Skip to main content
Top
Published in:

Open Access 01-12-2024 | Research

Identification of metabolic reprogramming-related genes as potential diagnostic biomarkers for diabetic nephropathy based on bioinformatics

Authors: Hong Chen, Xiaoxia Su, Yan Li, Cui Dang, Zuojie Luo

Published in: Diabetology & Metabolic Syndrome | Issue 1/2024

Login to get access

Abstract

Background

Diabetic nephropathy (DN) is a serious complication of diabetes mellitus, marked by progressive renal damage. Recent evidence indicates that metabolic reprogramming is crucial to DN pathogenesis, yet its underlying mechanisms are not well understood. This study aimed to examine how metabolic reprogramming-related genes (MRRGs) are differentially expressed and to explore their potential mechanisms in the development of DN.

Methods

We analyzed the datasets GSE30528 and GSE96804 from the Gene Expression Omnibus (GEO), comprising 50 DN samples and 33 controls. MRRGs were sourced from GeneCards and PubMed. Data preprocessing included batch effect correction using the R package sva, followed by normalization and differential expression analysis with limma (|logFC|> 0.5, adj.p < 0.05). Functional enrichment analyses (GO, KEGG, GSEA) were performed using clusterProfiler. Protein–protein interaction (PPI) networks were constructed via STRING, identifying hub genes through CytoHubba. Regulatory networks (mRNA-TF, mRNA-miRNA) were derived from ChIPBase and StarBase. Validation of hub genes and ROC analysis assessed diagnostic performance. ssGSEA quantified immune cell infiltration.

Results

Our analysis identified 708 differentially expressed genes (DEGs), including 119 metabolic reprogramming-related DEGs (MRRDEGs). Enrichment analyses revealed significant roles for MRRDEGs in processes such as wound healing and pathways like MAPK signaling. The PPI network identified nine hub genes: FN1, CD44, KDR, EGF, HSPG2, HGF, FGF9, IGF1, and ALB, which exhibited high diagnostic accuracy (AUC 0.7 to 0.9). Notably, FN1 and CD44 showed significant association with renal fibrosis and could serve as potential biomarkers for early diagnosis and therapeutic targets in DN. Immune infiltration analysis showed notable differences in immune cell composition between DN and control samples.

