Skip to main content
Top
Published in:

05-01-2024 | Infertility | Genetics

Pathogenic missense variation in PABPC1L/EPAB causes female infertility due to oocyte maturation arrest at the germinal vesicle stage

Authors: O. Okutman, A. S. Gürbüz, U. Büyük, E. Real, R. Leconte, K. Chennen, C. Mayer, J. Muller, N. Le May, S. Viville

Published in: Journal of Assisted Reproduction and Genetics | Issue 2/2024

Login to get access

Abstract

Women undergoing controlled ovarian hyperstimulation prior to in vitro fertilization (IVF) are treated using various protocols to induce multiple follicular growths. Complete failure of all oocytes to mature during IVF cycles is rare; however, it is a known cause of primary female infertility. Recently, pathogenic variations in a few genes have been identified in women with oocyte maturation defects; however, the underlying genetic causes remain largely unknown.
This study included a Turkish family comprising three sisters with recurring oocyte maturation arrest at the germinal vesicle stage after multiple ovarian stimulations. Exome sequencing revealed a homozygous missense variant (c.1037C>T, p.Ala346Val) in the EPAB gene (also known as PABPC1L) in all three affected sisters, which was either absent or heterozygous in the unaffected family members. Functional experiments confirming the pathogenicity of the variant were performed by transfecting HEK293T cells and demonstrated the instability and increased rate of proteolysis of the mutated PABPC1L/EPAB protein. The identified variant, located in the well-conserved fourth RNA recognition motif (RRM4), in silico 3D modelling suggested changes in the physical properties of the pathogenic variant of PABPC1L/EPAB. 
Our findings validate PABPC1L/EPAB as an essential genetic contributor to the oocyte maturation process in humans and have direct implications for the genetic counselling of patients and their family members.
Appendix
Available only for authorised users
Literature
2.
go back to reference Johnson MH, Everitt B. Essential reproduction. In: Blackwell Wiley, editor. Sperm and eggs chapter. Wiley-Blackwell; 2000. p. 175–88. Johnson MH, Everitt B. Essential reproduction. In: Blackwell Wiley, editor. Sperm and eggs chapter. Wiley-Blackwell; 2000. p. 175–88.
3.
go back to reference Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79:237–60.PubMedCrossRef Jaffe LA, Egbert JR. Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol. 2017;79:237–60.PubMedCrossRef
4.
go back to reference Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21:427–54.PubMedCrossRef Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21:427–54.PubMedCrossRef
5.
6.
go back to reference Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev. 1996;8:485–9.PubMedCrossRef Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev. 1996;8:485–9.PubMedCrossRef
7.
go back to reference Voeltz GK, Ongkasuwan J, Standart N, Steitz JA. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 2001;15:774–88.PubMedPubMedCentralCrossRef Voeltz GK, Ongkasuwan J, Standart N, Steitz JA. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 2001;15:774–88.PubMedPubMedCentralCrossRef
8.
10.
go back to reference Lowther KM, Mehlmann LM. Embryonic poly(A)-binding protein is required during early stages of mouse oocyte development for chromatin organization, transcriptional silencing, and meiotic competence. Biol Reprod. 2015;93:43.PubMedPubMedCentralCrossRef Lowther KM, Mehlmann LM. Embryonic poly(A)-binding protein is required during early stages of mouse oocyte development for chromatin organization, transcriptional silencing, and meiotic competence. Biol Reprod. 2015;93:43.PubMedPubMedCentralCrossRef
11.
go back to reference Pushpa K, Kumar GA, Subramaniam K. Signaling-Mediated Control of Cell Division, From Oogenesis to Oocyte-to-Embryo Development. Results and Problems in Cell Differentiation vol 59. In: Arur S, editor. Translational Control of Germ Cell Decisions. Cham: Springer; 2017. p. 175–200. Pushpa K, Kumar GA, Subramaniam K. Signaling-Mediated Control of Cell Division, From Oogenesis to Oocyte-to-Embryo Development. Results and Problems in Cell Differentiation vol 59. In: Arur S, editor. Translational Control of Germ Cell Decisions. Cham: Springer; 2017. p. 175–200.
12.
