Skip to main content
Top
Published in:

Open Access 01-12-2017 | Perspective

IFNγ-producing CD4+ T lymphocytes: the double-edged swords in tuberculosis

Author: Pawan Kumar

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

IFNγ-producing CD4+ T cells (IFNγ+CD4+ T cells) are the key orchestrators of protective immunity against Mycobacterium tuberculosis (Mtb). Primarily, these cells act by enabling Mtb-infected macrophages to enforce phagosome-lysosome fusion, produce reactive nitrogen intermediates (RNIs), and activate autophagy pathways. However, TB is a heterogeneous disease and a host of clinical and experimental findings has also implicated IFNγ+CD4+ T cells in TB pathogenesis. High frequency of IFNγ+CD4+ T cells is the most invariable feature of the active disease. Active TB patients mount a heightened IFNγ+CD4+ T cell response to mycobacterial antigens and demonstrate an IFNγ-inducible transcriptomic signature. IFNγ+CD4+ T cells have also been shown to mediate TB-associated immune reconstitution inflammatory syndrome (TB–IRIS) observed in a subset of antiretroviral therapy (ART)-treated HIV- and Mtb-coinfected people. The pathological face of IFNγ+CD4+ T cells during mycobacterial infection is further uncovered by studies in the animal model of TB–IRIS and in Mtb-infected PD-1−/− mice. This manuscript encompasses the evidence supporting the dual role of IFNγ+CD4+ T cells during Mtb infection and sheds light on immune mechanisms involved in protection versus pathogenesis.
Literature
1.
go back to reference World Health Organization. Global tuberculosis report 2016. 2016 World Health Organization. Global tuberculosis report 2016. 2016
3.
go back to reference Kumar P (2016) Adult pulmonary tuberculosis as a pathological manifestation of hyperactive antimycobacterial immune response. Clin Trans Med 5(1):38CrossRef Kumar P (2016) Adult pulmonary tuberculosis as a pathological manifestation of hyperactive antimycobacterial immune response. Clin Trans Med 5(1):38CrossRef
4.
go back to reference Mahnke YD, Greenwald JH, DerSimonian R, Roby G, Antonelli LR, Sher A et al (2012) Selective expansion of polyfunctional pathogen-specific CD4+ T cells in HIV-1–infected patients with immune reconstitution inflammatory syndrome. Blood 119(13):3105–3112CrossRefPubMedPubMedCentral Mahnke YD, Greenwald JH, DerSimonian R, Roby G, Antonelli LR, Sher A et al (2012) Selective expansion of polyfunctional pathogen-specific CD4+ T cells in HIV-1–infected patients with immune reconstitution inflammatory syndrome. Blood 119(13):3105–3112CrossRefPubMedPubMedCentral
5.
go back to reference Barber DL, Mayer-Barber KD, Antonelli LR, Wilson MS, White S, Caspar P et al (2010) Th1-driven immune reconstitution disease in Mycobacterium avium–infected mice. Blood 116(18):3485–3493CrossRefPubMedPubMedCentral Barber DL, Mayer-Barber KD, Antonelli LR, Wilson MS, White S, Caspar P et al (2010) Th1-driven immune reconstitution disease in Mycobacterium avium–infected mice. Blood 116(18):3485–3493CrossRefPubMedPubMedCentral
6.
go back to reference Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC (1999) Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. JAMA 282(7):677–686CrossRefPubMed Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC (1999) Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. JAMA 282(7):677–686CrossRefPubMed
7.
go back to reference Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178(6):2249–2254CrossRefPubMed Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178(6):2249–2254CrossRefPubMed
8.
go back to reference Cooper AM, Dalton DK, Stewart TA, Griffin J, Russell D, Orme I (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178(6):2243–2247CrossRefPubMed Cooper AM, Dalton DK, Stewart TA, Griffin J, Russell D, Orme I (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178(6):2243–2247CrossRefPubMed
9.
go back to reference Green AM, DiFazio R, Flynn JL (2013) IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol 190(1):270–277CrossRefPubMed Green AM, DiFazio R, Flynn JL (2013) IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol 190(1):270–277CrossRefPubMed
10.
