Skip to main content
Top
Published in:

Open Access 26-03-2025 | Inflammatory Bowel Disease | Review

Gut virome and its implications in the pathogenesis and therapeutics of inflammatory bowel disease

Authors: Yushan Wu, Rui Cheng, Hao Lin, Lili Li, Yongbin Jia, Anna Philips, Tao Zuo, Hu Zhang

Published in: BMC Medicine | Issue 1/2025

Login to get access

Abstract

Inflammatory bowel disease (IBD) refers to chronic, recurrent inflammatory intestinal disorders, primarily including Crohn’s disease (CD) and Ulcerative colitis (UC). Numerous studies have elucidated the importance of the gut microbiome in IBD. Recently, numerous studies have focused on the gut virome, an intriguing and enigmatic aspect of the gut microbiome. Alterations in the composition of phages, eukaryotic viruses, and human endogenous retroviruses that occur in IBD suggest potential involvement of the gut virome in IBD. Nevertheless, the mechanisms by which it maintains intestinal homeostasis and interacts with diseases are only beginning to be understood. Here, we thoroughly reviewed the composition of the gut virome in both healthy individuals and IBD patients, emphasizing the key viruses implicated in the onset and progression of IBD. Furthermore, the complex connections between the gut virome and the intestinal barrier, immunity, and gut microbiome were dissected to advance the interpretation of IBD pathogenesis. The updated discussion of the evidence regarding the gut virome will advance our knowledge in gut virome and chronic gastrointestinal diseases. Targeting the gut virome is a promising avenue for IBD treatment in future.
Literature
1.
go back to reference Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–78.PubMedCrossRef Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–78.PubMedCrossRef
3.
go back to reference Li L, Cheng R, Wu Y, Lin H, Gan H, Zhang H. Diagnosis and management of inflammatory bowel disease. J Evid Based Med. 2024;17(2):409–33.PubMedCrossRef Li L, Cheng R, Wu Y, Lin H, Gan H, Zhang H. Diagnosis and management of inflammatory bowel disease. J Evid Based Med. 2024;17(2):409–33.PubMedCrossRef
4.
5.
go back to reference Gao H, Liu Z. The latest breakthrough on genetic characteristics of inflammatory bowel disease in Chinese and other East Asian ancestries. Precis Clin Med. 2023;6(3):pbad017.PubMedPubMedCentralCrossRef Gao H, Liu Z. The latest breakthrough on genetic characteristics of inflammatory bowel disease in Chinese and other East Asian ancestries. Precis Clin Med. 2023;6(3):pbad017.PubMedPubMedCentralCrossRef
7.
go back to reference Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RAR, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. 2018;15(1):39–49.PubMedCrossRef Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RAR, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. 2018;15(1):39–49.PubMedCrossRef
8.
go back to reference Chen Y, Cui W, Li X, Yang H. Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease. Front Immunol. 2021;12: 761981.PubMedPubMedCentralCrossRef Chen Y, Cui W, Li X, Yang H. Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease. Front Immunol. 2021;12: 761981.PubMedPubMedCentralCrossRef
9.
go back to reference Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10.PubMedCrossRef Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10.PubMedCrossRef
10.
go back to reference Boix-Amorós A, Monaco H, Sambataro E, Clemente JC. Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease. Gut Microbes. 2022;14(1): 2107866.PubMedPubMedCentralCrossRef Boix-Amorós A, Monaco H, Sambataro E, Clemente JC. Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease. Gut Microbes. 2022;14(1): 2107866.PubMedPubMedCentralCrossRef
11.
go back to reference Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol. 2017;52(1):1–8.PubMedCrossRef Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol. 2017;52(1):1–8.PubMedCrossRef
12.
go back to reference Yang W, Cong Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol. 2021;18(4):866–77.PubMedPubMedCentralCrossRef Yang W, Cong Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol. 2021;18(4):866–77.PubMedPubMedCentralCrossRef
13.
go back to reference Yan A, Butcher J, Schramm L, Mack DR, Stintzi A. Multiomic spatial analysis reveals a distinct mucosa-associated virome. Gut Microbes. 2023;15(1): 2177488.PubMedPubMedCentralCrossRef Yan A, Butcher J, Schramm L, Mack DR, Stintzi A. Multiomic spatial analysis reveals a distinct mucosa-associated virome. Gut Microbes. 2023;15(1): 2177488.PubMedPubMedCentralCrossRef
14.
go back to reference Gao B, Chi L, Zhu Y, Shi X, Tu P, Li B, et al. An introduction to next generation sequencing bioinformatic analysis in gut microbiome studies. Biomolecules. 2021;11(4): 530.PubMedPubMedCentralCrossRef Gao B, Chi L, Zhu Y, Shi X, Tu P, Li B, et al. An introduction to next generation sequencing bioinformatic analysis in gut microbiome studies. Biomolecules. 2021;11(4): 530.PubMedPubMedCentralCrossRef
15.
go back to reference Hoyles L, McCartney AL, Neve H, Gibson GR, Sanderson JD, Heller KJ, et al. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res Microbiol. 2014;165(10):803–12.PubMedCrossRef Hoyles L, McCartney AL, Neve H, Gibson GR, Sanderson JD, Heller KJ, et al. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res Microbiol. 2014;165(10):803–12.PubMedCrossRef
16.
go back to reference Li J, Yang F, Xiao M, Li A. Advances and challenges in cataloging the human gut virome. Cell Host Microbe. 2022;30(7):908–16.PubMedCrossRef Li J, Yang F, Xiao M, Li A. Advances and challenges in cataloging the human gut virome. Cell Host Microbe. 2022;30(7):908–16.PubMedCrossRef
17.
go back to reference Cao Z, Sugimura N, Burgermeister E, Ebert MP, Zuo T, Lan P. The gut virome: A new microbiome component in health and disease. EBioMedicine. 2022;81: 104113.PubMedPubMedCentralCrossRef Cao Z, Sugimura N, Burgermeister E, Ebert MP, Zuo T, Lan P. The gut virome: A new microbiome component in health and disease. EBioMedicine. 2022;81: 104113.PubMedPubMedCentralCrossRef
18.
go back to reference Tun HM, Peng Y, Massimino L, Sin ZY, Parigi TL, Facoetti A, et al. Gut virome in inflammatory bowel disease and beyond. Gut. 2024;73(2):350–60.PubMedCrossRef Tun HM, Peng Y, Massimino L, Sin ZY, Parigi TL, Facoetti A, et al. Gut virome in inflammatory bowel disease and beyond. Gut. 2024;73(2):350–60.PubMedCrossRef
19.
go back to reference Cao Z, Fan D, Sun Y, Huang Z, Li Y, Su R, et al. The gut ileal mucosal virome is disturbed in patients with Crohn’s disease and exacerbates intestinal inflammation in mice. Nat Commun. 2024;15(1):1638. Cao Z, Fan D, Sun Y, Huang Z, Li Y, Su R, et al. The gut ileal mucosal virome is disturbed in patients with Crohn’s disease and exacerbates intestinal inflammation in mice. Nat Commun. 2024;15(1):1638.
