Skip to main content
Top

Impact of perinatal factors on T cells and transcriptomic changes in preterm infant brain injury

Unlock free access to practice-relevant journal articles

Join our community of medical professionals and register now to access a handpicked selection of journal articles from Springer's Medical portfolio. 

Looking for something specific?

Find articles from over 500 clinical journals from Springer with the search function.

About journals on Springer Medicine

The range of medical journals on Springer Medicine is extremely diverse. It includes the current editions and archives of around 500 English-language journals from almost all medical disciplines published by Springer. 

The specialist literature is usually available both online in full text and as a PDF for download. The online view is optimized in such a way that the specialist texts can be read comfortably on all screen sizes, from desktops to tablets to smartphones. We also include features to support your use of the journals for your research, such as bookmark setting.

Whether you’re interested in internal medicine, surgery, general medicine, gynecology, orthopedics, neurology, or pediatrics, there are excellent journals in almost every subject area, such as the BMC Series, Diabetologia, Breast Cancer Research, Current Obesity Reports, CNS Drugs and many others, all of which are an integral part of the everyday life of doctors across Europe. 

The breadth of content from this suite of journals allows the Springer Medicine team to collect and deliver broad-ranging content across the full spectrum of medical knowledge, with a special focus on topics highlighted by these leading journals and their editorial boards and specialist authors. This guarantees a high quality of content and ensures that our readers are offered the most relevant topics in their respective specialist area. 

Our experienced clinical content managers constantly monitor the needs of medical professionals to provide up-to-date reports from international congresses, expert interviews, and a range of digestible content on emerging topics in the field of medicine.

Published in:

Open Access 01-12-2024 | Research

Impact of perinatal factors on T cells and transcriptomic changes in preterm infant brain injury

Authors: Xiaoli Zhang, Yu Yang, Yiran Xu, Liuji Chen, Ming Niu, Jinjin Zhu, Shan Zhang, Yanan Wu, Bingbing Li, Lingling Zhang, Juan Song, Falin Xu, Dan Bi, Xin Zhao, Changlian Zhu, Xiaoyang Wang

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

T cells have been implicated in various neurological conditions, yet their role in neonatal brain injuries remains unclear. This study aimed to investigate the impact of perinatal factors on frequencies of T cell subsets in preterm infants and to explore the differences in blood genome expression profiles between preterm infants with and without brain injury.

Materials and methods

Three cohorts of preterm infants were used. Blood samples were collected soon after birth for the first cohort and late timepoint for the second and third cohorts. In the first cohort (88 infants), flow cytometry measured the proportions of αβT and γδT cell subsets in peripheral blood, analyzing associations with gestational age, birth weight, sex, delivery type, and maternal conditions. The second cohort focused on the relationship between T cell subsets and brain injury. In the third cohort, transcriptome sequencing identified differentially expressed genes and pathways in infants with brain injury, highlighting immune-related changes.

Results

Infants born at 29–30 weeks or with a birth weight of 1000–1500 g had significantly higher proportions of Vδ2+ T cells compared to those born at 30–32 weeks or with a birth weight > 1500 g, while no significant difference was found between infants born at < 29 weeks or with a birth weight < 1000 g. A negative correlation was observed between gestational age and Vδ2+ T cell frequency. No significant associations were found between Vδ2+ T cell proportions and perinatal factors other than gestational age or brain injury. Blood transcriptome analysis revealed 173 differentially expressed genes, characterized by downregulated interferon signaling and upregulated antimicrobial and neutrophil pathways in infants with brain injury.

