Open Access
01-12-2023 | Human Papillomavirus | Research
HPV-positive murine oral squamous cell carcinoma: development and characterization of a new mouse tumor model for immunological studies
Authors:
Ziva Modic, Maja Cemazar, Bostjan Markelc, Andrej Cör, Gregor Sersa, Simona Kranjc Brezar, Tanja Jesenko
Published in:
Journal of Translational Medicine
|
Issue 1/2023
Login to get access
Abstract
Background
Infection with high-risk human papillomavirus (HPV) strains is one of the risk factors for the development of oral squamous cell carcinoma (OSCC). Some patients with HPV-positive OSCC have a better prognosis and respond better to various treatment modalities, including radiotherapy or immunotherapy. However, since HPV can only infect human cells, there are only a few immunocompetent mouse models available that enable immunological studies. Therefore, the aim of our study was to develop a transplantable immunocompetent mouse model of HPV-positive OSCC and characterize it in vitro and in vivo.
Methods
Two monoclonal HPV-positive OSCC mouse cell lines were established by inducing the expression of HPV-16 oncogenes E6 and E7 in the MOC1 OSCC cell line using retroviral transduction. After confirming stable expression of HPV-16 E6 and E7 with quantitative real-time PCR and immunofluorescence staining, the cell lines were further characterized in vitro using proliferation assay, wound healing assay, clonogenic assay and RNA sequencing. In addition, tumor models were characterized in vivo in C57Bl/6NCrl mice in terms of their histological properties, tumor growth kinetics, and radiosensitivity. Furthermore, immunofluorescence staining of blood vessels, hypoxic areas, proliferating cells and immune cells was performed to characterize the tumor microenvironment of all three tumor models.
Results
Characterization of the resulting MOC1-HPV cell lines and tumor models confirmed stable expression of HPV-16 oncogenes and differences in cell morphology, in vitro migration capacity, and tumor microenvironment characteristics. Although the cell lines did not differ in their intrinsic radiosensitivity, one of the HPV-positive tumor models, MOC1-HPV K1, showed a significantly longer growth delay after irradiation with a single dose of 15 Gy compared to parental MOC1 tumors. Consistent with this, MOC1-HPV K1 tumors had a lower percentage of hypoxic tumor area and a higher percentage of proliferating cells. Characteristics of the newly developed HPV-positive OSCC tumor models correlate with the transcriptomic profile of MOC1-HPV cell lines.
Conclusions
In conclusion, we developed and characterized a novel immunocompetent mouse model of HPV-positive OSCC that exhibits increased radiosensitivity and enables studies of immune-based treatment approaches in HPV-positive OSCC.