20.
go back to reference Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe. 2020;28(5):724-740.e8.PubMedPubMedCentralCrossRef Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe. 2020;28(5):724-740.e8.PubMedPubMedCentralCrossRef
21.
go back to reference Spencer L, Olawuni B, Singh P. Gut Virome: role and distribution in health and gastrointestinal diseases. Front Cell Infect Microbiol. 2022;12: 836706.PubMedPubMedCentralCrossRef Spencer L, Olawuni B, Singh P. Gut Virome: role and distribution in health and gastrointestinal diseases. Front Cell Infect Microbiol. 2022;12: 836706.PubMedPubMedCentralCrossRef
22.
go back to reference Qv L, Mao S, Li Y, Zhang J, Li L. Roles of gut bacteriophages in the pathogenesis and treatment of inflammatory bowel disease. Front Cell Infect Microbiol. 2021;11: 755650.PubMedPubMedCentralCrossRef Qv L, Mao S, Li Y, Zhang J, Li L. Roles of gut bacteriophages in the pathogenesis and treatment of inflammatory bowel disease. Front Cell Infect Microbiol. 2021;11: 755650.PubMedPubMedCentralCrossRef
23.
go back to reference Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–60.PubMedPubMedCentralCrossRef Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–60.PubMedPubMedCentralCrossRef
24.
go back to reference Adiliaghdam F, Amatullah H, Digumarthi S, Saunders TL, Rahman RU, Wong LP, et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci Immunol. 2022;7(70):eabn6660.PubMedPubMedCentralCrossRef Adiliaghdam F, Amatullah H, Digumarthi S, Saunders TL, Rahman RU, Wong LP, et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci Immunol. 2022;7(70):eabn6660.PubMedPubMedCentralCrossRef
26.
go back to reference Doore SM, Fane BA. The microviridae: Diversity, assembly, and experimental evolution. Virology. 2016;491:45–55.PubMedCrossRef Doore SM, Fane BA. The microviridae: Diversity, assembly, and experimental evolution. Virology. 2016;491:45–55.PubMedCrossRef
27.
go back to reference Zuo T, Lu X-J, Zhang Y, Cheung CP, Lam S, Zhang F, et al. Gut mucosal virome alterations in ulcerative colitis. Gut. 2019;68(7):1169–79.PubMedCrossRef Zuo T, Lu X-J, Zhang Y, Cheung CP, Lam S, Zhang F, et al. Gut mucosal virome alterations in ulcerative colitis. Gut. 2019;68(7):1169–79.PubMedCrossRef
28.
go back to reference Lepage P, Colombet J, Marteau P, Sime-Ngando T, Doré J, Leclerc M. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut. 2008;57(3):424–5.PubMedCrossRef Lepage P, Colombet J, Marteau P, Sime-Ngando T, Doré J, Leclerc M. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut. 2008;57(3):424–5.PubMedCrossRef
29.
go back to reference Ungaro F, Massimino L, Furfaro F, Rimoldi V, Peyrin-Biroulet L, D’Alessio S, et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes. 2019;10(2):149–58.PubMedCrossRef Ungaro F, Massimino L, Furfaro F, Rimoldi V, Peyrin-Biroulet L, D’Alessio S, et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes. 2019;10(2):149–58.PubMedCrossRef
30.
go back to reference Akiyama S, Nishijima S, Kojima Y, Kimura M, Ohsugi M, Ueki K, et al. Multi-biome analysis identifies distinct gut microbial signatures and their crosstalk in ulcerative colitis and Crohn’s disease. Nat Commun. 2024;15(1):10291.PubMedPubMedCentralCrossRef Akiyama S, Nishijima S, Kojima Y, Kimura M, Ohsugi M, Ueki K, et al. Multi-biome analysis identifies distinct gut microbial signatures and their crosstalk in ulcerative colitis and Crohn’s disease. Nat Commun. 2024;15(1):10291.PubMedPubMedCentralCrossRef
31.
go back to reference IBDMDB Investigators, Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–62.CrossRef IBDMDB Investigators, Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–62.CrossRef
32.
go back to reference Martínez Martínez J, Martinez-Hernandez F, Martinez-Garcia M. Single-virus genomics and beyond. Nat Rev Microbiol. 2020;18(12):705–16.PubMedCrossRef Martínez Martínez J, Martinez-Hernandez F, Martinez-Garcia M. Single-virus genomics and beyond. Nat Rev Microbiol. 2020;18(12):705–16.PubMedCrossRef
33.
go back to reference Džunková M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. Defining the human gut host–phage network through single-cell viral tagging. Nat Microbiol. 2019;4(12):2192–203.PubMedCrossRef Džunková M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. Defining the human gut host–phage network through single-cell viral tagging. Nat Microbiol. 2019;4(12):2192–203.PubMedCrossRef
35.
go back to reference Lötstedt B, Stražar M, Xavier R, Regev A, Vickovic S. Spatial host–microbiome sequencing reveals niches in the mouse gut. Nat Biotechnol. 2024;42(9):1394–403.PubMedCrossRef Lötstedt B, Stražar M, Xavier R, Regev A, Vickovic S. Spatial host–microbiome sequencing reveals niches in the mouse gut. Nat Biotechnol. 2024;42(9):1394–403.PubMedCrossRef
36.
go back to reference Chen F, Li S, Guo R, Song F, Zhang Y, Wang X, et al. Meta-analysis of fecal viromes demonstrates high diagnostic potential of the gut viral signatures for colorectal cancer and adenoma risk assessment. J Adv Res. 2023;49:103–14.PubMedCrossRef Chen F, Li S, Guo R, Song F, Zhang Y, Wang X, et al. Meta-analysis of fecal viromes demonstrates high diagnostic potential of the gut viral signatures for colorectal cancer and adenoma risk assessment. J Adv Res. 2023;49:103–14.PubMedCrossRef
37.
go back to reference Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, et al. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol. 2003;185(20):6220–3.PubMedPubMedCentralCrossRef Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, et al. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol. 2003;185(20):6220–3.PubMedPubMedCentralCrossRef
39.
go back to reference Garmaeva S, Sinha T, Gulyaeva A, Kuzub N, Spreckels JE, Andreu-Sánchez S, et al. Transmission and dynamics of mother-infant gut viruses during pregnancy and early life. Nat Commun. 2024;15(1):1945.PubMedPubMedCentralCrossRef Garmaeva S, Sinha T, Gulyaeva A, Kuzub N, Spreckels JE, Andreu-Sánchez S, et al. Transmission and dynamics of mother-infant gut viruses during pregnancy and early life. Nat Commun. 2024;15(1):1945.PubMedPubMedCentralCrossRef
40.
go back to reference McCann A, Ryan FJ, Stockdale SR, Dalmasso M, Blake T, Ryan CA, et al. Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ. 2018;6: e4694.PubMedPubMedCentralCrossRef McCann A, Ryan FJ, Stockdale SR, Dalmasso M, Blake T, Ryan CA, et al. Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ. 2018;6: e4694.PubMedPubMedCentralCrossRef
41.
go back to reference Liang G, Zhao C, Zhang H, Mattei L, Sherrill-Mix S, Bittinger K, et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature. 2020;581(7809):470–4.PubMedPubMedCentralCrossRef Liang G, Zhao C, Zhang H, Mattei L, Sherrill-Mix S, Bittinger K, et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature. 2020;581(7809):470–4.PubMedPubMedCentralCrossRef
42.