Conclusions

Gestational age and birth weight influence Vδ2+ T cell proportions in preterm infants, likely reflecting immune maturation. While no direct link to brain injury was found, altered immune pathways suggest potential biomarkers for prognosis, warranting further research into their roles and therapeutic implications in neonatal brain injuries.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ohuma EO, Moller AB, Bradley E, Chakwera S, Hussain-Alkhateeb L, Lewin A, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023;402(10409):1261–71.PubMedCrossRef Ohuma EO, Moller AB, Bradley E, Chakwera S, Hussain-Alkhateeb L, Lewin A, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023;402(10409):1261–71.PubMedCrossRef
2.
go back to reference Zhang X, Chen X, Li B, Xia L, Zhang S, Ding W, et al. Changes in the live birth profile in Henan, China: a hospital registry-based study. Birth. 2022;49(3):497–505.PubMedPubMedCentralCrossRef Zhang X, Chen X, Li B, Xia L, Zhang S, Ding W, et al. Changes in the live birth profile in Henan, China: a hospital registry-based study. Birth. 2022;49(3):497–505.PubMedPubMedCentralCrossRef
3.
go back to reference Drommelschmidt K, Mayrhofer T, Huning B, Stein A, Foldyna B, Schweiger B, et al. Incidence of brain injuries in a large cohort of very preterm and extremely preterm infants at term-equivalent age: results of a single tertiary neonatal care center over 10 years. Eur Radiol. 2024;34(8):5239–49.PubMedPubMedCentralCrossRef Drommelschmidt K, Mayrhofer T, Huning B, Stein A, Foldyna B, Schweiger B, et al. Incidence of brain injuries in a large cohort of very preterm and extremely preterm infants at term-equivalent age: results of a single tertiary neonatal care center over 10 years. Eur Radiol. 2024;34(8):5239–49.PubMedPubMedCentralCrossRef
4.
go back to reference Song J, Sun H, Xu F, Kang W, Gao L, Guo J, et al. Recombinant human erythropoietin improves neurological outcomes in very preterm infants. Ann Neurol. 2016;80(1):24–34.PubMedPubMedCentralCrossRef Song J, Sun H, Xu F, Kang W, Gao L, Guo J, et al. Recombinant human erythropoietin improves neurological outcomes in very preterm infants. Ann Neurol. 2016;80(1):24–34.PubMedPubMedCentralCrossRef
5.
go back to reference Razak A, Patel W, Durrani NUR, Pullattayil AK. Interventions to reduce severe brain Injury Risk in Preterm neonates: a systematic review and Meta-analysis. JAMA Netw Open. 2023;6(4):e237473.PubMedPubMedCentralCrossRef Razak A, Patel W, Durrani NUR, Pullattayil AK. Interventions to reduce severe brain Injury Risk in Preterm neonates: a systematic review and Meta-analysis. JAMA Netw Open. 2023;6(4):e237473.PubMedPubMedCentralCrossRef
7.
go back to reference Lewis EL, Tulina N, Anton L, Brown AG, Porrett PM, Elovitz MA. IFNγ-Producing γ/δ T cells accumulate in the fetal brain following intrauterine inflammation. Fronti Immunol. 2021;12:741518.CrossRef Lewis EL, Tulina N, Anton L, Brown AG, Porrett PM, Elovitz MA. IFNγ-Producing γ/δ T cells accumulate in the fetal brain following intrauterine inflammation. Fronti Immunol. 2021;12:741518.CrossRef
8.
go back to reference Taher NAB, Kelly LA, Al-Harbi AI, O’Dea MI, Zareen Z, Ryan E, et al. Altered distributions and functions of natural killer T cells and gammadelta T cells in neonates with neonatal encephalopathy, in school-age children at follow-up, and in children with cerebral palsy. J Neuroimmunol. 2021;356:577597.PubMedCrossRef Taher NAB, Kelly LA, Al-Harbi AI, O’Dea MI, Zareen Z, Ryan E, et al. Altered distributions and functions of natural killer T cells and gammadelta T cells in neonates with neonatal encephalopathy, in school-age children at follow-up, and in children with cerebral palsy. J Neuroimmunol. 2021;356:577597.PubMedCrossRef