Conclusion

This study identifies hub genes such as FN1 and CD44, with potential diagnostic value in DN. It also reveals immune cell infiltration differences between DN patients and controls, offering insights into disease progression and potential therapeutic targets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shan S, Luo Z, Yao L, Zhou J, Wu J, Jiang D, Ying J, Cao J, Zhou L, Li S, et al. Cross-country inequalities in disease burden and care quality of chronic kidney disease due to type 2 diabetes mellitus, 1990–2021: findings from the global burden of disease study 2021. Diabetes Obes Metab. 2024;26(12):5950–9.PubMedCrossRef Shan S, Luo Z, Yao L, Zhou J, Wu J, Jiang D, Ying J, Cao J, Zhou L, Li S, et al. Cross-country inequalities in disease burden and care quality of chronic kidney disease due to type 2 diabetes mellitus, 1990–2021: findings from the global burden of disease study 2021. Diabetes Obes Metab. 2024;26(12):5950–9.PubMedCrossRef
2.
go back to reference Kim K, Crook J, Lu CC, Nyman H, Sarker J, Nelson R, LaFleur J. Healthcare costs across diabetic kidney disease stages: a veterans affairs study. Kidney Med. 2024;6(9): 100873.PubMedCrossRefPubMedCentral Kim K, Crook J, Lu CC, Nyman H, Sarker J, Nelson R, LaFleur J. Healthcare costs across diabetic kidney disease stages: a veterans affairs study. Kidney Med. 2024;6(9): 100873.PubMedCrossRefPubMedCentral
3.
go back to reference The Diabetes Control and Complications (DCCT) Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int. 1995;47(6):1703–20.CrossRef The Diabetes Control and Complications (DCCT) Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int. 1995;47(6):1703–20.CrossRef
5.
go back to reference Ren X, Kang N, Yu X, Li X, Tang Y, Wu J. Prevalence and association of diabetic nephropathy in newly diagnosed Chinese patients with diabetes in the Hebei province: a single-center case-control study. Medicine (Baltimore). 2023;102(11): e32911.PubMedCrossRef Ren X, Kang N, Yu X, Li X, Tang Y, Wu J. Prevalence and association of diabetic nephropathy in newly diagnosed Chinese patients with diabetes in the Hebei province: a single-center case-control study. Medicine (Baltimore). 2023;102(11): e32911.PubMedCrossRef
6.
go back to reference Ghose S, Satariano M, Korada S, Cahill T, Shah R, Raina R. Advancements in diabetic kidney disease management: integrating innovative therapies and targeted drug development. Am J Physiol Endocrinol Metab. 2024;326(6):E791-e806.PubMedCrossRef Ghose S, Satariano M, Korada S, Cahill T, Shah R, Raina R. Advancements in diabetic kidney disease management: integrating innovative therapies and targeted drug development. Am J Physiol Endocrinol Metab. 2024;326(6):E791-e806.PubMedCrossRef
7.
go back to reference Neuen BL, Heerspink HJL, Vart P, Claggett BL, Fletcher RA, Arnott C, de Oliveira CJ, Falster MO, Pearson SA, Mahaffey KW, et al. Estimated lifetime cardiovascular, kidney, and mortality benefits of combination treatment with SGLT2 inhibitors, GLP-1 receptor agonists, and nonsteroidal MRA compared with conventional care in patients with type 2 diabetes and albuminuria. Circulation. 2024;149(6):450–62.PubMedCrossRef Neuen BL, Heerspink HJL, Vart P, Claggett BL, Fletcher RA, Arnott C, de Oliveira CJ, Falster MO, Pearson SA, Mahaffey KW, et al. Estimated lifetime cardiovascular, kidney, and mortality benefits of combination treatment with SGLT2 inhibitors, GLP-1 receptor agonists, and nonsteroidal MRA compared with conventional care in patients with type 2 diabetes and albuminuria. Circulation. 2024;149(6):450–62.PubMedCrossRef
8.
go back to reference Fang T, Zhang Q, Wang Z, Liu JP. Bidirectional association between depression and diabetic nephropathy by meta-analysis. PLoS ONE. 2022;17(12): e0278489.PubMedCrossRefPubMedCentral Fang T, Zhang Q, Wang Z, Liu JP. Bidirectional association between depression and diabetic nephropathy by meta-analysis. PLoS ONE. 2022;17(12): e0278489.PubMedCrossRefPubMedCentral
9.
go back to reference Li S, Chen J, Zhou W, Liu Y, Zhang D, Yang Q, Feng Y, Cha C, Li L, He G, et al. To develop biomarkers for diabetic nephropathy based on genes related to fibrosis and propionate metabolism and their functional validation. J Diabetes Res. 2024;2024:9066326.PubMedCrossRefPubMedCentral Li S, Chen J, Zhou W, Liu Y, Zhang D, Yang Q, Feng Y, Cha C, Li L, He G, et al. To develop biomarkers for diabetic nephropathy based on genes related to fibrosis and propionate metabolism and their functional validation. J Diabetes Res. 2024;2024:9066326.PubMedCrossRefPubMedCentral
10.