go back to reference Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, et al. Viral diversity and dynamics in an infant gut. Res Microbiol. 2008;159(5):367–73.PubMedCrossRef Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, et al. Viral diversity and dynamics in an infant gut. Res Microbiol. 2008;159(5):367–73.PubMedCrossRef
43.
go back to reference Walters WA, Granados AC, Ley C, Federman S, Stryke D, Santos Y, et al. Longitudinal comparison of the developing gut virome in infants and their mothers. Cell Host Microbe. 2023;31(2):187-198.e3.PubMedPubMedCentralCrossRef Walters WA, Granados AC, Ley C, Federman S, Stryke D, Santos Y, et al. Longitudinal comparison of the developing gut virome in infants and their mothers. Cell Host Microbe. 2023;31(2):187-198.e3.PubMedPubMedCentralCrossRef
44.
go back to reference Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndao IM, et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med. 2015;21(10):1228–34.PubMedPubMedCentralCrossRef Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndao IM, et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med. 2015;21(10):1228–34.PubMedPubMedCentralCrossRef
45.
go back to reference Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466(7304):334–8.PubMedPubMedCentralCrossRef Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466(7304):334–8.PubMedPubMedCentralCrossRef
46.
47.
go back to reference Kim M-S, Park E-J, Roh SW, Bae J-W. Diversity and abundance of single-stranded DNA viruses in human feces. Appl Environ Microbiol. 2011;77(22):8062–70.PubMedPubMedCentralCrossRef Kim M-S, Park E-J, Roh SW, Bae J-W. Diversity and abundance of single-stranded DNA viruses in human feces. Appl Environ Microbiol. 2011;77(22):8062–70.PubMedPubMedCentralCrossRef
48.
go back to reference Beller L, Matthijnssens J. What is (not) known about the dynamics of the human gut virome in health and disease. Curr Opin Virol. 2019;37:52–7.PubMedCrossRef Beller L, Matthijnssens J. What is (not) known about the dynamics of the human gut virome in health and disease. Curr Opin Virol. 2019;37:52–7.PubMedCrossRef
49.
go back to reference Reyes A, Blanton LV, Cao S, Zhao G, Manary M, Trehan I, et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc Natl Acad Sci USA. 2015;112(38):11941–6.PubMedPubMedCentralCrossRef Reyes A, Blanton LV, Cao S, Zhao G, Manary M, Trehan I, et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc Natl Acad Sci USA. 2015;112(38):11941–6.PubMedPubMedCentralCrossRef
51.
52.
go back to reference Moreno-Gallego JL, Chou S-P, Di Rienzi SC, Goodrich JK, Spector TD, Bell JT, et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe. 2019;25(2):261-272.e5.PubMedPubMedCentralCrossRef Moreno-Gallego JL, Chou S-P, Di Rienzi SC, Goodrich JK, Spector TD, Bell JT, et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe. 2019;25(2):261-272.e5.PubMedPubMedCentralCrossRef
53.
go back to reference Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–25.PubMedPubMedCentralCrossRef Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–25.PubMedPubMedCentralCrossRef
54.
go back to reference Shkoporov AN, Hill C. Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. Cell Host Microbe. 2019;25(2):195–209.PubMedCrossRef Shkoporov AN, Hill C. Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. Cell Host Microbe. 2019;25(2):195–209.PubMedCrossRef
55.
go back to reference Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun. 2014;5:4498.PubMedCrossRef Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun. 2014;5:4498.PubMedCrossRef
56.
go back to reference Li H, Li H, Wang J, Guo L, Fan H, Zheng H, et al. The altered gut virome community in rhesus monkeys is correlated with the gut bacterial microbiome and associated metabolites. Virol J. 2019;16(1):105.PubMedPubMedCentralCrossRef Li H, Li H, Wang J, Guo L, Fan H, Zheng H, et al. The altered gut virome community in rhesus monkeys is correlated with the gut bacterial microbiome and associated metabolites. Virol J. 2019;16(1):105.PubMedPubMedCentralCrossRef
57.
go back to reference Devoto AE, Santini JM, Olm MR, Anantharaman K, Munk P, Tung J, et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat Microbiol. 2019;4(4):693–700.PubMedPubMedCentralCrossRef Devoto AE, Santini JM, Olm MR, Anantharaman K, Munk P, Tung J, et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat Microbiol. 2019;4(4):693–700.PubMedPubMedCentralCrossRef
58.
go back to reference Buttimer C, Khokhlova EV, Stein L, Hueston CM, Govi B, Draper LA, et al. Temperate bacteriophages infecting the mucin-degrading bacterium Ruminococcus gnavus from the human gut. Gut Microbes. 2023;15(1): 2194794.PubMedPubMedCentralCrossRef Buttimer C, Khokhlova EV, Stein L, Hueston CM, Govi B, Draper LA, et al. Temperate bacteriophages infecting the mucin-degrading bacterium Ruminococcus gnavus from the human gut. Gut Microbes. 2023;15(1): 2194794.PubMedPubMedCentralCrossRef
60.
go back to reference Lim ES, Wang D, Holtz LR. The Bacterial Microbiome and Virome Milestones of Infant Development. Trends Microbiol. 2016;24(10):801–10.PubMedCrossRef Lim ES, Wang D, Holtz LR. The Bacterial Microbiome and Virome Milestones of Infant Development. Trends Microbiol. 2016;24(10):801–10.PubMedCrossRef
61.
go back to reference Xu GJ, Kula T, Xu Q, Li MZ, Vernon SD, Ndung’u T, et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science. 2015;348(6239):aaa0698.PubMedPubMedCentralCrossRef Xu GJ, Kula T, Xu Q, Li MZ, Vernon SD, Ndung’u T, et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science. 2015;348(6239):aaa0698.PubMedPubMedCentralCrossRef
62.
go back to reference Finkbeiner SR, Allred AF, Tarr PI, Klein EJ, Kirkwood CD, Wang D. Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog. 2008;4(2): e1000011.PubMedPubMedCentralCrossRef Finkbeiner SR, Allred AF, Tarr PI, Klein EJ, Kirkwood CD, Wang D. Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog. 2008;4(2): e1000011.PubMedPubMedCentralCrossRef
63.
go back to reference Yang J-Y, Kim M-S, Kim E, Cheon JH, Lee Y-S, Kim Y, et al. Enteric Viruses Ameliorate Gut Inflammation via Toll-like Receptor 3 and Toll-like Receptor 7-Mediated Interferon-β Production. Immunity. 2016;44(4):889–900.PubMedCrossRef Yang J-Y, Kim M-S, Kim E, Cheon JH, Lee Y-S, Kim Y, et al. Enteric Viruses Ameliorate Gut Inflammation via Toll-like Receptor 3 and Toll-like Receptor 7-Mediated Interferon-β Production. Immunity. 2016;44(4):889–900.PubMedCrossRef
65.
go back to reference Seifarth W, Frank O, Zeilfelder U, Spiess B, Greenwood AD, Hehlmann R, et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol. 2005;79(1):341–52.PubMedPubMedCentralCrossRef Seifarth W, Frank O, Zeilfelder U, Spiess B, Greenwood AD, Hehlmann R, et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol. 2005;79(1):341–52.PubMedPubMedCentralCrossRef
66.