9.
go back to reference Yuan M, Jin X, Qin F, Zhang X, Wang X, Yuan E, et al. The association of gammadeltaT lymphocytes with cystic leukomalacia in premature infants. Front Neurol. 2022;13:1043142.PubMedPubMedCentralCrossRef Yuan M, Jin X, Qin F, Zhang X, Wang X, Yuan E, et al. The association of gammadeltaT lymphocytes with cystic leukomalacia in premature infants. Front Neurol. 2022;13:1043142.PubMedPubMedCentralCrossRef
10.
go back to reference Seki D, Mayer M, Hausmann B, Pjevac P, Giordano V, Goeral K, et al. Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host Microbe. 2021;29(10):1558–72. e6.PubMedPubMedCentralCrossRef Seki D, Mayer M, Hausmann B, Pjevac P, Giordano V, Goeral K, et al. Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host Microbe. 2021;29(10):1558–72. e6.PubMedPubMedCentralCrossRef
11.
go back to reference Lin H, Satizabal C, Xie Z, Yang Q, Huan T, Joehanes R, et al. Whole blood gene expression and white matter hyperintensities. Mol Neurodegener. 2017;12(1):67.PubMedPubMedCentralCrossRef Lin H, Satizabal C, Xie Z, Yang Q, Huan T, Joehanes R, et al. Whole blood gene expression and white matter hyperintensities. Mol Neurodegener. 2017;12(1):67.PubMedPubMedCentralCrossRef
12.
go back to reference Carmona-Mora P, Knepp B, Jickling GC, Zhan X, Hakoupian M, Hull H, et al. Monocyte, neutrophil, and whole blood transcriptome dynamics following ischemic stroke. BMC Med. 2023;21(1):65.PubMedPubMedCentralCrossRef Carmona-Mora P, Knepp B, Jickling GC, Zhan X, Hakoupian M, Hull H, et al. Monocyte, neutrophil, and whole blood transcriptome dynamics following ischemic stroke. BMC Med. 2023;21(1):65.PubMedPubMedCentralCrossRef
13.
go back to reference Li H, Xu Y, Li W, Zhang L, Zhang X, Li B, et al. Novel insights into the immune cell landscape and gene signatures in autism spectrum disorder by bioinformatics and clinical analysis. Front Immunol. 2023;13:1082950.PubMedPubMedCentralCrossRef Li H, Xu Y, Li W, Zhang L, Zhang X, Li B, et al. Novel insights into the immune cell landscape and gene signatures in autism spectrum disorder by bioinformatics and clinical analysis. Front Immunol. 2023;13:1082950.PubMedPubMedCentralCrossRef
14.
go back to reference Montaldo P, Kaforou M, Pollara G, Hervas-Marin D, Calabria I, Panadero J, et al. Whole blood gene expression reveals specific transcriptome changes in neonatal encephalopathy. Neonatology. 2019;115(1):68–76.PubMedCrossRef Montaldo P, Kaforou M, Pollara G, Hervas-Marin D, Calabria I, Panadero J, et al. Whole blood gene expression reveals specific transcriptome changes in neonatal encephalopathy. Neonatology. 2019;115(1):68–76.PubMedCrossRef
15.
go back to reference Montaldo P, Burgod C, Herberg JA, Kaforou M, Cunnington AJ, Mejias A, et al. Whole-blood gene expression profile after hypoxic-ischemic encephalopathy. JAMA Netw Open. 2024;7(2):e2354433.PubMedPubMedCentralCrossRef Montaldo P, Burgod C, Herberg JA, Kaforou M, Cunnington AJ, Mejias A, et al. Whole-blood gene expression profile after hypoxic-ischemic encephalopathy. JAMA Netw Open. 2024;7(2):e2354433.PubMedPubMedCentralCrossRef
16.
