, Hashimoto A, Watson RT. Efferent connections of the rostral portion of medial agranular cortex in rats. Brain Res Bull 1987, 19: 203–221.PubMedCrossRef
28.
go back to reference Svoboda K, Li N. Neural mechanisms of movement planning: Motor cortex and beyond. Curr Opin Neurobiol 2018, 49: 33–41.PubMedCrossRef Svoboda K, Li N. Neural mechanisms of movement planning: Motor cortex and beyond. Curr Opin Neurobiol 2018, 49: 33–41.PubMedCrossRef
30.
go back to reference Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K. A motor cortex circuit for motor planning and movement. Nature 2015, 519: 51–56.PubMedCrossRef Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K. A motor cortex circuit for motor planning and movement. Nature 2015, 519: 51–56.PubMedCrossRef
31.
go back to reference Guo ZV, Li N, Huber D, Ophir E, Gutnisky D, Ting JT, et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 2014, 81: 179–194.PubMedCrossRef Guo ZV, Li N, Huber D, Ophir E, Gutnisky D, Ting JT, et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 2014, 81: 179–194.PubMedCrossRef
32.
go back to reference Hattori R, Danskin B, Babic Z, Mlynaryk N, Komiyama T. Area-specificity and plasticity of history-dependent value coding during learning. Cell 2019, 177: 1858-1872.e15.PubMedPubMedCentralCrossRef Hattori R, Danskin B, Babic Z, Mlynaryk N, Komiyama T. Area-specificity and plasticity of history-dependent value coding during learning. Cell 2019, 177: 1858-1872.e15.PubMedPubMedCentralCrossRef
33.
go back to reference Scott BB, Constantinople CM, Akrami A, Hanks TD, Brody CD, Tank DW. Fronto-parietal cortical circuits encode accumulated evidence with a diversity of timescales. Neuron 2017, 95: 385-398.e5.PubMedPubMedCentralCrossRef Scott BB, Constantinople CM, Akrami A, Hanks TD, Brody CD, Tank DW. Fronto-parietal cortical circuits encode accumulated evidence with a diversity of timescales. Neuron 2017, 95: 385-398.e5.PubMedPubMedCentralCrossRef
34.
go back to reference Siniscalchi MJ, Wang HL, Kwan AC. Enhanced population coding for rewarded choices in the medial frontal cortex of the mouse. Cereb Cortex 2019, 29: 4090–4106.PubMedPubMedCentralCrossRef Siniscalchi MJ, Wang HL, Kwan AC. Enhanced population coding for rewarded choices in the medial frontal cortex of the mouse. Cereb Cortex 2019, 29: 4090–4106.PubMedPubMedCentralCrossRef
36.
go back to reference Yuan Y, Mao HW, Si J. Cortical neural responses to previous trial outcome during learning of a directional choice task. J Neurophysiol 2015, 113: 1963–1976.PubMedCrossRef Yuan Y, Mao HW, Si J. Cortical neural responses to previous trial outcome during learning of a directional choice task. J Neurophysiol 2015, 113: 1963–1976.PubMedCrossRef
37.
38.
go back to reference Guo ZV, Inagaki HK, Daie K, Druckmann S, Gerfen CR, Svoboda K. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 2017, 545: 181–186.PubMedPubMedCentralCrossRef Guo ZV, Inagaki HK, Daie K, Druckmann S, Gerfen CR, Svoboda K. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 2017, 545: 181–186.PubMedPubMedCentralCrossRef
39.
go back to reference Zhao SL, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011, 8: 745–752.PubMedPubMedCentralCrossRef Zhao SL, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011, 8: 745–752.PubMedPubMedCentralCrossRef
40.
go back to reference Weijnen JAWM. Lick sensors as tools in behavioral and neuroscience research. Physiol Behav 1989, 46: 923–928.PubMedCrossRef Weijnen JAWM. Lick sensors as tools in behavioral and neuroscience research. Physiol Behav 1989, 46: 923–928.PubMedCrossRef
41.