go back to reference Dopkins N, Nixon DF. Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol. 2024;25(3):212–22.PubMedCrossRef Dopkins N, Nixon DF. Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol. 2024;25(3):212–22.PubMedCrossRef
68.
go back to reference Küry P, Nath A, Créange A, Dolei A, Marche P, Gold J, et al. Human Endogenous Retroviruses in Neurological Diseases. Trends Mol Med. 2018;24(4):379–94.PubMedPubMedCentralCrossRef Küry P, Nath A, Créange A, Dolei A, Marche P, Gold J, et al. Human Endogenous Retroviruses in Neurological Diseases. Trends Mol Med. 2018;24(4):379–94.PubMedPubMedCentralCrossRef
69.
go back to reference Wang W, Jovel J, Halloran B, Wine E, Patterson J, Ford G, et al. Metagenomic analysis of microbiome in colon tissue from subjects with inflammatory bowel diseases reveals interplay of viruses and bacteria. Inflamm Bowel Dis. 2015;21(6):1419–27.PubMed Wang W, Jovel J, Halloran B, Wine E, Patterson J, Ford G, et al. Metagenomic analysis of microbiome in colon tissue from subjects with inflammatory bowel diseases reveals interplay of viruses and bacteria. Inflamm Bowel Dis. 2015;21(6):1419–27.PubMed
70.
go back to reference Pérez-Brocal V, García-López R, Vázquez-Castellanos JF, Nos P, Beltrán B, Latorre A, et al. Study of the viral and microbial communities associated with Crohn’s disease: a metagenomic approach. Clin Transl Gastroenterol. 2013;4(6): e36.PubMedPubMedCentralCrossRef Pérez-Brocal V, García-López R, Vázquez-Castellanos JF, Nos P, Beltrán B, Latorre A, et al. Study of the viral and microbial communities associated with Crohn’s disease: a metagenomic approach. Clin Transl Gastroenterol. 2013;4(6): e36.PubMedPubMedCentralCrossRef
71.
go back to reference Wagner J, Maksimovic J, Farries G, Sim WH, Bishop RF, Cameron DJ, et al. Bacteriophages in gut samples from pediatric Crohn’s disease patients: metagenomic analysis using 454 pyrosequencing. Inflamm Bowel Dis. 2013;19(8):1598–608.PubMedCrossRef Wagner J, Maksimovic J, Farries G, Sim WH, Bishop RF, Cameron DJ, et al. Bacteriophages in gut samples from pediatric Crohn’s disease patients: metagenomic analysis using 454 pyrosequencing. Inflamm Bowel Dis. 2013;19(8):1598–608.PubMedCrossRef
72.
go back to reference Pérez-Brocal V, García-López R, Nos P, Beltrán B, Moret I, Moya A. Metagenomic Analysis of Crohn’s Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers. Inflamm Bowel Dis. 2015;21(11):2515–32.PubMedCrossRef Pérez-Brocal V, García-López R, Nos P, Beltrán B, Moret I, Moya A. Metagenomic Analysis of Crohn’s Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers. Inflamm Bowel Dis. 2015;21(11):2515–32.PubMedCrossRef
73.
go back to reference Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM, O’Regan O, et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe. 2019;26(6):764-778.e5.PubMedCrossRef Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM, O’Regan O, et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe. 2019;26(6):764-778.e5.PubMedCrossRef
74.
go back to reference Liang G, Conrad MA, Kelsen JR, Kessler LR, Breton J, Albenberg LG, et al. Dynamics of the stool virome in very early-onset inflammatory bowel disease. J Crohns Colitis. 2020;14(11):1600–10.PubMedPubMedCentralCrossRef Liang G, Conrad MA, Kelsen JR, Kessler LR, Breton J, Albenberg LG, et al. Dynamics of the stool virome in very early-onset inflammatory bowel disease. J Crohns Colitis. 2020;14(11):1600–10.PubMedPubMedCentralCrossRef
75.
go back to reference Kong C, Liu G, Kalady MF, Jin T, Ma Y. Dysbiosis of the stool DNA and RNA virome in Crohn’s disease. J Med Virol. 2023;95(2): e28573.PubMedCrossRef Kong C, Liu G, Kalady MF, Jin T, Ma Y. Dysbiosis of the stool DNA and RNA virome in Crohn’s disease. J Med Virol. 2023;95(2): e28573.PubMedCrossRef
77.
go back to reference Sokol H, Seksik P, Rigottier-Gois L, Lay C, Lepage P, Podglajen I, et al. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12(2):106–11.PubMedCrossRef Sokol H, Seksik P, Rigottier-Gois L, Lay C, Lepage P, Podglajen I, et al. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12(2):106–11.PubMedCrossRef
78.
go back to reference Axelrad JE, Joelson A, Green PHR, Lawlor G, Lichtiger S, Cadwell K, et al. Enteric infections are common in patients with flares of inflammatory bowel disease. Am J Gastroenterol. 2018;113(10):1530–9.PubMedPubMedCentralCrossRef Axelrad JE, Joelson A, Green PHR, Lawlor G, Lichtiger S, Cadwell K, et al. Enteric infections are common in patients with flares of inflammatory bowel disease. Am J Gastroenterol. 2018;113(10):1530–9.PubMedPubMedCentralCrossRef
79.
go back to reference Lopes S, Andrade P, Conde S, Liberal R, Dias CC, Fernandes S, et al. Looking into Enteric Virome in Patients with IBD: Defining Guilty or Innocence? Inflamm Bowel Dis. 2017;23(8):1278–84.PubMedCrossRef Lopes S, Andrade P, Conde S, Liberal R, Dias CC, Fernandes S, et al. Looking into Enteric Virome in Patients with IBD: Defining Guilty or Innocence? Inflamm Bowel Dis. 2017;23(8):1278–84.PubMedCrossRef
80.
go back to reference Gauss A, Rosenstiel S, Schnitzler P, Hinz U, Rehlen T, Kadmon M, et al. Intestinal cytomegalovirus infection in patients hospitalized for exacerbation of inflammatory bowel disease: a 10-year tertiary referral center experience. Eur J Gastroen Hepat. 2015;27(6):712–20.CrossRef Gauss A, Rosenstiel S, Schnitzler P, Hinz U, Rehlen T, Kadmon M, et al. Intestinal cytomegalovirus infection in patients hospitalized for exacerbation of inflammatory bowel disease: a 10-year tertiary referral center experience. Eur J Gastroen Hepat. 2015;27(6):712–20.CrossRef
81.
go back to reference Roblin X, Pillet S, Oussalah A, Berthelot P, Del Tedesco E, Phelip J-M, et al. Cytomegalovirus load in inflamed intestinal tissue is predictive of resistance to immunosuppressive therapy in ulcerative colitis. Am J Gastroenterol. 2011;106(11):2001–8.PubMedCrossRef Roblin X, Pillet S, Oussalah A, Berthelot P, Del Tedesco E, Phelip J-M, et al. Cytomegalovirus load in inflamed intestinal tissue is predictive of resistance to immunosuppressive therapy in ulcerative colitis. Am J Gastroenterol. 2011;106(11):2001–8.PubMedCrossRef
82.
