Skip to main content
Top

22-09-2023 | Hemophilia | Review Article

CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia

Authors: Abdulfatah M. Alayoubi, Zakaria Y. Khawaji, Mohammed A. Mohammed, François E. Mercier

Published in: Annals of Hematology

Login to get access

Abstract

Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).
Literature
1.
go back to reference Jiang S, Shen QW (2019) Principles of gene editing techniques and applications in animal husbandry. 3. Biotech 9(1):1–9 Jiang S, Shen QW (2019) Principles of gene editing techniques and applications in animal husbandry. 3. Biotech 9(1):1–9
2.
go back to reference Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 51(3):503–512 PubMedCrossRef Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 51(3):503–512 PubMedCrossRef
3.
go back to reference González-Romero E, Martínez-Valiente C, García-Ruiz C, Vázquez-Manrique RP, Cervera J, Sanjuan-Pla A (2019) CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica. 104(5):881 PubMedPubMedCentralCrossRef González-Romero E, Martínez-Valiente C, García-Ruiz C, Vázquez-Manrique RP, Cervera J, Sanjuan-Pla A (2019) CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica. 104(5):881 PubMedPubMedCentralCrossRef
4.
go back to reference Ahmad HI, Ahmad MJ, Asif AR, Adnan M, Iqbal MK, Mehmood K, Muhammad SA, Bhuiyan AA, Elokil A, Du X, Zhao C (2018) A review of CRISPR-based genome editing: survival, evolution and challenges. Curr Issues Mol Biol 28(1):47–68 PubMedCrossRef Ahmad HI, Ahmad MJ, Asif AR, Adnan M, Iqbal MK, Mehmood K, Muhammad SA, Bhuiyan AA, Elokil A, Du X, Zhao C (2018) A review of CRISPR-based genome editing: survival, evolution and challenges. Curr Issues Mol Biol 28(1):47–68 PubMedCrossRef
5.
go back to reference Chen Y, Wen R, Yang Z, Chen Z (2022) Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders. Gene Ther 29(5):207–216 PubMedCrossRef Chen Y, Wen R, Yang Z, Chen Z (2022) Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders. Gene Ther 29(5):207–216 PubMedCrossRef
6.
go back to reference Asmamaw M, Zawdie B (2021) Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biol Targets Ther 15:353 CrossRef Asmamaw M, Zawdie B (2021) Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biol Targets Ther 15:353 CrossRef
7.
go back to reference Jacinto FV, Link W, Ferreira BI (2020) CRISPR/Cas9-mediated genome editing: from basic research to translational medicine. J Cell Mol Med 24(7):3766–3778 PubMedPubMedCentralCrossRef Jacinto FV, Link W, Ferreira BI (2020) CRISPR/Cas9-mediated genome editing: from basic research to translational medicine. J Cell Mol Med 24(7):3766–3778 PubMedPubMedCentralCrossRef
8.
go back to reference Konstantakos V, Nentidis A, Krithara A, Paliouras G (2022) CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Res 50(7):3616–3637 PubMedPubMedCentralCrossRef Konstantakos V, Nentidis A, Krithara A, Paliouras G (2022) CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Res 50(7):3616–3637 PubMedPubMedCentralCrossRef
9.
go back to reference Tahir T, Ali Q, Rashid MS, Malik A (2020) The journey of CRISPR-Cas9 from bacterial defense mechanism to a gene editing tool in both animals and plants. Biol Clin Sci Res J 2020(1) Tahir T, Ali Q, Rashid MS, Malik A (2020) The journey of CRISPR-Cas9 from bacterial defense mechanism to a gene editing tool in both animals and plants. Biol Clin Sci Res J 2020(1)
10.
go back to reference Westermann L, Neubauer B, Köttgen M (2021) Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Arch - Eur J Physiol 473(1):1–2 CrossRef Westermann L, Neubauer B, Köttgen M (2021) Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Arch - Eur J Physiol 473(1):1–2 CrossRef
12.
go back to reference Kunz JB, Kulozik AE (2020) Gene therapy of the hemoglobinopathies. HemaSphere 4:5 CrossRef Kunz JB, Kulozik AE (2020) Gene therapy of the hemoglobinopathies. HemaSphere 4:5 CrossRef
14.
15.
go back to reference Stewart RL, Koo SC, Furtado LV (2018) Principles of molecular biology and oncogenesis. In Precision molecular pathology of neoplastic pediatric diseases. Springer, Cham, pp 3–8 Stewart RL, Koo SC, Furtado LV (2018) Principles of molecular biology and oncogenesis. In Precision molecular pathology of neoplastic pediatric diseases. Springer, Cham, pp 3–8
18.
go back to reference Deshantri AK, Moreira AV, Ecker V, Mandhane SN, Schiffelers RM, Buchner M, Fens MH (2018) Nanomedicines for the treatment of hematological malignancies. J Control Release 287:194–215 PubMedCrossRef Deshantri AK, Moreira AV, Ecker V, Mandhane SN, Schiffelers RM, Buchner M, Fens MH (2018) Nanomedicines for the treatment of hematological malignancies. J Control Release 287:194–215 PubMedCrossRef
19.
go back to reference Berntorp E, Fischer K, Hart DP, Mancuso ME, Stephensen D, Shapiro AD, Blanchette V (2021) Haemophilia. Nat Rev Dis Primers 7(1):1–9 CrossRef Berntorp E, Fischer K, Hart DP, Mancuso ME, Stephensen D, Shapiro AD, Blanchette V (2021) Haemophilia. Nat Rev Dis Primers 7(1):1–9 CrossRef
20.