go back to reference Guzeloglu-Kayisli O, Lalioti MD, Babayev E, Torrealday S, Karakaya C, Seli E. Human embryonic poly(A)-binding protein (EPAB) alternative splicing is differentially regulated in human oocytes and embryos. Mol Hum Reprod. 2014;20:59–65.PubMedCrossRef Guzeloglu-Kayisli O, Lalioti MD, Babayev E, Torrealday S, Karakaya C, Seli E. Human embryonic poly(A)-binding protein (EPAB) alternative splicing is differentially regulated in human oocytes and embryos. Mol Hum Reprod. 2014;20:59–65.PubMedCrossRef
13.
go back to reference Guzeloglu-Kayisli O, Lalioti MD, Aydiner F, Sasson I, Ilbay O, Sakkas D, et al. Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice. Biochem J. 2012;446:47–58.PubMedCrossRef Guzeloglu-Kayisli O, Lalioti MD, Aydiner F, Sasson I, Ilbay O, Sakkas D, et al. Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice. Biochem J. 2012;446:47–58.PubMedCrossRef
14.
go back to reference Seli E, Lalioti MD, Flaherty SM, Sakkas D, Terzi N, Steitz JA. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc Natl Acad Sci USA. 2005;102:367–72.ADSPubMedPubMedCentralCrossRef Seli E, Lalioti MD, Flaherty SM, Sakkas D, Terzi N, Steitz JA. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc Natl Acad Sci USA. 2005;102:367–72.ADSPubMedPubMedCentralCrossRef
15.
go back to reference Yang C-R, Lowther KM, Lalioti MD, Seli E. Embryonic poly(A)-binding protein (EPAB) is required for granulosa cell EGF signaling and cumulus expansion in female mice. Endocrinology. 2016;157:405–16.PubMedCrossRef Yang C-R, Lowther KM, Lalioti MD, Seli E. Embryonic poly(A)-binding protein (EPAB) is required for granulosa cell EGF signaling and cumulus expansion in female mice. Endocrinology. 2016;157:405–16.PubMedCrossRef
16.
go back to reference Ozturk S, Guzeloglu-Kayisli O, Lowther KM, Lalioti MD, Sakkas D, Seli E. Epab is dispensable for mouse spermatogenesis and male fertility. Mol Reprod Dev. 2014;81:390.PubMedPubMedCentralCrossRef Ozturk S, Guzeloglu-Kayisli O, Lowther KM, Lalioti MD, Sakkas D, Seli E. Epab is dispensable for mouse spermatogenesis and male fertility. Mol Reprod Dev. 2014;81:390.PubMedPubMedCentralCrossRef
17.
go back to reference Okutman Ö, Demirel C, Tülek F, Pfister V, Büyük U, Muller J, et al. Homozygous splice site mutation in ZP1 causes familial oocyte maturation defect. Genes (Basel). 2020;11:E382.CrossRef Okutman Ö, Demirel C, Tülek F, Pfister V, Büyük U, Muller J, et al. Homozygous splice site mutation in ZP1 causes familial oocyte maturation defect. Genes (Basel). 2020;11:E382.CrossRef
18.
go back to reference Geoffroy V, Pizot C, Redin C, Piton A, Vasli N, Stoetzel C, et al. VaRank: a simple and powerful tool for ranking genetic variants. PeerJ. 2015;3:e796.PubMedPubMedCentralCrossRef Geoffroy V, Pizot C, Redin C, Piton A, Vasli N, Stoetzel C, et al. VaRank: a simple and powerful tool for ranking genetic variants. PeerJ. 2015;3:e796.PubMedPubMedCentralCrossRef
19.
go back to reference Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.ADSPubMedPubMedCentralCrossRef Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.ADSPubMedPubMedCentralCrossRef
20.
go back to reference Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.ADSCrossRef Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.ADSCrossRef
21.
go back to reference Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–7.PubMedPubMedCentralCrossRef Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–7.PubMedPubMedCentralCrossRef
22.
go back to reference Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7.20.PubMed Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7.20.PubMed
23.
go back to reference Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.PubMedCrossRef Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.PubMedCrossRef
24.
go back to reference Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.PubMedCrossRef Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.PubMedCrossRef
25.
go back to reference Le Carrour T, Assou S, Tondeur S, Lhermitte L, Lamb N, Reme T, et al. Amazonia!: an online resource to google and visualize public human whole genome expression data. TOBIOIJ. 2010;4:5–10.CrossRef Le Carrour T, Assou S, Tondeur S, Lhermitte L, Lamb N, Reme T, et al. Amazonia!: an online resource to google and visualize public human whole genome expression data. TOBIOIJ. 2010;4:5–10.CrossRef
26.