go back to reference Kopylov U, Eliakim-Raz N, Szilagy A, Seidman E, Ben-Horin S, Katz L. Antiviral therapy in cytomegalovirus-positive ulcerative colitis: a systematic review and meta-analysis. World J Gastroenterol. 2014;20(10):2695–703.PubMedPubMedCentralCrossRef Kopylov U, Eliakim-Raz N, Szilagy A, Seidman E, Ben-Horin S, Katz L. Antiviral therapy in cytomegalovirus-positive ulcerative colitis: a systematic review and meta-analysis. World J Gastroenterol. 2014;20(10):2695–703.PubMedPubMedCentralCrossRef
84.
go back to reference Ma C, Jiang M, Li J, Zeng Z, Wu Y, Cheng R, et al. Plasma Epstein-Barr Virus DNA load for diagnostic and prognostic assessment in intestinal Epstein-Barr Virus infection. Front Cell Infect Microbiol. 2025;14: 1526633.PubMedPubMedCentralCrossRef Ma C, Jiang M, Li J, Zeng Z, Wu Y, Cheng R, et al. Plasma Epstein-Barr Virus DNA load for diagnostic and prognostic assessment in intestinal Epstein-Barr Virus infection. Front Cell Infect Microbiol. 2025;14: 1526633.PubMedPubMedCentralCrossRef
85.
go back to reference Ma C, Chen K, Li L, Jiang M, Zeng Z, Yin F, et al. Epstein-Barr virus Infection Exacerbates Ulcerative Colitis by Driving Macrophage Pyroptosis via the Upregulation of Glycolysis. Precis Clin Med. 2025;8(1):pbaf002.PubMedPubMedCentralCrossRef Ma C, Chen K, Li L, Jiang M, Zeng Z, Yin F, et al. Epstein-Barr virus Infection Exacerbates Ulcerative Colitis by Driving Macrophage Pyroptosis via the Upregulation of Glycolysis. Precis Clin Med. 2025;8(1):pbaf002.PubMedPubMedCentralCrossRef
86.
go back to reference Sankaran-Walters S, Ransibrahmanakul K, Grishina I, Hung J, Martinez E, Prindiville T, et al. Epstein-Barr virus replication linked to B cell proliferation in inflamed areas of colonic mucosa of patients with inflammatory bowel disease. J Clin Virol. 2011;50(1):31–6.PubMedCrossRef Sankaran-Walters S, Ransibrahmanakul K, Grishina I, Hung J, Martinez E, Prindiville T, et al. Epstein-Barr virus replication linked to B cell proliferation in inflamed areas of colonic mucosa of patients with inflammatory bowel disease. J Clin Virol. 2011;50(1):31–6.PubMedCrossRef
87.
go back to reference Marszałek A, Marciniak R, Szkaradkiewicz A, Wasilewska A, Chudzicka-Strugała I, Ziuziakowska H, et al. Inflammatory bowel disease - is there something new in the immunological background? Folia Histochem Cytobiol. 2011;49(2):357–62.PubMedCrossRef Marszałek A, Marciniak R, Szkaradkiewicz A, Wasilewska A, Chudzicka-Strugała I, Ziuziakowska H, et al. Inflammatory bowel disease - is there something new in the immunological background? Folia Histochem Cytobiol. 2011;49(2):357–62.PubMedCrossRef
88.
go back to reference Massimino L, Palmieri O, Facoetti A, Fuggetta D, Spanò S, Lamparelli LA, et al. Gut virome-colonising Orthohepadnavirus genus is associated with ulcerative colitis pathogenesis and induces intestinal inflammation in vivo. Gut. 2023;72(10):1838–47.PubMedCrossRef Massimino L, Palmieri O, Facoetti A, Fuggetta D, Spanò S, Lamparelli LA, et al. Gut virome-colonising Orthohepadnavirus genus is associated with ulcerative colitis pathogenesis and induces intestinal inflammation in vivo. Gut. 2023;72(10):1838–47.PubMedCrossRef
89.
go back to reference Fernandes MA, Verstraete SG, Phan TG, Deng X, Stekol E, LaMere B, et al. Enteric virome and bacterial microbiota in children with ulcerative colitis and crohn disease. J Pediatr Gastroenterol Nutr. 2019;68(1):30–6.PubMedPubMedCentralCrossRef Fernandes MA, Verstraete SG, Phan TG, Deng X, Stekol E, LaMere B, et al. Enteric virome and bacterial microbiota in children with ulcerative colitis and crohn disease. J Pediatr Gastroenterol Nutr. 2019;68(1):30–6.PubMedPubMedCentralCrossRef
90.
go back to reference Klag T, Courth L, Ostaff MJ, Ott G, Stange EF, Malek NP, et al. Human endogenous retroviruses: residues of ancient times are differentially expressed in crohn’s disease. Inflamm Intest Dis. 2019;3(3):125–37.PubMedCrossRef Klag T, Courth L, Ostaff MJ, Ott G, Stange EF, Malek NP, et al. Human endogenous retroviruses: residues of ancient times are differentially expressed in crohn’s disease. Inflamm Intest Dis. 2019;3(3):125–37.PubMedCrossRef
91.
go back to reference Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F, Yong VW, et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci. 2004;7(10):1088–95.PubMedCrossRef Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F, Yong VW, et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci. 2004;7(10):1088–95.PubMedCrossRef
92.
go back to reference Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity. 2001;15(4):579–89.PubMedCrossRef Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity. 2001;15(4):579–89.PubMedCrossRef
93.
go back to reference Tovo P-A, Ribaldone DG, Galliano I, Caviglia GP, Dini M, Veglio V, et al. Enhanced transcription of human endogenous retroviruses and trim28 downregulation in patients with inflammatory bowel disease. Viruses. 2024;16(10): 1570.PubMedPubMedCentralCrossRef Tovo P-A, Ribaldone DG, Galliano I, Caviglia GP, Dini M, Veglio V, et al. Enhanced transcription of human endogenous retroviruses and trim28 downregulation in patients with inflammatory bowel disease. Viruses. 2024;16(10): 1570.PubMedPubMedCentralCrossRef
95.
go back to reference Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141–51.PubMedCrossRef Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141–51.PubMedCrossRef
96.
go back to reference Wu J, Fu K, Hou C, Wang Y, Ji C, Xue F, et al. Bacteriophage defends murine gut from Escherichia coli invasion via mucosal adherence. Nat Commun. 2024;15(1):4764.PubMedPubMedCentralCrossRef Wu J, Fu K, Hou C, Wang Y, Ji C, Xue F, et al. Bacteriophage defends murine gut from Escherichia coli invasion via mucosal adherence. Nat Commun. 2024;15(1):4764.PubMedPubMedCentralCrossRef
97.
go back to reference Cadwell K, Patel KK, Maloney NS, Liu T-C, Ng ACY, Storer CE, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141(7):1135–45.PubMedPubMedCentralCrossRef Cadwell K, Patel KK, Maloney NS, Liu T-C, Ng ACY, Storer CE, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141(7):1135–45.PubMedPubMedCentralCrossRef
99.
go back to reference Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456(7219):259–63.PubMedPubMedCentralCrossRef Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456(7219):259–63.PubMedPubMedCentralCrossRef
100.
go back to reference Basic M, Keubler LM, Buettner M, Achard M, Breves G, Schröder B, et al. Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm Bowel Dis. 2014;20(3):431–43.PubMedCrossRef Basic M, Keubler LM, Buettner M, Achard M, Breves G, Schröder B, et al. Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm Bowel Dis. 2014;20(3):431–43.PubMedCrossRef
101.