go back to reference Wang Y, Song J, Zhang X, Kang W, Li W, Yue Y, et al. The impact of different degrees of intraventricular hemorrhage on mortality and neurological outcomes in very preterm infants: a prospective cohort study. Front Neurol. 2022;13:853417.PubMedPubMedCentralCrossRef Wang Y, Song J, Zhang X, Kang W, Li W, Yue Y, et al. The impact of different degrees of intraventricular hemorrhage on mortality and neurological outcomes in very preterm infants: a prospective cohort study. Front Neurol. 2022;13:853417.PubMedPubMedCentralCrossRef
17.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef
18.
go back to reference Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39(4):782–95.PubMedCrossRef Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39(4):782–95.PubMedCrossRef
19.
go back to reference Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vgamma9Vdelta2 T cells dominate the human fetal gammadelta T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112(6):E556–65.PubMedPubMedCentralCrossRef Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vgamma9Vdelta2 T cells dominate the human fetal gammadelta T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112(6):E556–65.PubMedPubMedCentralCrossRef
20.
go back to reference Qazi KR, Jensen GB, van der Heiden M, Björkander S, Marchini G, Jenmalm MC, et al. Extreme prematurity and sepsis strongly influence frequencies and functional characteristics of circulating γδ T and natural killer cells. Clin Transl Immunol. 2021;10(6):e1294.CrossRef Qazi KR, Jensen GB, van der Heiden M, Björkander S, Marchini G, Jenmalm MC, et al. Extreme prematurity and sepsis strongly influence frequencies and functional characteristics of circulating γδ T and natural killer cells. Clin Transl Immunol. 2021;10(6):e1294.CrossRef
21.
go back to reference Michel ML, Pang DJ, Haque SF, Potocnik AJ, Pennington DJ, Hayday AC. Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing gammadelta cells. Proc Natl Acad Sci U S A. 2012;109(43):17549–54.PubMedPubMedCentralCrossRef Michel ML, Pang DJ, Haque SF, Potocnik AJ, Pennington DJ, Hayday AC. Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing gammadelta cells. Proc Natl Acad Sci U S A. 2012;109(43):17549–54.PubMedPubMedCentralCrossRef
22.
go back to reference Ribot JC, Lopes N, Silva-Santos B. Gammadelta T cells in tissue physiology and surveillance. Nat Rev Immunol. 2021;21(4):221–32.PubMedCrossRef Ribot JC, Lopes N, Silva-Santos B. Gammadelta T cells in tissue physiology and surveillance. Nat Rev Immunol. 2021;21(4):221–32.PubMedCrossRef
23.
go back to reference McVay LD, Jaswal SS, Kennedy C, Hayday A, Carding SR. The generation of human gammadelta T cell repertoires during fetal development. J Immunol. 1998;160(12):5851–60.PubMedCrossRef McVay LD, Jaswal SS, Kennedy C, Hayday A, Carding SR. The generation of human gammadelta T cell repertoires during fetal development. J Immunol. 1998;160(12):5851–60.PubMedCrossRef
25.
go back to reference Lee D, Rosenthal CJ, Penn NE, Dunn ZS, Zhou Y, Yang L. Human gammadelta T cell subsets and their clinical applications for cancer immunotherapy. Cancers (Basel). 2022;14(12):3005.PubMedCrossRef Lee D, Rosenthal CJ, Penn NE, Dunn ZS, Zhou Y, Yang L. Human gammadelta T cell subsets and their clinical applications for cancer immunotherapy. Cancers (Basel). 2022;14(12):3005.PubMedCrossRef
26.
go back to reference Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, et al. Gammadelta T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther. 2023;8(1):434.PubMedPubMedCentralCrossRef Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, et al. Gammadelta T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther. 2023;8(1):434.PubMedPubMedCentralCrossRef
27.