go back to reference Xu M, Zhang SY, Dan Y, Poo MM. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex. Proc Natl Acad Sci U S A 2014, 111: 480–485.PubMedCrossRef Xu M, Zhang SY, Dan Y, Poo MM. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex. Proc Natl Acad Sci U S A 2014, 111: 480–485.PubMedCrossRef
42.
go back to reference Chang CC, Lin CJ. LIBSVM: A Library for Support Vector Machines. Acm Transactions on Intelligent Systems and Technology 2011, 2. Chang CC, Lin CJ. LIBSVM: A Library for Support Vector Machines. Acm Transactions on Intelligent Systems and Technology 2011, 2.
43.
go back to reference Balci F, Gallistel CR, Allen BD, Frank KM, Gibson JM, Brunner D. Acquisition of peak responding: What is learned? Behav Processes 2009, 80: 67–75.PubMedCrossRef Balci F, Gallistel CR, Allen BD, Frank KM, Gibson JM, Brunner D. Acquisition of peak responding: What is learned? Behav Processes 2009, 80: 67–75.PubMedCrossRef
44.
go back to reference Buhusi CV, Aziz D, Winslow D, Carter RE, Swearingen JE, Buhusi MC. Interval timing accuracy and scalar timing in C57BL/6 mice. Behav Neurosci 2009, 123: 1102–1113.PubMedPubMedCentralCrossRef Buhusi CV, Aziz D, Winslow D, Carter RE, Swearingen JE, Buhusi MC. Interval timing accuracy and scalar timing in C57BL/6 mice. Behav Neurosci 2009, 123: 1102–1113.PubMedPubMedCentralCrossRef
45.
go back to reference Komiyama T, Sato TR, O’Connor DH, Zhang YX, Huber D, Hooks BM, et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 2010, 464: 1182–1186.PubMedCrossRef Komiyama T, Sato TR, O’Connor DH, Zhang YX, Huber D, Hooks BM, et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 2010, 464: 1182–1186.PubMedCrossRef
46.
go back to reference Bollu T, Ito BS, Whitehead SC, Kardon B, Redd J, Liu MH, et al. Cortex-dependent corrections as the tongue reaches for and misses targets. Nature 2021, 594: 82–87.PubMedPubMedCentralCrossRef Bollu T, Ito BS, Whitehead SC, Kardon B, Redd J, Liu MH, et al. Cortex-dependent corrections as the tongue reaches for and misses targets. Nature 2021, 594: 82–87.PubMedPubMedCentralCrossRef
47.
go back to reference Franklin KBJ, Paxinos G (2007) The mouse brain in stereotaxic coordinates, 3rd edn Elsevier Academic Press, Amsterdam, Boston. Franklin KBJ, Paxinos G (2007) The mouse brain in stereotaxic coordinates, 3rd edn Elsevier Academic Press, Amsterdam, Boston.
49.
go back to reference Emmons EB, de Corte BJ, Kim Y, Parker KL, Matell MS, Narayanan NS. Rodent medial frontal control of temporal processing in the dorsomedial striatum. J Neurosci 2017, 37: 8718–8733.PubMedPubMedCentralCrossRef Emmons EB, de Corte BJ, Kim Y, Parker KL, Matell MS, Narayanan NS. Rodent medial frontal control of temporal processing in the dorsomedial striatum. J Neurosci 2017, 37: 8718–8733.PubMedPubMedCentralCrossRef
50.
go back to reference Bausenhart KM, Bratzke D, Ulrich R. Formation and representation of temporal reference information. Curr Opin Behav Sci 2016, 8: 46–52.CrossRef Bausenhart KM, Bratzke D, Ulrich R. Formation and representation of temporal reference information. Curr Opin Behav Sci 2016, 8: 46–52.CrossRef
51.