102.
go back to reference Sun L, Miyoshi H, Origanti S, Nice TJ, Barger AC, Manieri NA, et al. Type I interferons link viral infection to enhanced epithelial turnover and repair. Cell Host Microbe. 2015;17(1):85–97.PubMedCrossRef Sun L, Miyoshi H, Origanti S, Nice TJ, Barger AC, Manieri NA, et al. Type I interferons link viral infection to enhanced epithelial turnover and repair. Cell Host Microbe. 2015;17(1):85–97.PubMedCrossRef
103.
go back to reference Moyano-Porcile V, Olavarría-Ramírez L, González-Arancibia C, Bravo JA, Julio-Pieper M. Short-term effects of Poly(I:C) on gut permeability. Pharmacol Res. 2015;101:130–6.PubMedCrossRef Moyano-Porcile V, Olavarría-Ramírez L, González-Arancibia C, Bravo JA, Julio-Pieper M. Short-term effects of Poly(I:C) on gut permeability. Pharmacol Res. 2015;101:130–6.PubMedCrossRef
104.
go back to reference Górski A, Wazna E, Dabrowska B-W, Dabrowska K, Switała-Jeleń K, Miedzybrodzki R. Bacteriophage translocation. FEMS Immunol Med Microbiol. 2006;46(3):313–9.PubMedCrossRef Górski A, Wazna E, Dabrowska B-W, Dabrowska K, Switała-Jeleń K, Miedzybrodzki R. Bacteriophage translocation. FEMS Immunol Med Microbiol. 2006;46(3):313–9.PubMedCrossRef
106.
go back to reference Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci USA. 2013;110(26):10771–6.PubMedPubMedCentralCrossRef Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci USA. 2013;110(26):10771–6.PubMedPubMedCentralCrossRef
107.
go back to reference Van Belleghem JD, Clement F, Merabishvili M, Lavigne R, Vaneechoutte M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci Rep. 2017;7(1):8004.PubMedPubMedCentralCrossRef Van Belleghem JD, Clement F, Merabishvili M, Lavigne R, Vaneechoutte M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci Rep. 2017;7(1):8004.PubMedPubMedCentralCrossRef
108.
go back to reference Majewska J, Beta W, Lecion D, Hodyra-Stefaniak K, Kłopot A, Kaźmierczak Z, et al. Oral Application of T4 phage induces weak antibody production in the gut and in the blood. Viruses. 2015;7(8):4783–99.PubMedPubMedCentralCrossRef Majewska J, Beta W, Lecion D, Hodyra-Stefaniak K, Kłopot A, Kaźmierczak Z, et al. Oral Application of T4 phage induces weak antibody production in the gut and in the blood. Viruses. 2015;7(8):4783–99.PubMedPubMedCentralCrossRef
109.
go back to reference Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG, Hanke-Gogokhia C, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe. 2019;25(2):285-299.e8.PubMedPubMedCentralCrossRef Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG, Hanke-Gogokhia C, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe. 2019;25(2):285-299.e8.PubMedPubMedCentralCrossRef
110.
go back to reference Dąbrowska K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev. 2019;39(5):2000–25.PubMedPubMedCentralCrossRef Dąbrowska K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev. 2019;39(5):2000–25.PubMedPubMedCentralCrossRef
111.
go back to reference Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol. 2009;10(10):1073–80.PubMedPubMedCentralCrossRef Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol. 2009;10(10):1073–80.PubMedPubMedCentralCrossRef
112.
go back to reference Marchiando AM, Ramanan D, Ding Y, Gomez LE, Hubbard-Lucey VM, Maurer K, et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe. 2013;14(2):216–24.PubMedCrossRef Marchiando AM, Ramanan D, Ding Y, Gomez LE, Hubbard-Lucey VM, Maurer K, et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe. 2013;14(2):216–24.PubMedCrossRef
113.
go back to reference Wobus CE, Karst SM, Thackray LB, Chang K-O, Sosnovtsev SV, Belliot G, et al. Replication of Norovirus in Cell Culture Reveals a Tropism for Dendritic Cells and Macrophages. PLoS Biol. 2004;2(12): e432.PubMedPubMedCentralCrossRef Wobus CE, Karst SM, Thackray LB, Chang K-O, Sosnovtsev SV, Belliot G, et al. Replication of Norovirus in Cell Culture Reveals a Tropism for Dendritic Cells and Macrophages. PLoS Biol. 2004;2(12): e432.PubMedPubMedCentralCrossRef
114.
go back to reference Newman KL, Moe CL, Kirby AE, Flanders WD, Parkos CA, Leon JS. Human norovirus infection and the acute serum cytokine response. Clin Exp Immunol. 2015;182(2):195–203.PubMedPubMedCentralCrossRef Newman KL, Moe CL, Kirby AE, Flanders WD, Parkos CA, Leon JS. Human norovirus infection and the acute serum cytokine response. Clin Exp Immunol. 2015;182(2):195–203.PubMedPubMedCentralCrossRef
115.
go back to reference Zeng Z, Lin H, Jiang M, Yuan J, Li X, Jia Y, et al. Anti-TNFα in inflammatory bowel disease: from originators to biosimilars. Front Pharmacol. 2024;15: 1424606.PubMedPubMedCentralCrossRef Zeng Z, Lin H, Jiang M, Yuan J, Li X, Jia Y, et al. Anti-TNFα in inflammatory bowel disease: from originators to biosimilars. Front Pharmacol. 2024;15: 1424606.PubMedPubMedCentralCrossRef
116.
go back to reference Wilen CB, Lee S, Hsieh LL, Orchard RC, Desai C, Hykes BL, et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science. 2018;360(6385):204–8.PubMedPubMedCentralCrossRef Wilen CB, Lee S, Hsieh LL, Orchard RC, Desai C, Hykes BL, et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science. 2018;360(6385):204–8.PubMedPubMedCentralCrossRef
117.
go back to reference Ting H-A, Von Moltke J. The immune function of tuft cells at gut mucosal surfaces and beyond. J Immunol. 2019;202(5):1321–9.PubMedCrossRef Ting H-A, Von Moltke J. The immune function of tuft cells at gut mucosal surfaces and beyond. J Immunol. 2019;202(5):1321–9.PubMedCrossRef
118.
go back to reference Frias AH, Jones RM, Fifadara NH, Vijay-Kumar M, Gewirtz AT. Rotavirus-induced IFN-β promotes anti-viral signaling and apoptosis that modulate viral replication in intestinal epithelial cells. Innate Immun. 2012;18(2):294–306.PubMedCrossRef Frias AH, Jones RM, Fifadara NH, Vijay-Kumar M, Gewirtz AT. Rotavirus-induced IFN-β promotes anti-viral signaling and apoptosis that modulate viral replication in intestinal epithelial cells. Innate Immun. 2012;18(2):294–306.PubMedCrossRef
119.
go back to reference Coulson BS, Londrigan SL, Lee DJ. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci. 1997;94(10):5389–94.PubMedPubMedCentralCrossRef Coulson BS, Londrigan SL, Lee DJ. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci. 1997;94(10):5389–94.PubMedPubMedCentralCrossRef
120.