go back to reference Sanz M, Mann BT, Ryan PL, Bosque A, Pennington DJ, Hackstein H, et al. Deep characterization of human gammadelta T cell subsets defines shared and lineage-specific traits. Front Immunol. 2023;14:1148988.PubMedPubMedCentralCrossRef Sanz M, Mann BT, Ryan PL, Bosque A, Pennington DJ, Hackstein H, et al. Deep characterization of human gammadelta T cell subsets defines shared and lineage-specific traits. Front Immunol. 2023;14:1148988.PubMedPubMedCentralCrossRef
28.
go back to reference Gray JI, Caron DP, Wells SB, Guyer R, Szabo P, Rainbow D, et al. Human gammadelta T cells in diverse tissues exhibit site-specific maturation dynamics across the life span. Sci Immunol. 2024;9(96):eadn3954.PubMedCrossRef Gray JI, Caron DP, Wells SB, Guyer R, Szabo P, Rainbow D, et al. Human gammadelta T cells in diverse tissues exhibit site-specific maturation dynamics across the life span. Sci Immunol. 2024;9(96):eadn3954.PubMedCrossRef
29.
go back to reference Albertsson AM, Zhang XL, Vontell R, Bi D, Bronson RT, Supramaniam V, et al. γδ T cells contribute to injury in the developing brain. Am J Pathol. 2018;188(3):757–67.PubMedPubMedCentralCrossRef Albertsson AM, Zhang XL, Vontell R, Bi D, Bronson RT, Supramaniam V, et al. γδ T cells contribute to injury in the developing brain. Am J Pathol. 2018;188(3):757–67.PubMedPubMedCentralCrossRef
30.
go back to reference Zhang X, Rocha-Ferreira E, Li T, Vontell R, Jabin D, Hua S, et al. gammadeltaT cells but not alphabetaT cells contribute to sepsis-induced white matter injury and motor abnormalities in mice. J Neuroinflammation. 2017;14(1):255.PubMedPubMedCentralCrossRef Zhang X, Rocha-Ferreira E, Li T, Vontell R, Jabin D, Hua S, et al. gammadeltaT cells but not alphabetaT cells contribute to sepsis-induced white matter injury and motor abnormalities in mice. J Neuroinflammation. 2017;14(1):255.PubMedPubMedCentralCrossRef
31.
go back to reference Lewis EL, Tulina N, Anton L, Brown AG, Porrett PM, Elovitz MA. IFNgamma-Producing gamma/delta T cells accumulate in the fetal brain following intrauterine inflammation. Front Immunol. 2021;12:741518.PubMedPubMedCentralCrossRef Lewis EL, Tulina N, Anton L, Brown AG, Porrett PM, Elovitz MA. IFNgamma-Producing gamma/delta T cells accumulate in the fetal brain following intrauterine inflammation. Front Immunol. 2021;12:741518.PubMedPubMedCentralCrossRef
32.
go back to reference Herz J, Koster C, Crasmoller M, Abberger H, Hansen W, Felderhoff-Muser U, et al. Peripheral T cell depletion by FTY720 exacerbates hypoxic-ischemic brain injury in neonatal mice. Front Immunol. 2018;9:1696.PubMedPubMedCentralCrossRef Herz J, Koster C, Crasmoller M, Abberger H, Hansen W, Felderhoff-Muser U, et al. Peripheral T cell depletion by FTY720 exacerbates hypoxic-ischemic brain injury in neonatal mice. Front Immunol. 2018;9:1696.PubMedPubMedCentralCrossRef
33.
go back to reference Papadopoulou M, Dimova T, Shey M, Briel L, Veldtsman H, Khomba N, et al. Fetal public Vgamma9Vdelta2 T cells expand and gain potent cytotoxic functions early after birth. Proc Natl Acad Sci U S A. 2020;117(31):18638–48.PubMedPubMedCentralCrossRef Papadopoulou M, Dimova T, Shey M, Briel L, Veldtsman H, Khomba N, et al. Fetal public Vgamma9Vdelta2 T cells expand and gain potent cytotoxic functions early after birth. Proc Natl Acad Sci U S A. 2020;117(31):18638–48.PubMedPubMedCentralCrossRef
34.