go back to reference Coull JT, Droit-Volet S. Explicit understanding of duration develops implicitly through action. Trends Cogn Sci 2018, 22: 923–937.PubMedCrossRef Coull JT, Droit-Volet S. Explicit understanding of duration develops implicitly through action. Trends Cogn Sci 2018, 22: 923–937.PubMedCrossRef
53.
go back to reference Droit-Volet S, Meck WH. How emotions colour our perception of time. Trends Cogn Sci 2007, 11: 504–513.PubMedCrossRef Droit-Volet S, Meck WH. How emotions colour our perception of time. Trends Cogn Sci 2007, 11: 504–513.PubMedCrossRef
54.
55.
go back to reference Rammsayer TH, Verner M. Larger visual stimuli are perceived to last longer from time to time: The internal clock is not affected by nontemporal visual stimulus size. J Vis 2015, 15: 5.PubMedCrossRef Rammsayer TH, Verner M. Larger visual stimuli are perceived to last longer from time to time: The internal clock is not affected by nontemporal visual stimulus size. J Vis 2015, 15: 5.PubMedCrossRef
56.
go back to reference Lejeune H, Wearden JH. Vierordt’s the experimental study of the time sense (1868) and its legacy. Eur J Cogn Psychol 2009, 21: 941–960.CrossRef Lejeune H, Wearden JH. Vierordt’s the experimental study of the time sense (1868) and its legacy. Eur J Cogn Psychol 2009, 21: 941–960.CrossRef
58.
go back to reference Droit-Volet S, Wearden JH, Zélanti PS. Cognitive abilities required in time judgment depending on the temporal tasks used: A comparison of children and adults. Q J Exp Psychol (Hove) 2015, 68: 2216–2242.PubMedCrossRef Droit-Volet S, Wearden JH, Zélanti PS. Cognitive abilities required in time judgment depending on the temporal tasks used: A comparison of children and adults. Q J Exp Psychol (Hove) 2015, 68: 2216–2242.PubMedCrossRef
59.
go back to reference Karaminis T, Cicchini GM, Neil L, Cappagli G, Aagten-Murphy D, Burr D, et al. Central tendency effects in time interval reproduction in autism. Sci Rep 2016, 6: 28570.PubMedPubMedCentralCrossRef Karaminis T, Cicchini GM, Neil L, Cappagli G, Aagten-Murphy D, Burr D, et al. Central tendency effects in time interval reproduction in autism. Sci Rep 2016, 6: 28570.PubMedPubMedCentralCrossRef
60.
go back to reference Higa JJ, Thaw JM, Staddon JE. Pigeons’ wait-time responses to transitions in interfood-interval duration: Another look at cyclic schedule performance. J Exp Anal Behav 1993, 59: 529–541.PubMedPubMedCentralCrossRef Higa JJ, Thaw JM, Staddon JE. Pigeons’ wait-time responses to transitions in interfood-interval duration: Another look at cyclic schedule performance. J Exp Anal Behav 1993, 59: 529–541.PubMedPubMedCentralCrossRef
61.
go back to reference Niemi P, Näätänen R. Foreperiod and simple reaction time. Psychol Bull 1981, 89: 133–162.CrossRef Niemi P, Näätänen R. Foreperiod and simple reaction time. Psychol Bull 1981, 89: 133–162.CrossRef
62.
go back to reference Vallesi A, Lozano VN, Correa A. Dissociating temporal preparation processes as a function of the inter-trial interval duration. Cognition 2013, 127: 22–30.PubMedCrossRef Vallesi A, Lozano VN, Correa A. Dissociating temporal preparation processes as a function of the inter-trial interval duration. Cognition 2013, 127: 22–30.PubMedCrossRef
63.
go back to reference Vallesi A, Shallice T. Developmental dissociations of preparation over time: Deconstructing the variable foreperiod phenomena. J Exp Psychol Hum Percept Perform 2007, 33: 1377–1388.PubMedCrossRef Vallesi A, Shallice T. Developmental dissociations of preparation over time: Deconstructing the variable foreperiod phenomena. J Exp Psychol Hum Percept Perform 2007, 33: 1377–1388.PubMedCrossRef
65.