go back to reference Chen X, Liu R, Liu X, Xu C, Wang X. Protective Role of Coxsackie-Adenovirus Receptor in the Pathogenesis of Inflammatory Bowel Diseases. Biomed Res Int. 2018;2018:7207268.PubMedPubMedCentral Chen X, Liu R, Liu X, Xu C, Wang X. Protective Role of Coxsackie-Adenovirus Receptor in the Pathogenesis of Inflammatory Bowel Diseases. Biomed Res Int. 2018;2018:7207268.PubMedPubMedCentral
121.
go back to reference Rajan A, Persson BD, Frängsmyr L, Olofsson A, Sandblad L, Heino J, et al. Enteric Species F human adenoviruses use laminin-binding integrins as co-receptors for Infection of Ht-29 Cells. Sci Rep. 2018;8(1):10019.PubMedPubMedCentralCrossRef Rajan A, Persson BD, Frängsmyr L, Olofsson A, Sandblad L, Heino J, et al. Enteric Species F human adenoviruses use laminin-binding integrins as co-receptors for Infection of Ht-29 Cells. Sci Rep. 2018;8(1):10019.PubMedPubMedCentralCrossRef
122.
go back to reference Seth RK, Maqsood R, Mondal A, Bose D, Kimono D, Holland LA, et al. Gut DNA virome diversity and its association with host bacteria regulate inflammatory phenotype and neuronal immunotoxicity in experimental gulf war illness. Viruses. 2019;11(10):968.PubMedPubMedCentralCrossRef Seth RK, Maqsood R, Mondal A, Bose D, Kimono D, Holland LA, et al. Gut DNA virome diversity and its association with host bacteria regulate inflammatory phenotype and neuronal immunotoxicity in experimental gulf war illness. Viruses. 2019;11(10):968.PubMedPubMedCentralCrossRef
123.
go back to reference Sun L, Nava GM, Stappenbeck TS. Host genetic susceptibility, dysbiosis, and viral triggers in inflammatory bowel disease. Curr Opin Gastroenterol. 2011;27(4):321–7.PubMedPubMedCentralCrossRef Sun L, Nava GM, Stappenbeck TS. Host genetic susceptibility, dysbiosis, and viral triggers in inflammatory bowel disease. Curr Opin Gastroenterol. 2011;27(4):321–7.PubMedPubMedCentralCrossRef
124.
go back to reference Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L, Bry L, et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe. 2019;25(6):803-814.e5.PubMedPubMedCentralCrossRef Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L, Bry L, et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe. 2019;25(6):803-814.e5.PubMedPubMedCentralCrossRef
125.
go back to reference Vemuri R, Gundamaraju R, Shastri MD, Shukla SD, Kalpurath K, Ball M, et al. Gut microbial changes, interactions, and their implications on human lifecycle: an ageing perspective. Biomed Res Int. 2018;2018:4178607.PubMedPubMedCentralCrossRef Vemuri R, Gundamaraju R, Shastri MD, Shukla SD, Kalpurath K, Ball M, et al. Gut microbial changes, interactions, and their implications on human lifecycle: an ageing perspective. Biomed Res Int. 2018;2018:4178607.PubMedPubMedCentralCrossRef
127.
go back to reference Bolsega S, Basic M, Smoczek A, Buettner M, Eberl C, Ahrens D, et al. Composition of the intestinal microbiota determines the outcome of virus-triggered colitis in mice. Front Immunol. 2019;10: 1708.PubMedPubMedCentralCrossRef Bolsega S, Basic M, Smoczek A, Buettner M, Eberl C, Ahrens D, et al. Composition of the intestinal microbiota determines the outcome of virus-triggered colitis in mice. Front Immunol. 2019;10: 1708.PubMedPubMedCentralCrossRef
128.
go back to reference Nelson AM, Walk ST, Taube S, Taniuchi M, Houpt ER, Wobus CE, et al. Disruption of the human gut microbiota following Norovirus infection. PLoS One. 2012;7(10): e48224.PubMedPubMedCentralCrossRef Nelson AM, Walk ST, Taube S, Taniuchi M, Houpt ER, Wobus CE, et al. Disruption of the human gut microbiota following Norovirus infection. PLoS One. 2012;7(10): e48224.PubMedPubMedCentralCrossRef
129.
go back to reference Sinha A, Li Y, Mirzaei MK, Shamash M, Samadfam R, King IL, et al. Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome. 2022;10(1):105.PubMedPubMedCentralCrossRef Sinha A, Li Y, Mirzaei MK, Shamash M, Samadfam R, King IL, et al. Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome. 2022;10(1):105.PubMedPubMedCentralCrossRef
130.
go back to reference Cornuault JK, Petit M-A, Mariadassou M, Benevides L, Moncaut E, Langella P, et al. Phages infecting Faecalibacterium prausnitzii belong to novel viral genera that help to decipher intestinal viromes. Microbiome. 2018;6(1):65.PubMedPubMedCentralCrossRef Cornuault JK, Petit M-A, Mariadassou M, Benevides L, Moncaut E, Langella P, et al. Phages infecting Faecalibacterium prausnitzii belong to novel viral genera that help to decipher intestinal viromes. Microbiome. 2018;6(1):65.PubMedPubMedCentralCrossRef
132.
go back to reference Dahlman S, Avellaneda-Franco L, Barr JJ. Phages to shape the gut microbiota? Curr Opin Biotechnol. 2021;68:89–95.PubMedCrossRef Dahlman S, Avellaneda-Franco L, Barr JJ. Phages to shape the gut microbiota? Curr Opin Biotechnol. 2021;68:89–95.PubMedCrossRef
133.
go back to reference Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68(3):560–602 table of contents.PubMedPubMedCentralCrossRef Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68(3):560–602 table of contents.PubMedPubMedCentralCrossRef
134.
go back to reference Galtier M, De Sordi L, Sivignon A, de Vallée A, Maura D, Neut C, et al. Bacteriophages Targeting Adherent Invasive Escherichia coli Strains as a Promising New Treatment for Crohn’s Disease. J Crohns Colitis. 2017;11(7):840–7.PubMed Galtier M, De Sordi L, Sivignon A, de Vallée A, Maura D, Neut C, et al. Bacteriophages Targeting Adherent Invasive Escherichia coli Strains as a Promising New Treatment for Crohn’s Disease. J Crohns Colitis. 2017;11(7):840–7.PubMed
135.
go back to reference Yu L, Wang S, Guo Z, Liu H, Sun D, Yan G, et al. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. Appl Microbiol Biotechnol. 2018;102(2):971–83.PubMedCrossRef Yu L, Wang S, Guo Z, Liu H, Sun D, Yan G, et al. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. Appl Microbiol Biotechnol. 2018;102(2):971–83.PubMedCrossRef
136.
go back to reference Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019;25(2):219–32.PubMedCrossRef Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019;25(2):219–32.PubMedCrossRef
137.
go back to reference Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio. 2014;5(4):10–128.CrossRef Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio. 2014;5(4):10–128.CrossRef
138.
go back to reference Mayer MJ, Narbad A, Gasson MJ. Molecular characterization of a clostridium difficile bacteriophage and its cloned biologically active endolysin. J Bacteriol. 2008;190(20):6734–40.PubMedPubMedCentralCrossRef Mayer MJ, Narbad A, Gasson MJ. Molecular characterization of a clostridium difficile bacteriophage and its cloned biologically active endolysin. J Bacteriol. 2008;190(20):6734–40.PubMedPubMedCentralCrossRef
139.