go back to reference Cooper AM, Magram J, Ferrante J, Orme IM (1997) Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J Exp Med 186(1):39–45CrossRefPubMedPubMedCentral Cooper AM, Magram J, Ferrante J, Orme IM (1997) Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J Exp Med 186(1):39–45CrossRefPubMedPubMedCentral
12.
go back to reference Casanova J-L, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20(1):581–620CrossRefPubMed Casanova J-L, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20(1):581–620CrossRefPubMed
13.
go back to reference Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT, Baretto R et al (2004) Clinical features of dominant and recessive interferon γ receptor 1 deficiencies. Lancet 364(9451):2113–2121CrossRefPubMed Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT, Baretto R et al (2004) Clinical features of dominant and recessive interferon γ receptor 1 deficiencies. Lancet 364(9451):2113–2121CrossRefPubMed
14.
go back to reference Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondanèche M-C, Tuerlinckx D, Blanche S et al (1997) Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette–Guerin infection and a sibling with clinical tuberculosis. J Clin Investig 100(11):2658CrossRefPubMedPubMedCentral Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondanèche M-C, Tuerlinckx D, Blanche S et al (1997) Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette–Guerin infection and a sibling with clinical tuberculosis. J Clin Investig 100(11):2658CrossRefPubMedPubMedCentral
15.
go back to reference Boisson-Dupuis S, El Baghdadi J, Parvaneh N, Bousfiha A, Bustamante J, Feinberg J et al (2011) IL-12Rβ1 deficiency in two of fifty children with severe tuberculosis from Iran, Morocco, and Turkey. PLoS ONE 6(4):e18524CrossRefPubMedPubMedCentral Boisson-Dupuis S, El Baghdadi J, Parvaneh N, Bousfiha A, Bustamante J, Feinberg J et al (2011) IL-12Rβ1 deficiency in two of fifty children with severe tuberculosis from Iran, Morocco, and Turkey. PLoS ONE 6(4):e18524CrossRefPubMedPubMedCentral
16.
go back to reference Caragol I, Raspall M, Fieschi C, Feinberg J, Larrosa MN, Hernández M et al (2003) Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor β1 deficiency. Clin Infect Dis 37(2):302–306CrossRefPubMed Caragol I, Raspall M, Fieschi C, Feinberg J, Larrosa MN, Hernández M et al (2003) Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor β1 deficiency. Clin Infect Dis 37(2):302–306CrossRefPubMed
17.
go back to reference Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC et al (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163(9):1009–1021CrossRefPubMed Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC et al (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163(9):1009–1021CrossRefPubMed
18.
go back to reference Ahmad DS, Esmadi M, Steinmann WC (2013) Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases. Avicenna J Med 3(2):37CrossRefPubMedPubMedCentral Ahmad DS, Esmadi M, Steinmann WC (2013) Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases. Avicenna J Med 3(2):37CrossRefPubMedPubMedCentral
19.
go back to reference Socio GV, Gerli R, Menichetti F (1999) Disseminated tuberculosis and idiopathic CD4+ T-lymphocytopenia. Clin Microbiol Infect 5(10):653–654CrossRefPubMed Socio GV, Gerli R, Menichetti F (1999) Disseminated tuberculosis and idiopathic CD4+ T-lymphocytopenia. Clin Microbiol Infect 5(10):653–654CrossRefPubMed
20.
go back to reference Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2(10):820–832CrossRefPubMed Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2(10):820–832CrossRefPubMed
21.
go back to reference Herbst S, Schaible UE, Schneider BE (2011) Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis. PLoS ONE 6(5):e19105CrossRefPubMedPubMedCentral Herbst S, Schaible UE, Schneider BE (2011) Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis. PLoS ONE 6(5):e19105CrossRefPubMedPubMedCentral
22.
go back to reference MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci 94(10):5243–5248CrossRefPubMedPubMedCentral MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci 94(10):5243–5248CrossRefPubMedPubMedCentral
23.
go back to reference Behar SM, Martin CJ, Nunes-Alves C, Divangahi M, Remold HG (2011) Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes Infect 13(8):749–756CrossRefPubMedPubMedCentral Behar SM, Martin CJ, Nunes-Alves C, Divangahi M, Remold HG (2011) Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes Infect 13(8):749–756CrossRefPubMedPubMedCentral
24.
go back to reference Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y (2011) Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+–ATPase to inhibit phagosome acidification. Proc Natl Acad Sci 108(48):19371–19376CrossRefPubMedPubMedCentral Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y (2011) Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+–ATPase to inhibit phagosome acidification. Proc Natl Acad Sci 108(48):19371–19376CrossRefPubMedPubMedCentral
25.
go back to reference McKinney JD, Gomez JE (2003) Life on the inside for Mycobacterium tuberculosis. Nat Med 9(11):1356–1358CrossRefPubMed McKinney JD, Gomez JE (2003) Life on the inside for Mycobacterium tuberculosis. Nat Med 9(11):1356–1358CrossRefPubMed
26.