go back to reference Mageswari R, Sridhar MG, Nandeesha H, Parameshwaran S, Vinod KV. Irisin and visfatin predicts severity of diabetic nephropathy. Indian J Clin Biochem. 2019;34(3):342–6.PubMedCrossRef Mageswari R, Sridhar MG, Nandeesha H, Parameshwaran S, Vinod KV. Irisin and visfatin predicts severity of diabetic nephropathy. Indian J Clin Biochem. 2019;34(3):342–6.PubMedCrossRef
11.
go back to reference Dias AS, Almeida CR, Helguero L, Duarte IF. Antitumoral activity and metabolic signatures of dichloroacetate, 6-aminonicotinamide and etomoxir in breast-tumor-educated macrophages. J Proteome Res. 2024. Dias AS, Almeida CR, Helguero L, Duarte IF. Antitumoral activity and metabolic signatures of dichloroacetate, 6-aminonicotinamide and etomoxir in breast-tumor-educated macrophages. J Proteome Res. 2024.
12.
go back to reference Liu G, Dou J, Zheng D, Zhang J, Wang M, Li W, Wen J, Lu J, Ji L, He Y. Association between abnormal glycemic phenotypes and microvascular complications of type 2 diabetes mellitus outpatients in China. Diabetes Metab Syndr Obes. 2020;13:4651–9.PubMedCrossRefPubMedCentral Liu G, Dou J, Zheng D, Zhang J, Wang M, Li W, Wen J, Lu J, Ji L, He Y. Association between abnormal glycemic phenotypes and microvascular complications of type 2 diabetes mellitus outpatients in China. Diabetes Metab Syndr Obes. 2020;13:4651–9.PubMedCrossRefPubMedCentral
13.
go back to reference Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011;60(9):2354–69.PubMedCrossRefPubMedCentral Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011;60(9):2354–69.PubMedCrossRefPubMedCentral
14.
go back to reference Shi JS, Qiu DD, Le WB, Wang H, Li S, Lu YH, Jiang S. Identification of transcription regulatory relationships in diabetic nephropathy. Chin Med J (Engl). 2018;131(23):2886–90.PubMed Shi JS, Qiu DD, Le WB, Wang H, Li S, Lu YH, Jiang S. Identification of transcription regulatory relationships in diabetic nephropathy. Chin Med J (Engl). 2018;131(23):2886–90.PubMed
15.
go back to reference Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41(Database issue):D991-995.PubMed Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41(Database issue):D991-995.PubMed
16.
go back to reference Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846–7.PubMedCrossRef Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846–7.PubMedCrossRef
17.
go back to reference Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinf. 2016;54:1.CrossRef Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinf. 2016;54:1.CrossRef
18.
go back to reference Honkoop H, de Bakker DE, Aharonov A, Kruse F, Shakked A, Nguyen PD, de Heus C, Garric L, Muraro MJ, Shoffner A et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. Elife. 2019; 8. Honkoop H, de Bakker DE, Aharonov A, Kruse F, Shakked A, Nguyen PD, de Heus C, Garric L, Muraro MJ, Shoffner A et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. Elife. 2019; 8.
19.
go back to reference Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.PubMedCrossRefPubMedCentral Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.PubMedCrossRefPubMedCentral
20.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.PubMedCrossRefPubMedCentral Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.PubMedCrossRefPubMedCentral
22.
go back to reference Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419-d426.PubMedCrossRef Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419-d426.PubMedCrossRef
25.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.PubMedCrossRefPubMedCentral Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.PubMedCrossRefPubMedCentral
26.
go back to reference Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–40.PubMedCrossRefPubMedCentral Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–40.PubMedCrossRefPubMedCentral
27.
go back to reference Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-d613.PubMedCrossRef Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-d613.PubMedCrossRef
28.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedCrossRefPubMedCentral Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedCrossRefPubMedCentral
29.
go back to reference Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11.PubMedCrossRefPubMedCentral Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11.PubMedCrossRefPubMedCentral
30.
go back to reference Yang X, Li Y, Lv R, Qian H, Chen X, Yang CF. Study on the multitarget mechanism and key active ingredients of herba siegesbeckiae and volatile oil against rheumatoid arthritis based on network pharmacology. Evid Based Complement Alternat Med. 2019;2019:8957245.PubMedCrossRefPubMedCentral Yang X, Li Y, Lv R, Qian H, Chen X, Yang CF. Study on the multitarget mechanism and key active ingredients of herba siegesbeckiae and volatile oil against rheumatoid arthritis based on network pharmacology. Evid Based Complement Alternat Med. 2019;2019:8957245.PubMedCrossRefPubMedCentral