go back to reference Backenroth D, Homsy J, Murillo LR, Glessner J, Lin E, Brueckner M, et al. CANOES: detecting rare copy number variants from whole exome sequencing data. Nucleic Acids Res. 2014;42:e97.PubMedPubMedCentralCrossRef Backenroth D, Homsy J, Murillo LR, Glessner J, Lin E, Brueckner M, et al. CANOES: detecting rare copy number variants from whole exome sequencing data. Nucleic Acids Res. 2014;42:e97.PubMedPubMedCentralCrossRef
27.
go back to reference Geoffroy V, Herenger Y, Kress A, Stoetzel C, Piton A, Dollfus H, et al. AnnotSV: an integrated tool for structural variations annotation. Bioinformatics. 2018;34:3572–4.PubMedCrossRef Geoffroy V, Herenger Y, Kress A, Stoetzel C, Piton A, Dollfus H, et al. AnnotSV: an integrated tool for structural variations annotation. Bioinformatics. 2018;34:3572–4.PubMedCrossRef
28.
go back to reference Brandt T, Sack LM, Arjona D, Tan D, Mei H, Cui H, et al. Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants. Genet Med. 2020;22:336–44.PubMedCrossRef Brandt T, Sack LM, Arjona D, Tan D, Mei H, Cui H, et al. Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants. Genet Med. 2020;22:336–44.PubMedCrossRef
29.
go back to reference Van Der Kelen A, Okutman Ö, Javey E, Serdarogullari M, Janssens C, Ghosh MS, et al. A systematic review and evidence assessment of monogenic gene-disease relationships in human female infertility and differences in sex development. Hum Reprod Update. 2023;29:218–32.PubMedCrossRef Van Der Kelen A, Okutman Ö, Javey E, Serdarogullari M, Janssens C, Ghosh MS, et al. A systematic review and evidence assessment of monogenic gene-disease relationships in human female infertility and differences in sex development. Hum Reprod Update. 2023;29:218–32.PubMedCrossRef
30.
go back to reference Smith ED, Radtke K, Rossi M, Shinde DN, Darabi S, El-Khechen D, et al. Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017;38:600–8.PubMedPubMedCentralCrossRef Smith ED, Radtke K, Rossi M, Shinde DN, Darabi S, El-Khechen D, et al. Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017;38:600–8.PubMedPubMedCentralCrossRef
31.
go back to reference The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15.CrossRef The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15.CrossRef
32.
go back to reference Nevers Y, Kress A, Defosset A, Ripp R, Linard B, Thompson JD, et al. OrthoInspector 3.0: open portal for comparative genomics. Nucleic Acids Res. 2019;47:D411-8.PubMedCrossRef Nevers Y, Kress A, Defosset A, Ripp R, Linard B, Thompson JD, et al. OrthoInspector 3.0: open portal for comparative genomics. Nucleic Acids Res. 2019;47:D411-8.PubMedCrossRef
33.
go back to reference Plewniak F, Bianchetti L, Brelivet Y, Carles A, Chalmel F, Lecompte O, et al. PipeAlign: a new toolkit for protein family analysis. Nucleic Acids Res. 2003;31:3829–32.PubMedPubMedCentralCrossRef Plewniak F, Bianchetti L, Brelivet Y, Carles A, Chalmel F, Lecompte O, et al. PipeAlign: a new toolkit for protein family analysis. Nucleic Acids Res. 2003;31:3829–32.PubMedPubMedCentralCrossRef
34.
go back to reference Khenoussi W, Vanhoutrève R, Poch O, Thompson JD. SIBIS: a Bayesian model for inconsistent protein sequence estimation. Bioinformatics. 2014;30:2432–9.PubMedCrossRef Khenoussi W, Vanhoutrève R, Poch O, Thompson JD. SIBIS: a Bayesian model for inconsistent protein sequence estimation. Bioinformatics. 2014;30:2432–9.PubMedCrossRef
35.
go back to reference Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007;23:1875–82.PubMedCrossRef Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007;23:1875–82.PubMedCrossRef
36.
go back to reference Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.PubMedCrossRef Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.PubMedCrossRef
38.
go back to reference Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.PubMedPubMedCentralCrossRef Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.PubMedPubMedCentralCrossRef
39.
go back to reference Schäfer IB, Yamashita M, Schuller JM, Schüssler S, Reichelt P, Strauss M, et al. Molecular basis for poly(A) RNP architecture and recognition by the Pan2-Pan3 Deadenylase. Cell. 2019;177:1619-1631.e21.PubMedPubMedCentralCrossRef Schäfer IB, Yamashita M, Schuller JM, Schüssler S, Reichelt P, Strauss M, et al. Molecular basis for poly(A) RNP architecture and recognition by the Pan2-Pan3 Deadenylase. Cell. 2019;177:1619-1631.e21.PubMedPubMedCentralCrossRef