28.
go back to reference Campoy E, Colombo MI (2009) Autophagy in intracellular bacterial infection. Biochimica et biophysica acta (BBA)-molecular. Cell Res 1793(9):1465–1477 Campoy E, Colombo MI (2009) Autophagy in intracellular bacterial infection. Biochimica et biophysica acta (BBA)-molecular. Cell Res 1793(9):1465–1477
29.
go back to reference Songane M, Kleinnijenhuis J, Netea MG, van Crevel R (2012) The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis 92(5):388–396CrossRefPubMed Songane M, Kleinnijenhuis J, Netea MG, van Crevel R (2012) The role of autophagy in host defence against Mycobacterium tuberculosis infection. Tuberculosis 92(5):388–396CrossRefPubMed
30.
go back to reference Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S et al (2012) Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci 109(46):E3168–E3176CrossRefPubMedPubMedCentral Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S et al (2012) Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci 109(46):E3168–E3176CrossRefPubMedPubMedCentral
33.
go back to reference Rovetta AI, Pena D, Hernández Del Pino RE, Recalde GM, Pellegrini J, Bigi F et al (2014) IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy 10(12):2109–2121CrossRefPubMed Rovetta AI, Pena D, Hernández Del Pino RE, Recalde GM, Pellegrini J, Bigi F et al (2014) IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy 10(12):2109–2121CrossRefPubMed
34.
go back to reference Matsuzawa T, Kim B-H, Shenoy AR, Kamitani S, Miyake M, MacMicking JD (2012) IFN-γ elicits macrophage autophagy via the p38 MAPK signaling pathway. J Immunol 189(2):813–818CrossRefPubMedPubMedCentral Matsuzawa T, Kim B-H, Shenoy AR, Kamitani S, Miyake M, MacMicking JD (2012) IFN-γ elicits macrophage autophagy via the p38 MAPK signaling pathway. J Immunol 189(2):813–818CrossRefPubMedPubMedCentral
35.
go back to reference Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M et al (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27(3):505–517CrossRefPubMed Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M et al (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27(3):505–517CrossRefPubMed
37.
go back to reference Comstock GW, Livesay VT, Woolpert SF (1974) The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol 99(2):131–138CrossRefPubMed Comstock GW, Livesay VT, Woolpert SF (1974) The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol 99(2):131–138CrossRefPubMed
38.
go back to reference Doherty TM, Demissie A, Olobo J, Wolday D, Britton S, Eguale T et al (2002) Immune responses to the Mycobacterium tuberculosis-specific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patients. J Clin Microbiol 40(2):704–706CrossRefPubMedPubMedCentral Doherty TM, Demissie A, Olobo J, Wolday D, Britton S, Eguale T et al (2002) Immune responses to the Mycobacterium tuberculosis-specific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patients. J Clin Microbiol 40(2):704–706CrossRefPubMedPubMedCentral
39.
go back to reference Maher J, Kelly P, Hughes P, Clancy L (1992) Skin anergy and tuberculosis. Respir Med 86(6):481–484CrossRefPubMed Maher J, Kelly P, Hughes P, Clancy L (1992) Skin anergy and tuberculosis. Respir Med 86(6):481–484CrossRefPubMed
40.
go back to reference Tsao T, Huang C, Chiou W, Yang P, Hsieh M, Tsao K (2002) Levels of interferon-γ and interleukin-2 receptor-α for bronchoalveolar lavage fluid and serum were correlated with clinical grade and treatment of pulmonary tuberculosis. Int J Tuberc Lung Dis 6(8):720–727PubMed Tsao T, Huang C, Chiou W, Yang P, Hsieh M, Tsao K (2002) Levels of interferon-γ and interleukin-2 receptor-α for bronchoalveolar lavage fluid and serum were correlated with clinical grade and treatment of pulmonary tuberculosis. Int J Tuberc Lung Dis 6(8):720–727PubMed
41.