140.
go back to reference Fujimoto K, Hayashi T, Yamamoto M, Sato N, Shimohigoshi M, Miyaoka D, et al. An enterococcal phage-derived enzyme suppresses graft-versus-host disease. Nature. 2024;632(8023):174–81.PubMedPubMedCentralCrossRef Fujimoto K, Hayashi T, Yamamoto M, Sato N, Shimohigoshi M, Miyaoka D, et al. An enterococcal phage-derived enzyme suppresses graft-versus-host disease. Nature. 2024;632(8023):174–81.PubMedPubMedCentralCrossRef
141.
go back to reference Pallesen EMH, Gluud M, Vadivel CK, Buus TB, De Rooij B, Zeng Z, et al. Endolysin Inhibits Skin Colonization by Patient-Derived Staphylococcus Aureus and Malignant T-Cell Activation in Cutaneous T-Cell Lymphoma. J Invest Dermatol. 2023;143(9):1757-1768.e3.PubMedCrossRef Pallesen EMH, Gluud M, Vadivel CK, Buus TB, De Rooij B, Zeng Z, et al. Endolysin Inhibits Skin Colonization by Patient-Derived Staphylococcus Aureus and Malignant T-Cell Activation in Cutaneous T-Cell Lymphoma. J Invest Dermatol. 2023;143(9):1757-1768.e3.PubMedCrossRef
142.
go back to reference Vindigni SM, Surawicz CM. Fecal Microbiota Transplantation. Gastroenterol Clin North Am. 2017;46(1):171–85.PubMedCrossRef Vindigni SM, Surawicz CM. Fecal Microbiota Transplantation. Gastroenterol Clin North Am. 2017;46(1):171–85.PubMedCrossRef
143.
go back to reference Ianiro G, Segal JP, Mullish BH, Quraishi MN, Porcari S, Fabiani G, et al. Fecal microbiota transplantation in gastrointestinal and extraintestinal disorders. Future Microbiol. 2020;15:1173–83.PubMedCrossRef Ianiro G, Segal JP, Mullish BH, Quraishi MN, Porcari S, Fabiani G, et al. Fecal microbiota transplantation in gastrointestinal and extraintestinal disorders. Future Microbiol. 2020;15:1173–83.PubMedCrossRef
144.
go back to reference Collins M, DeWitt M. Fecal microbiota transplantation in the treatment of Crohn disease. JAAPA. 2020;33(9):34–7.PubMedCrossRef Collins M, DeWitt M. Fecal microbiota transplantation in the treatment of Crohn disease. JAAPA. 2020;33(9):34–7.PubMedCrossRef
145.
go back to reference Matsuoka K. Fecal microbiota transplantation for ulcerative colitis. Immunol Med. 2021;44(1):30–4.PubMedCrossRef Matsuoka K. Fecal microbiota transplantation for ulcerative colitis. Immunol Med. 2021;44(1):30–4.PubMedCrossRef
146.
go back to reference Lam S, Bai X, Shkoporov AN, Park H, Wu X, Lan P, et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol. 2022;7(5):472–84.PubMedCrossRef Lam S, Bai X, Shkoporov AN, Park H, Wu X, Lan P, et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol. 2022;7(5):472–84.PubMedCrossRef
147.
go back to reference Broecker F, Russo G, Klumpp J, Moelling K. Stable core virome despite variable microbiome after fecal transfer. Gut Microbes. 2017;8(3):214–20.PubMedCrossRef Broecker F, Russo G, Klumpp J, Moelling K. Stable core virome despite variable microbiome after fecal transfer. Gut Microbes. 2017;8(3):214–20.PubMedCrossRef
148.
go back to reference Zuo T, Wong SH, Lam K, Lui R, Cheung K, Tang W, et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut. 2018;67(4):634–43.PubMed Zuo T, Wong SH, Lam K, Lui R, Cheung K, Tang W, et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut. 2018;67(4):634–43.PubMed
149.
go back to reference Rasmussen TS, Mentzel CMJ, Danielsen MR, Jakobsen RR, Zachariassen LSF, Castro Mejia JL, et al. Fecal virome transfer improves proliferation of commensal gut Akkermansia muciniphila and unexpectedly enhances the fertility rate in laboratory mice. Gut Microbes. 2023;15(1): 2208504.PubMedPubMedCentralCrossRef Rasmussen TS, Mentzel CMJ, Danielsen MR, Jakobsen RR, Zachariassen LSF, Castro Mejia JL, et al. Fecal virome transfer improves proliferation of commensal gut Akkermansia muciniphila and unexpectedly enhances the fertility rate in laboratory mice. Gut Microbes. 2023;15(1): 2208504.PubMedPubMedCentralCrossRef
150.
go back to reference Kellermayer R, Nagy-Szakal D, Harris RA, Luna RA, Pitashny M, Schady D, et al. Serial fecal microbiota transplantation alters mucosal gene expression in pediatric ulcerative colitis. Am J Gastroenterol. 2015;110(4):604–6.PubMedPubMedCentralCrossRef Kellermayer R, Nagy-Szakal D, Harris RA, Luna RA, Pitashny M, Schady D, et al. Serial fecal microbiota transplantation alters mucosal gene expression in pediatric ulcerative colitis. Am J Gastroenterol. 2015;110(4):604–6.PubMedPubMedCentralCrossRef
151.
go back to reference Chehoud C, Dryga A, Hwang Y, Nagy-Szakal D, Hollister EB, Luna RA, et al. Transfer of viral communities between human individuals during fecal microbiota transplantation. MBio. 2016;7(2):10–128.CrossRef Chehoud C, Dryga A, Hwang Y, Nagy-Szakal D, Hollister EB, Luna RA, et al. Transfer of viral communities between human individuals during fecal microbiota transplantation. MBio. 2016;7(2):10–128.CrossRef
152.
go back to reference Zhang H, Zeng Z, Mukherjee A, Shen B. Molecular diagnosis and classification of inflammatory bowel disease. Expert Rev Mol Diagn. 2018;18(10):867–86.PubMedCrossRef Zhang H, Zeng Z, Mukherjee A, Shen B. Molecular diagnosis and classification of inflammatory bowel disease. Expert Rev Mol Diagn. 2018;18(10):867–86.PubMedCrossRef
153.
go back to reference Jiang M, Zeng Z, Chen K, Dang Y, Li L, Ma C, et al. Enterogenous microbiotic markers in the differential diagnosis of crohn’s disease and intestinal tuberculosis. Front Immunol. 2022;13: 820891.PubMedPubMedCentralCrossRef Jiang M, Zeng Z, Chen K, Dang Y, Li L, Ma C, et al. Enterogenous microbiotic markers in the differential diagnosis of crohn’s disease and intestinal tuberculosis. Front Immunol. 2022;13: 820891.PubMedPubMedCentralCrossRef
Metadata
Title
Gut virome and its implications in the pathogenesis and therapeutics of inflammatory bowel disease
Authors
Yushan Wu
Rui Cheng
Hao Lin
Lili Li
Yongbin Jia
Anna Philips
Tao Zuo
Hu Zhang
Publication date
26-03-2025
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2025
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-025-04016-y