40.
go back to reference Chen C-W, Lin J, Chu Y-W. iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics. 2013;14(Suppl 2):S5.PubMedPubMedCentral Chen C-W, Lin J, Chu Y-W. iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics. 2013;14(Suppl 2):S5.PubMedPubMedCentral
41.
go back to reference Okutman O, Tarabeux J, Muller J, Viville S. Evaluation of a custom design gene panel as a diagnostic tool for human non-syndromic infertility. Genes (Basel). 2021;12:410.PubMedCrossRef Okutman O, Tarabeux J, Muller J, Viville S. Evaluation of a custom design gene panel as a diagnostic tool for human non-syndromic infertility. Genes (Basel). 2021;12:410.PubMedCrossRef
42.
go back to reference Guzeloglu-Kayisli O, Pauli S, Demir H, Lalioti MD, Sakkas D, Seli E. Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol Hum Reprod. 2008;14:581–8.PubMedCrossRef Guzeloglu-Kayisli O, Pauli S, Demir H, Lalioti MD, Sakkas D, Seli E. Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol Hum Reprod. 2008;14:581–8.PubMedCrossRef
43.
go back to reference Wang W, Guo J, Shi J, Li Q, Chen B, Pan Z, et al. Bi-allelic pathogenic variants in PABPC1L cause oocyte maturation arrest and female infertility. EMBO Mol Med. 2023;15:e17177.PubMedPubMedCentralCrossRef Wang W, Guo J, Shi J, Li Q, Chen B, Pan Z, et al. Bi-allelic pathogenic variants in PABPC1L cause oocyte maturation arrest and female infertility. EMBO Mol Med. 2023;15:e17177.PubMedPubMedCentralCrossRef
44.
go back to reference Wang X, Zhou R, Lu X, Dai S, Liu M, Jiang C, Yang Y, Shen Y, Wang Y, Liu H. Identification of nonfunctional PABPC1L causing oocyte maturation abnormalities and early embryonic arrest in female primary infertility. Clin Genet. 2023;104:648–58.PubMedCrossRef Wang X, Zhou R, Lu X, Dai S, Liu M, Jiang C, Yang Y, Shen Y, Wang Y, Liu H. Identification of nonfunctional PABPC1L causing oocyte maturation abnormalities and early embryonic arrest in female primary infertility. Clin Genet. 2023;104:648–58.PubMedCrossRef
45.
go back to reference Daubner GM, Cléry A, Allain FH-T. RRM-RNA recognition: NMR or crystallography ...and new findings. Curr Opin Struct Biol. 2013;23:100–8.PubMedCrossRef Daubner GM, Cléry A, Allain FH-T. RRM-RNA recognition: NMR or crystallography ...and new findings. Curr Opin Struct Biol. 2013;23:100–8.PubMedCrossRef
46.
go back to reference Sachs AB, Davis RW. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell. 1989;58:857–67.PubMedCrossRef Sachs AB, Davis RW. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell. 1989;58:857–67.PubMedCrossRef
47.
go back to reference Yao G, Chiang Y-C, Zhang C, Lee DJ, Laue TM, Denis CL. PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo. Mol Cell Biol. 2007;27:6243–53.PubMedPubMedCentralCrossRef Yao G, Chiang Y-C, Zhang C, Lee DJ, Laue TM, Denis CL. PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo. Mol Cell Biol. 2007;27:6243–53.PubMedPubMedCentralCrossRef
48.
go back to reference Maddirevula S, Awartani K, Coskun S, AlNaim LF, Ibrahim N, Abdulwahab F, et al. A genomics approach to females with infertility and recurrent pregnancy loss. Hum Genet. 2020;139:605–13.PubMedCrossRef Maddirevula S, Awartani K, Coskun S, AlNaim LF, Ibrahim N, Abdulwahab F, et al. A genomics approach to females with infertility and recurrent pregnancy loss. Hum Genet. 2020;139:605–13.PubMedCrossRef
49.
go back to reference Sang Q, Li B, Kuang Y, Wang X, Zhang Z, Chen B, et al. Homozygous mutations in WEE2 cause fertilization failure and female infertility. Am J Hum Genet. 2018;102:649–57.PubMedPubMedCentralCrossRef Sang Q, Li B, Kuang Y, Wang X, Zhang Z, Chen B, et al. Homozygous mutations in WEE2 cause fertilization failure and female infertility. Am J Hum Genet. 2018;102:649–57.PubMedPubMedCentralCrossRef
Metadata
Title
Pathogenic missense variation in PABPC1L/EPAB causes female infertility due to oocyte maturation arrest at the germinal vesicle stage
Authors
O. Okutman
A. S. Gürbüz
U. Büyük
E. Real
R. Leconte
K. Chennen
C. Mayer
J. Muller
N. Le May
S. Viville
Publication date
05-01-2024
Publisher
Springer US
Published in
Journal of Assisted Reproduction and Genetics / Issue 2/2024
Print ISSN: 1058-0468
Electronic ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-023-03009-1

Other articles of this Issue 2/2024

Journal of Assisted Reproduction and Genetics 2/2024 Go to the issue