go back to reference Soares S, Atallah BV, Paton JJ. Midbrain dopamine neurons control judgment of time. Science 2016, 354: 1273–1277.PubMedCrossRef Soares S, Atallah BV, Paton JJ. Midbrain dopamine neurons control judgment of time. Science 2016, 354: 1273–1277.PubMedCrossRef
67.
go back to reference Namboodiri VMK, Huertas MA, Monk KJ, Shouval HZ, Hussain Shuler MG. Visually cued action timing in the primary visual cortex. Neuron 2015, 86: 319–330.PubMedPubMedCentralCrossRef Namboodiri VMK, Huertas MA, Monk KJ, Shouval HZ, Hussain Shuler MG. Visually cued action timing in the primary visual cortex. Neuron 2015, 86: 319–330.PubMedPubMedCentralCrossRef
68.
go back to reference Li JC, Liao X, Zhang JX, Wang M, Yang N, Zhang J, et al. Primary auditory cortex is required for anticipatory motor response. Cereb Cortex 2017, 27: 3254–3271.PubMedCrossRef Li JC, Liao X, Zhang JX, Wang M, Yang N, Zhang J, et al. Primary auditory cortex is required for anticipatory motor response. Cereb Cortex 2017, 27: 3254–3271.PubMedCrossRef
69.
go back to reference Narayanan NS, Horst NK, Laubach M. Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus. Neuroscience 2006, 139: 865–876.PubMedCrossRef Narayanan NS, Horst NK, Laubach M. Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus. Neuroscience 2006, 139: 865–876.PubMedCrossRef
70.
go back to reference Kim J, Jung AH, Byun J, Jo S, Jung MW. Inactivation of medial prefrontal cortex impairs time interval discrimination in rats. Front Behav Neurosci 2009, 3: 38.PubMedPubMedCentralCrossRef Kim J, Jung AH, Byun J, Jo S, Jung MW. Inactivation of medial prefrontal cortex impairs time interval discrimination in rats. Front Behav Neurosci 2009, 3: 38.PubMedPubMedCentralCrossRef
71.
go back to reference Buhusi CV, Reyes MB, Gathers CA, Oprisan SA, Buhusi M. Inactivation of the medial-prefrontal cortex impairs interval timing precision, but not timing accuracy or scalar timing in a peak-interval procedure in rats. Front Integr Neurosci 2018, 12: 20.PubMedPubMedCentralCrossRef Buhusi CV, Reyes MB, Gathers CA, Oprisan SA, Buhusi M. Inactivation of the medial-prefrontal cortex impairs interval timing precision, but not timing accuracy or scalar timing in a peak-interval procedure in rats. Front Integr Neurosci 2018, 12: 20.PubMedPubMedCentralCrossRef
72.
go back to reference Gao LX, Meng XK, Ye CQ, Zhang HT, Liu CH, Dan Y, et al. Entrainment of slow oscillations of auditory thalamic neurons by repetitive sound stimuli. J Neurosci 2009, 29: 6013–6021.PubMedPubMedCentralCrossRef Gao LX, Meng XK, Ye CQ, Zhang HT, Liu CH, Dan Y, et al. Entrainment of slow oscillations of auditory thalamic neurons by repetitive sound stimuli. J Neurosci 2009, 29: 6013–6021.PubMedPubMedCentralCrossRef
73.
go back to reference Sumbre G, Muto A, Baier H, Poo MM. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Nature 2008, 456: 102–106.PubMedPubMedCentralCrossRef Sumbre G, Muto A, Baier H, Poo MM. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Nature 2008, 456: 102–106.PubMedPubMedCentralCrossRef
74.
go back to reference Meck WH. Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res 2006, 1109: 93–107.PubMedCrossRef Meck WH. Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res 2006, 1109: 93–107.PubMedCrossRef
76.