go back to reference Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977CrossRefPubMedPubMedCentral Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977CrossRefPubMedPubMedCentral
42.
go back to reference Sester U, Fousse M, Dirks J, Mack U, Prasse A, Singh M et al (2011) Whole-blood flow-cytometric analysis of antigen-specific CD4 T-cell cytokine profiles distinguishes active tuberculosis from non-active states. PLoS ONE 6(3):e17813CrossRefPubMedPubMedCentral Sester U, Fousse M, Dirks J, Mack U, Prasse A, Singh M et al (2011) Whole-blood flow-cytometric analysis of antigen-specific CD4 T-cell cytokine profiles distinguishes active tuberculosis from non-active states. PLoS ONE 6(3):e17813CrossRefPubMedPubMedCentral
43.
go back to reference Herrera MT, Torres M, Nevels D, Perez-Redondo CN, Ellner JJ, Sada E et al (2009) Compartmentalized bronchoalveolar IFN-γ and IL-12 response in human pulmonary tuberculosis. Tuberculosis 89(1):38–47CrossRefPubMed Herrera MT, Torres M, Nevels D, Perez-Redondo CN, Ellner JJ, Sada E et al (2009) Compartmentalized bronchoalveolar IFN-γ and IL-12 response in human pulmonary tuberculosis. Tuberculosis 89(1):38–47CrossRefPubMed
44.
go back to reference Qiu Z, Zhang M, Zhu Y, Zheng F, Lu P, Liu H et al (2012) Multifunctional CD4 T cell responses in patients with active tuberculosis. Sci Rep 2:216PubMedPubMedCentral Qiu Z, Zhang M, Zhu Y, Zheng F, Lu P, Liu H et al (2012) Multifunctional CD4 T cell responses in patients with active tuberculosis. Sci Rep 2:216PubMedPubMedCentral
45.
go back to reference Gerosa F, Nisii C, Righetti S, Micciolo R, Marchesini M, Cazzadori A et al (1999) CD4+ T cell clones producing both interferon-γ and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin Immunol 92(3):224–234CrossRefPubMed Gerosa F, Nisii C, Righetti S, Micciolo R, Marchesini M, Cazzadori A et al (1999) CD4+ T cell clones producing both interferon-γ and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin Immunol 92(3):224–234CrossRefPubMed
46.
go back to reference Bourgarit A, Carcelain G, Martinez V, Lascoux C, Delcey V, Gicquel B et al (2006) Explosion of tuberculin-specific Th1-responses induces immune restoration syndrome in tuberculosis and HIV co-infected patients. Aids 20(2):F1–F7CrossRefPubMed Bourgarit A, Carcelain G, Martinez V, Lascoux C, Delcey V, Gicquel B et al (2006) Explosion of tuberculin-specific Th1-responses induces immune restoration syndrome in tuberculosis and HIV co-infected patients. Aids 20(2):F1–F7CrossRefPubMed
47.
go back to reference Sutherland JS, Young JM, Peterson KL, Sanneh B, Whittle HC, Rowland-Jones SL et al (2010) Polyfunctional CD4+ and CD8+ T cell responses to tuberculosis antigens in HIV-1–infected patients before and after anti-retroviral treatment. J Immunol 184(11):6537–6544CrossRefPubMed Sutherland JS, Young JM, Peterson KL, Sanneh B, Whittle HC, Rowland-Jones SL et al (2010) Polyfunctional CD4+ and CD8+ T cell responses to tuberculosis antigens in HIV-1–infected patients before and after anti-retroviral treatment. J Immunol 184(11):6537–6544CrossRefPubMed
48.
go back to reference Wilkinson KA, Seldon R, Meintjes G, Rangaka MX, Hanekom WA, Maartens G et al (2009) Dissection of regenerating T-Cell responses against tuberculosis in HIV-infected adults sensitized by Mycobacterium tuberculosis. Am J Respir Crit Care Med 180(7):674–683CrossRefPubMedPubMedCentral Wilkinson KA, Seldon R, Meintjes G, Rangaka MX, Hanekom WA, Maartens G et al (2009) Dissection of regenerating T-Cell responses against tuberculosis in HIV-infected adults sensitized by Mycobacterium tuberculosis. Am J Respir Crit Care Med 180(7):674–683CrossRefPubMedPubMedCentral
49.