31.
go back to reference Zhou KR, Liu S, Sun WJ, Zheng LL, Zhou H, Yang JH, Qu LH. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 2017;45(D1):D43-d50.PubMedCrossRef Zhou KR, Liu S, Sun WJ, Zheng LL, Zhou H, Yang JH, Qu LH. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 2017;45(D1):D43-d50.PubMedCrossRef
32.
go back to reference Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA–ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(1):D92-97.PubMedCrossRef Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA–ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(1):D92-97.PubMedCrossRef
33.
go back to reference Xiao B, Liu L, Li A, Xiang C, Wang P, Li H, Xiao T. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma. Front Oncol. 2020;10: 607622.PubMedCrossRefPubMedCentral Xiao B, Liu L, Li A, Xiang C, Wang P, Li H, Xiao T. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma. Front Oncol. 2020;10: 607622.PubMedCrossRefPubMedCentral
34.
go back to reference Si Y, Zhu Y, Liu J, Liu S, Cai X, Gu Y, Li H, Pan F, Wang W, Shangguan J, et al. Exploring the mechanism of cardiorenal protection with finerenone based on network pharmacology. Cardiorenal Med. 2024;14(1):334–49.PubMedCrossRef Si Y, Zhu Y, Liu J, Liu S, Cai X, Gu Y, Li H, Pan F, Wang W, Shangguan J, et al. Exploring the mechanism of cardiorenal protection with finerenone based on network pharmacology. Cardiorenal Med. 2024;14(1):334–49.PubMedCrossRef
35.
go back to reference Wang H, Wang Y, Wang X, Huang H, Bao J, Zhong W, Li A. PTEN alleviates maladaptive repair of renal tubular epithelial cells by restoring CHMP2A-mediated phagosome closure. Cell Death Dis. 2021;12(12):1087.PubMedCrossRefPubMedCentral Wang H, Wang Y, Wang X, Huang H, Bao J, Zhong W, Li A. PTEN alleviates maladaptive repair of renal tubular epithelial cells by restoring CHMP2A-mediated phagosome closure. Cell Death Dis. 2021;12(12):1087.PubMedCrossRefPubMedCentral
36.
go back to reference Chen WY, Chang YJ, Su CH, Tsai TH, Chen SD, Hsing CH, Yang JL. Upregulation of Interleukin-33 in obstructive renal injury. Biochem Biophys Res Commun. 2016;473(4):1026–32.PubMedCrossRef Chen WY, Chang YJ, Su CH, Tsai TH, Chen SD, Hsing CH, Yang JL. Upregulation of Interleukin-33 in obstructive renal injury. Biochem Biophys Res Commun. 2016;473(4):1026–32.PubMedCrossRef
37.
go back to reference Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol. 2008;294(4):F697-701.PubMedCrossRef Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol. 2008;294(4):F697-701.PubMedCrossRef
38.
go back to reference Lord MS, Tang F, Rnjak-Kovacina J, Smith JGW, Melrose J, Whitelock JM. The multifaceted roles of perlecan in fibrosis. Matrix Biol. 2018;68–69:150–66.PubMedCrossRef Lord MS, Tang F, Rnjak-Kovacina J, Smith JGW, Melrose J, Whitelock JM. The multifaceted roles of perlecan in fibrosis. Matrix Biol. 2018;68–69:150–66.PubMedCrossRef
39.
go back to reference Wang Y, Song S, Qiu D, Wu G, Zheng R, Zhao L, Shi Y, Duan H: Effects of MiR-23b/ MAPK on renal fibrosis in rats with diabetic nephropathy. Minerva Med 2021. Wang Y, Song S, Qiu D, Wu G, Zheng R, Zhao L, Shi Y, Duan H: Effects of MiR-23b/ MAPK on renal fibrosis in rats with diabetic nephropathy. Minerva Med 2021.
40.
go back to reference Han X, Wei J, Zheng R, Tu Y, Wang M, Chen L, Xu Z, Zheng L, Zheng C, Shi Q, et al. Macrophage SHP2 deficiency alleviates diabetic nephropathy via suppression of MAPK/NF-κB-dependent inflammation. Diabetes. 2024;73(5):780–96.PubMedCrossRef Han X, Wei J, Zheng R, Tu Y, Wang M, Chen L, Xu Z, Zheng L, Zheng C, Shi Q, et al. Macrophage SHP2 deficiency alleviates diabetic nephropathy via suppression of MAPK/NF-κB-dependent inflammation. Diabetes. 2024;73(5):780–96.PubMedCrossRef
41.
go back to reference Han J, Pang X, Zhang Y, Peng Z, Shi X, Xing Y. Hirudin protects against kidney damage in streptozotocin-induced diabetic nephropathy rats by inhibiting inflammation via P38 MAPK/NF-κB pathway. Drug Des Devel Ther. 2020;14:3223–34.PubMedCrossRefPubMedCentral Han J, Pang X, Zhang Y, Peng Z, Shi X, Xing Y. Hirudin protects against kidney damage in streptozotocin-induced diabetic nephropathy rats by inhibiting inflammation via P38 MAPK/NF-κB pathway. Drug Des Devel Ther. 2020;14:3223–34.PubMedCrossRefPubMedCentral
42.
go back to reference Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions. Eur J Pharmacol. 2018;833:158–64.PubMedCrossRef Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions. Eur J Pharmacol. 2018;833:158–64.PubMedCrossRef
43.