go back to reference Bakhurin KI, Li XR, Friedman AD, Lusk NA, Watson GD, Kim N, et al. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. Elife 2020, 9: e54831.PubMedPubMedCentralCrossRef Bakhurin KI, Li XR, Friedman AD, Lusk NA, Watson GD, Kim N, et al. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. Elife 2020, 9: e54831.PubMedPubMedCentralCrossRef
77.
go back to reference Meirhaeghe N, Sohn H, Jazayeri M. A precise and adaptive neural mechanism for predictive temporal processing in the frontal cortex. Neuron 2021, 109: 2995-3011.e5.PubMedPubMedCentralCrossRef Meirhaeghe N, Sohn H, Jazayeri M. A precise and adaptive neural mechanism for predictive temporal processing in the frontal cortex. Neuron 2021, 109: 2995-3011.e5.PubMedPubMedCentralCrossRef
79.
go back to reference Murakami M, Shteingart H, Loewenstein Y, Mainen ZF. Distinct sources of deterministic and stochastic components of action timing decisions in rodent frontal cortex. Neuron 2017, 94: 908-919.e7.PubMedCrossRef Murakami M, Shteingart H, Loewenstein Y, Mainen ZF. Distinct sources of deterministic and stochastic components of action timing decisions in rodent frontal cortex. Neuron 2017, 94: 908-919.e7.PubMedCrossRef
80.
go back to reference Sugrue LP, Corrado GS, Newsome WT. Matching behavior and the representation of value in the parietal cortex. Science 2004, 304: 1782–1787.PubMedCrossRef Sugrue LP, Corrado GS, Newsome WT. Matching behavior and the representation of value in the parietal cortex. Science 2004, 304: 1782–1787.PubMedCrossRef
81.
83.
go back to reference Gold JI, Law CT, Connolly P, Bennur S. The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. J Neurophysiol 2008, 100: 2653–2668.PubMedPubMedCentralCrossRef Gold JI, Law CT, Connolly P, Bennur S. The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. J Neurophysiol 2008, 100: 2653–2668.PubMedPubMedCentralCrossRef
84.
go back to reference Busse L, Ayaz A, Dhruv NT, Katzner S, Saleem AB, Schölvinck ML, et al. The detection of visual contrast in the behaving mouse. J Neurosci 2011, 31: 11351–11361.PubMedPubMedCentralCrossRef Busse L, Ayaz A, Dhruv NT, Katzner S, Saleem AB, Schölvinck ML, et al. The detection of visual contrast in the behaving mouse. J Neurosci 2011, 31: 11351–11361.PubMedPubMedCentralCrossRef
85.
go back to reference Lak A, Hueske E, Hirokawa J, Masset P, Ott T, Urai AE, et al. Reinforcement biases subsequent perceptual decisions when confidence is low, a widespread behavioral phenomenon. Elife 2020, 9: e49834.PubMedPubMedCentralCrossRef Lak A, Hueske E, Hirokawa J, Masset P, Ott T, Urai AE, et al. Reinforcement biases subsequent perceptual decisions when confidence is low, a widespread behavioral phenomenon. Elife 2020, 9: e49834.PubMedPubMedCentralCrossRef
87.
go back to reference Dias EC, Segraves MA. Muscimol-induced inactivation of monkey frontal eye field: Effects on visually and memory-guided saccades. J Neurophysiol 1999, 81: 2191–2214.PubMedCrossRef Dias EC, Segraves MA. Muscimol-induced inactivation of monkey frontal eye field: Effects on visually and memory-guided saccades. J Neurophysiol 1999, 81: 2191–2214.PubMedCrossRef
88.