go back to reference Narita M, Ashkin D, Hollender ES, Pitchenik AE (1998) Paradoxical worsening of tuberculosis following antiretroviral therapy in patients with AIDS. Am J Respir Crit Care Med 158(1):157–161CrossRefPubMed Narita M, Ashkin D, Hollender ES, Pitchenik AE (1998) Paradoxical worsening of tuberculosis following antiretroviral therapy in patients with AIDS. Am J Respir Crit Care Med 158(1):157–161CrossRefPubMed
50.
go back to reference Meintjes G, Wilkinson KA, Rangaka MX, Skolimowska K, Van Veen K, Abrahams M et al (2008) Type 1 helper T cells and FoxP3-positive T cells in HIV–tuberculosis-associated immune reconstitution inflammatory syndrome. Am J Respir Crit Care Med 178(10):1083–1089CrossRefPubMedPubMedCentral Meintjes G, Wilkinson KA, Rangaka MX, Skolimowska K, Van Veen K, Abrahams M et al (2008) Type 1 helper T cells and FoxP3-positive T cells in HIV–tuberculosis-associated immune reconstitution inflammatory syndrome. Am J Respir Crit Care Med 178(10):1083–1089CrossRefPubMedPubMedCentral
51.
go back to reference Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV et al (2016) CD4 T cell-derived IFN-γ plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog 12(5):e1005667CrossRefPubMedPubMedCentral Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV et al (2016) CD4 T cell-derived IFN-γ plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog 12(5):e1005667CrossRefPubMedPubMedCentral
52.
go back to reference McNab FW, Berry MP, Graham CM, Bloch SA, Oni T, Wilkinson KA et al (2011) Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol 41(7):1941–1947CrossRefPubMedPubMedCentral McNab FW, Berry MP, Graham CM, Bloch SA, Oni T, Wilkinson KA et al (2011) Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol 41(7):1941–1947CrossRefPubMedPubMedCentral
53.
go back to reference Burl S, Hill P, Jeffries D, Holland M, Fox A, Lugos M et al (2007) FOXP3 gene expression in a tuberculosis case contact study. Clin Exp Immunol 149(1):117–122CrossRefPubMedPubMedCentral Burl S, Hill P, Jeffries D, Holland M, Fox A, Lugos M et al (2007) FOXP3 gene expression in a tuberculosis case contact study. Clin Exp Immunol 149(1):117–122CrossRefPubMedPubMedCentral
54.
go back to reference Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH et al (2006) A role for CD4+ CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144(1):25–34CrossRefPubMedPubMedCentral Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH et al (2006) A role for CD4+ CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144(1):25–34CrossRefPubMedPubMedCentral
55.
go back to reference Green AM, Mattila JT, Bigbee CL, Bongers KS, Lin PL, Flynn JL (2010) CD4+ regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J Infect Dis 202(4):533–541CrossRefPubMedPubMedCentral Green AM, Mattila JT, Bigbee CL, Bongers KS, Lin PL, Flynn JL (2010) CD4+ regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J Infect Dis 202(4):533–541CrossRefPubMedPubMedCentral
56.
go back to reference Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):7973–7977CrossRef Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):7973–7977CrossRef
57.
go back to reference Lowe DM, Redford PS, Wilkinson RJ, O’Garra A, Martineau AR (2012) Neutrophils in tuberculosis: friend or foe? Trends Immunol 33(1):14–25CrossRefPubMed Lowe DM, Redford PS, Wilkinson RJ, O’Garra A, Martineau AR (2012) Neutrophils in tuberculosis: friend or foe? Trends Immunol 33(1):14–25CrossRefPubMed
58.
go back to reference Barnes PF, Leedom JM, Chan LS, Wong SF, Shah J, Vachon LA et al (1988) Predictors of short-term prognosis in patients with pulmonary tuberculosis. J Infect Dis 158(2):366–371CrossRefPubMed Barnes PF, Leedom JM, Chan LS, Wong SF, Shah J, Vachon LA et al (1988) Predictors of short-term prognosis in patients with pulmonary tuberculosis. J Infect Dis 158(2):366–371CrossRefPubMed
59.