go back to reference Ge D, Luo T, Sun Y, Liu M, Lyu Y, Yin W, Li R, Zhang Y, Yue H, Liu N. Natural diterpenoid EKO activates deubiqutinase ATXN3 to preserve vascular endothelial integrity and alleviate diabetic retinopathy through c-fos/focal adhesion axis. Int J Biol Macromol. 2024;260(Pt 2): 129341.PubMedCrossRef Ge D, Luo T, Sun Y, Liu M, Lyu Y, Yin W, Li R, Zhang Y, Yue H, Liu N. Natural diterpenoid EKO activates deubiqutinase ATXN3 to preserve vascular endothelial integrity and alleviate diabetic retinopathy through c-fos/focal adhesion axis. Int J Biol Macromol. 2024;260(Pt 2): 129341.PubMedCrossRef
44.
go back to reference Tian L, Yu Q, Zhang L, Zhang J. Accelerated fibrosis progression of diabetic nephropathy from high uric acid's activation of the ROS/NLRP3/SHP2 pathway in renal tubular epithelial cells under high glucose conditions. Altern Ther Health Med. 2024. Tian L, Yu Q, Zhang L, Zhang J. Accelerated fibrosis progression of diabetic nephropathy from high uric acid's activation of the ROS/NLRP3/SHP2 pathway in renal tubular epithelial cells under high glucose conditions. Altern Ther Health Med. 2024.
45.
go back to reference Dou F, Liu Q, Lv S, Xu Q, Wang X, Liu S, Liu G. FN1 and TGFBI are key biomarkers of macrophage immune injury in diabetic kidney disease. Medicine (Baltimore). 2023;102(45): e35794.PubMedCrossRef Dou F, Liu Q, Lv S, Xu Q, Wang X, Liu S, Liu G. FN1 and TGFBI are key biomarkers of macrophage immune injury in diabetic kidney disease. Medicine (Baltimore). 2023;102(45): e35794.PubMedCrossRef
46.
go back to reference Leo CH, Ou JLM, Ong ES, Qin CX, Ritchie RH, Parry LJ, Ng HH. Relaxin elicits renoprotective actions accompanied by increasing bile acid levels in streptozotocin-induced diabetic mice. Biomed Pharmacother. 2023;162: 114578.PubMedCrossRef Leo CH, Ou JLM, Ong ES, Qin CX, Ritchie RH, Parry LJ, Ng HH. Relaxin elicits renoprotective actions accompanied by increasing bile acid levels in streptozotocin-induced diabetic mice. Biomed Pharmacother. 2023;162: 114578.PubMedCrossRef
47.
go back to reference Diwan B, Yadav R, Goyal R, Sharma R. Sustained exposure to high glucose induces differential expression of cellular senescence markers in murine macrophages but impairs immunosurveillance response to senescent cells secretome. Biogerontology. 2024;25(4):627–47.PubMedCrossRef Diwan B, Yadav R, Goyal R, Sharma R. Sustained exposure to high glucose induces differential expression of cellular senescence markers in murine macrophages but impairs immunosurveillance response to senescent cells secretome. Biogerontology. 2024;25(4):627–47.PubMedCrossRef
48.
go back to reference Sun L, Wu Y, Sinha SK, Nicholas SB, Zou LX. Performance of multi-biomarker panels based on urinary N-terminal osteopontin for prediction of diabetic kidney disease in patients with diabetes mellitus. Eur J Intern Med. 2023;118:140–2.PubMedCrossRef Sun L, Wu Y, Sinha SK, Nicholas SB, Zou LX. Performance of multi-biomarker panels based on urinary N-terminal osteopontin for prediction of diabetic kidney disease in patients with diabetes mellitus. Eur J Intern Med. 2023;118:140–2.PubMedCrossRef
49.
go back to reference Wang D, Zhang Q, Dong W, Ren S, Wang X, Su C, Lin X, Zheng Z, Xue Y. SGLT2 knockdown restores the Th17/Treg balance and suppresses diabetic nephropathy in db/db mice by regulating SGK1 via Na(). Mol Cell Endocrinol. 2024;584: 112156.PubMedCrossRef Wang D, Zhang Q, Dong W, Ren S, Wang X, Su C, Lin X, Zheng Z, Xue Y. SGLT2 knockdown restores the Th17/Treg balance and suppresses diabetic nephropathy in db/db mice by regulating SGK1 via Na(). Mol Cell Endocrinol. 2024;584: 112156.PubMedCrossRef
50.
go back to reference Shimizu C, Kawamoto H, Yamashita M, Kimura M, Kondou E, Kaneko Y, Okada S, Tokuhisa T, Yokoyama M, Taniguchi M, et al. Progression of T cell lineage restriction in the earliest subpopulation of murine adult thymus visualized by the expression of lck proximal promoter activity. Int Immunol. 2001;13(1):105–17.PubMedCrossRef Shimizu C, Kawamoto H, Yamashita M, Kimura M, Kondou E, Kaneko Y, Okada S, Tokuhisa T, Yokoyama M, Taniguchi M, et al. Progression of T cell lineage restriction in the earliest subpopulation of murine adult thymus visualized by the expression of lck proximal promoter activity. Int Immunol. 2001;13(1):105–17.PubMedCrossRef
Metadata
Title
Identification of metabolic reprogramming-related genes as potential diagnostic biomarkers for diabetic nephropathy based on bioinformatics
Authors
Hong Chen
Xiaoxia Su
Yan Li
Cui Dang
Zuojie Luo
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2024
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-024-01531-5

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.

Launching: Thursday 12th December 2024
 

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Register your interest now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more