go back to reference Kopec CD, Erlich JC, Brunton BW, Deisseroth K, Brody CD. Cortical and subcortical contributions to short-term memory for orienting movements. Neuron 2015, 88: 367–377.PubMedPubMedCentralCrossRef Kopec CD, Erlich JC, Brunton BW, Deisseroth K, Brody CD. Cortical and subcortical contributions to short-term memory for orienting movements. Neuron 2015, 88: 367–377.PubMedPubMedCentralCrossRef
89.
go back to reference Duan CA, Pan YX, Ma GF, Zhou TT, Zhang SY, Xu NL. A cortico-collicular pathway for motor planning in a memory-dependent perceptual decision task. Nat Commun 2021, 12: 2727.PubMedPubMedCentralCrossRef Duan CA, Pan YX, Ma GF, Zhou TT, Zhang SY, Xu NL. A cortico-collicular pathway for motor planning in a memory-dependent perceptual decision task. Nat Commun 2021, 12: 2727.PubMedPubMedCentralCrossRef
90.
go back to reference Gouvêa TS, Monteiro T, Soares S, Atallah BV, Paton JJ. Ongoing behavior predicts perceptual report of interval duration. Front Neurorobot 2014, 8: 10.PubMedPubMedCentral Gouvêa TS, Monteiro T, Soares S, Atallah BV, Paton JJ. Ongoing behavior predicts perceptual report of interval duration. Front Neurorobot 2014, 8: 10.PubMedPubMedCentral
91.
go back to reference Safaie M, Jurado-Parras MT, Sarno S, Louis J, Karoutchi C, Petit LF, et al. Turning the body into a clock: Accurate timing is facilitated by simple stereotyped interactions with the environment. Proc Natl Acad Sci U S A 2020, 117: 13084–13093.PubMedPubMedCentralCrossRef Safaie M, Jurado-Parras MT, Sarno S, Louis J, Karoutchi C, Petit LF, et al. Turning the body into a clock: Accurate timing is facilitated by simple stereotyped interactions with the environment. Proc Natl Acad Sci U S A 2020, 117: 13084–13093.PubMedPubMedCentralCrossRef
92.
go back to reference Chen ZR, Zhang ZY, Zhang W, Xie TR, Li YP, Xu XH, et al. Direct and indirect pathway neurons in ventrolateral striatum differentially regulate Licking movement and nigral responses. Cell Rep 2021, 37: 109847.PubMedCrossRef Chen ZR, Zhang ZY, Zhang W, Xie TR, Li YP, Xu XH, et al. Direct and indirect pathway neurons in ventrolateral striatum differentially regulate Licking movement and nigral responses. Cell Rep 2021, 37: 109847.PubMedCrossRef
93.
go back to reference Rossi MA, Li HE, Lu DY, Kim IH, Bartholomew RA, Gaidis E, et al. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat Neurosci 2016, 19: 742–748.PubMedPubMedCentralCrossRef Rossi MA, Li HE, Lu DY, Kim IH, Bartholomew RA, Gaidis E, et al. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat Neurosci 2016, 19: 742–748.PubMedPubMedCentralCrossRef
94.
go back to reference Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The superior colliculus: Cell types, connectivity, and behavior. Neurosci Bull 2022, 2022: 1–22. Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The superior colliculus: Cell types, connectivity, and behavior. Neurosci Bull 2022, 2022: 1–22.
96.
go back to reference Mello GBM, Soares S, Paton JJ. A scalable population code for time in the striatum. Curr Biol 2015, 25: 1113–1122.PubMedCrossRef Mello GBM, Soares S, Paton JJ. A scalable population code for time in the striatum. Curr Biol 2015, 25: 1113–1122.PubMedCrossRef
Metadata
Title
Influence of Recent Trial History on Interval Timing
Authors
Taorong Xie
Can Huang
Yijie Zhang
Jing Liu
Haishan Yao
Publication date
01-04-2023
Publisher
Springer Nature Singapore
Published in
Neuroscience Bulletin / Issue 4/2023
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-022-00954-2

Other articles of this Issue 4/2023

Neuroscience Bulletin 4/2023 Go to the issue

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more