go back to reference Cazzetta V, Bruni E, Terzoli S, Carenza C, Franzese S, Piazza R, et al. NKG2A expression identifies a subset of human Vdelta2 T cells exerting the highest antitumor effector functions. Cell Rep. 2021;37(3):109871.PubMedCrossRef Cazzetta V, Bruni E, Terzoli S, Carenza C, Franzese S, Piazza R, et al. NKG2A expression identifies a subset of human Vdelta2 T cells exerting the highest antitumor effector functions. Cell Rep. 2021;37(3):109871.PubMedCrossRef
35.
go back to reference Cooper AJR, Lalor SJ, McLoughlin RM. Activation of human Vdelta2(+) gammadelta T cells by staphylococcus aureus promotes enhanced anti-staphylococcal adaptive immunity. J Immunol. 2020;205(4):1039–49.PubMedPubMedCentralCrossRef Cooper AJR, Lalor SJ, McLoughlin RM. Activation of human Vdelta2(+) gammadelta T cells by staphylococcus aureus promotes enhanced anti-staphylococcal adaptive immunity. J Immunol. 2020;205(4):1039–49.PubMedPubMedCentralCrossRef
36.
go back to reference Ness-Schwickerath KJ, Jin C, Morita CT. Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vgamma2Vdelta2 T cells. J Immunol. 2010;184(12):7268–80.PubMedCrossRef Ness-Schwickerath KJ, Jin C, Morita CT. Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vgamma2Vdelta2 T cells. J Immunol. 2010;184(12):7268–80.PubMedCrossRef
37.
go back to reference Herz J, Bendix I, Felderhoff-Muser U. Peripheral immune cells and perinatal brain injury: a double-edged sword? Pediatr Res. 2022;91(2):392–403.PubMedCrossRef Herz J, Bendix I, Felderhoff-Muser U. Peripheral immune cells and perinatal brain injury: a double-edged sword? Pediatr Res. 2022;91(2):392–403.PubMedCrossRef
38.
go back to reference Lalancette-Hebert M, Faustino J, Thammisetty SS, Chip S, Vexler ZS, Kriz J. Live imaging of the innate immune response in neonates reveals differential TLR2 dependent activation patterns in sterile inflammation and infection. Brain Behav Immun. 2017;65:312–27.PubMedPubMedCentralCrossRef Lalancette-Hebert M, Faustino J, Thammisetty SS, Chip S, Vexler ZS, Kriz J. Live imaging of the innate immune response in neonates reveals differential TLR2 dependent activation patterns in sterile inflammation and infection. Brain Behav Immun. 2017;65:312–27.PubMedPubMedCentralCrossRef
39.
go back to reference Stamova B, Ander BP, Jickling G, Hamade F, Durocher M, Zhan X, et al. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. J Cereb Blood Flow Metab. 2019;39(9):1818–35.PubMedCrossRef Stamova B, Ander BP, Jickling G, Hamade F, Durocher M, Zhan X, et al. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. J Cereb Blood Flow Metab. 2019;39(9):1818–35.PubMedCrossRef
40.
go back to reference Carmona-Mora P, Ander BP, Jickling GC, Dykstra-Aiello C, Zhan X, Ferino E, et al. Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke. J Cereb Blood Flow Metab. 2021;41(6):1398–416.PubMedCrossRef Carmona-Mora P, Ander BP, Jickling GC, Dykstra-Aiello C, Zhan X, Ferino E, et al. Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke. J Cereb Blood Flow Metab. 2021;41(6):1398–416.PubMedCrossRef
41.
go back to reference Faura J, Bustamante A, Miro-Mur F, Montaner J. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J Neuroinflammation. 2021;18(1):127.PubMedPubMedCentralCrossRef Faura J, Bustamante A, Miro-Mur F, Montaner J. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J Neuroinflammation. 2021;18(1):127.PubMedPubMedCentralCrossRef
Metadata
Title
Impact of perinatal factors on T cells and transcriptomic changes in preterm infant brain injury
Authors
Xiaoli Zhang
Yu Yang
Yiran Xu
Liuji Chen
Ming Niu
Jinjin Zhu
Shan Zhang
Yanan Wu
Bingbing Li
Lingling Zhang
Juan Song
Falin Xu
Dan Bi
Xin Zhao
Changlian Zhu
Xiaoyang Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03311-4