go back to reference Yeremeev V, Linge I, Kondratieva T, Apt A (2015) Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis 95(4):447–451CrossRefPubMed Yeremeev V, Linge I, Kondratieva T, Apt A (2015) Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis 95(4):447–451CrossRefPubMed
61.
go back to reference Elkington P, Shiomi T, Breen R, Nuttall RK, Ugarte-Gil CA, Walker NF et al (2011) MMP-1 drives immunopathology in human tuberculosis and transgenic mice. J Clin Investig 121(5):1827–1833CrossRefPubMedPubMedCentral Elkington P, Shiomi T, Breen R, Nuttall RK, Ugarte-Gil CA, Walker NF et al (2011) MMP-1 drives immunopathology in human tuberculosis and transgenic mice. J Clin Investig 121(5):1827–1833CrossRefPubMedPubMedCentral
62.
go back to reference Elkington PT, Ugarte-Gil CA, Friedland JS. Matrix metalloproteinases in tuberculosis. Eur Respiratory Soc; 2011 Elkington PT, Ugarte-Gil CA, Friedland JS. Matrix metalloproteinases in tuberculosis. Eur Respiratory Soc; 2011
63.
go back to reference Tadokera R, Meintjes GA, Wilkinson KA, Skolimowska KH, Walker N, Friedland JS et al (2014) Matrix metalloproteinases and tissue damage in HIV-tuberculosis immune reconstitution inflammatory syndrome. Eur J Immunol 44(1):127–136CrossRefPubMed Tadokera R, Meintjes GA, Wilkinson KA, Skolimowska KH, Walker N, Friedland JS et al (2014) Matrix metalloproteinases and tissue damage in HIV-tuberculosis immune reconstitution inflammatory syndrome. Eur J Immunol 44(1):127–136CrossRefPubMed
64.
go back to reference Eisenreich W, Heesemann J, Rudel T, Goebel W (2013) Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 3:24CrossRefPubMedPubMedCentral Eisenreich W, Heesemann J, Rudel T, Goebel W (2013) Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 3:24CrossRefPubMedPubMedCentral
65.
go back to reference Tobin DM, Vary JC, Ray JP, Walsh GS, Dunstan SJ, Bang ND et al (2010) The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140(5):717–730CrossRefPubMedPubMedCentral Tobin DM, Vary JC, Ray JP, Walsh GS, Dunstan SJ, Bang ND et al (2010) The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140(5):717–730CrossRefPubMedPubMedCentral
66.
go back to reference Herb F, Thye T, Niemann S, Browne EN, Chinbuah MA, Gyapong J et al (2008) ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. Hum Mol Genet 17(7):1052–1060CrossRefPubMed Herb F, Thye T, Niemann S, Browne EN, Chinbuah MA, Gyapong J et al (2008) ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. Hum Mol Genet 17(7):1052–1060CrossRefPubMed
67.
go back to reference Wong K-W, Jacobs WR (2013) Mycobacterium tuberculosis exploits human interferon γ to stimulate macrophage extracellular trap formation and necrosis. J Infect Dis 208(1):109–119CrossRefPubMedPubMedCentral Wong K-W, Jacobs WR (2013) Mycobacterium tuberculosis exploits human interferon γ to stimulate macrophage extracellular trap formation and necrosis. J Infect Dis 208(1):109–119CrossRefPubMedPubMedCentral
68.
go back to reference Aly S, Laskay T, Mages J, Malzan A, Lang R, Ehlers S (2007) Interferon-gamma-dependent mechanisms of mycobacteria-induced pulmonary immunopathology: the role of angiostasis and CXCR3-targeted chemokines for granuloma necrosis. J Pathol 212(3):295–305CrossRefPubMed Aly S, Laskay T, Mages J, Malzan A, Lang R, Ehlers S (2007) Interferon-gamma-dependent mechanisms of mycobacteria-induced pulmonary immunopathology: the role of angiostasis and CXCR3-targeted chemokines for granuloma necrosis. J Pathol 212(3):295–305CrossRefPubMed
69.
go back to reference Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S et al (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381(9871):1021–1028CrossRefPubMedPubMedCentral Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S et al (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381(9871):1021–1028CrossRefPubMedPubMedCentral
Metadata
Title
IFNγ-producing CD4+ T lymphocytes: the double-edged swords in tuberculosis
Author
Pawan Kumar
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-017-0151-8