go back to reference Weyand AC, Pipe SW (2019) New therapies for hemophilia. Blood J American Soc Hematol 133(5):389–398 Weyand AC, Pipe SW (2019) New therapies for hemophilia. Blood J American Soc Hematol 133(5):389–398
22.
go back to reference Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR (2018) CRISPR/CAS9 System: a bacterial tailor for genomic engineering. Genet Res Int 2018:1–17 Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR (2018) CRISPR/CAS9 System: a bacterial tailor for genomic engineering. Genet Res Int 2018:1–17
23.
go back to reference Hryhorowicz M, Lipiński D, Zeyland J, Słomski R (2017) CRISPR/Cas9 immune system as a tool for genome engineering. Arch Immunol Ther Exp 65(3):233–240 CrossRef Hryhorowicz M, Lipiński D, Zeyland J, Słomski R (2017) CRISPR/Cas9 immune system as a tool for genome engineering. Arch Immunol Ther Exp 65(3):233–240 CrossRef
24.
26.
go back to reference Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A, Kazi TA, Gupta R, Sinharoy S, Acharya K, Chattopadhyay D (2019) CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sci 232:116636 PubMedCrossRef Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A, Kazi TA, Gupta R, Sinharoy S, Acharya K, Chattopadhyay D (2019) CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sci 232:116636 PubMedCrossRef
27.
go back to reference Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096 PubMedCrossRef Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096 PubMedCrossRef
28.
go back to reference Liu C, Zhang L, Liu H, Cheng K (2017 Nov) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 28(266):17–26 CrossRef Liu C, Zhang L, Liu H, Cheng K (2017 Nov) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 28(266):17–26 CrossRef
29.
go back to reference Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M (2020) Various aspects of a gene editing system—crispr–cas9. Int J Mol Sci 21(24):9604 PubMedPubMedCentralCrossRef Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M (2020) Various aspects of a gene editing system—crispr–cas9. Int J Mol Sci 21(24):9604 PubMedPubMedCentralCrossRef
31.
go back to reference Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, Liu X, Lv Z, Yang P, Xu W, Gao W (2021) Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 20(1):1–22 CrossRef Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, Liu X, Lv Z, Yang P, Xu W, Gao W (2021) Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 20(1):1–22 CrossRef
32.
go back to reference Ghaemi A, Bagheri E, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M (2021) CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. Life Sci 267:118969 PubMedCrossRef Ghaemi A, Bagheri E, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M (2021) CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. Life Sci 267:118969 PubMedCrossRef
33.
go back to reference Hendriks D, Clevers H, Artegiani B (2020) CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 27(5):705–731 PubMedCrossRef Hendriks D, Clevers H, Artegiani B (2020) CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 27(5):705–731 PubMedCrossRef
34.
go back to reference Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424 PubMedPubMedCentralCrossRef Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424 PubMedPubMedCentralCrossRef
35.
go back to reference Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: research technologies, clinical applications and ethical considerations. Seminars in perinatology 2018 (42 8, 487-500). WB Saunders Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: research technologies, clinical applications and ethical considerations. Seminars in perinatology 2018 (42 8, 487-500). WB Saunders
37.
go back to reference Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157 PubMedPubMedCentralCrossRef Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157 PubMedPubMedCentralCrossRef
38.
go back to reference Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38(7):824–844 PubMedCrossRef Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38(7):824–844 PubMedCrossRef
39.
go back to reference Sundd P, Gladwin MT, Novelli EM (2019) Pathophysiology of sickle cell disease. Annu Rev Pathol 14:263 PubMedCrossRef Sundd P, Gladwin MT, Novelli EM (2019) Pathophysiology of sickle cell disease. Annu Rev Pathol 14:263 PubMedCrossRef
42.
go back to reference Needs T, Gonzalez-Mosquera LF,  Lynch DT (2022) Beta thalassemia. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL) Needs T, Gonzalez-Mosquera LF,  Lynch DT (2022) Beta thalassemia. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL)
43.
go back to reference Constantinou C, Spella M, Chondrou V, Patrinos GP, Papachatzopoulou A, Sgourou A (2019) The multi-faceted functioning portrait of LRF/ZBTB7A. Hum Gen 13(1):1–4 Constantinou C, Spella M, Chondrou V, Patrinos GP, Papachatzopoulou A, Sgourou A (2019) The multi-faceted functioning portrait of LRF/ZBTB7A. Hum Gen 13(1):1–4
44.
go back to reference Demirci S, Zeng J, Wu Y, Uchida N, Shen AH, Pellin D, Gamer J, Yapundich M, Drysdale C, Bonanno J, Bonifacino AC (2020) BCL11A enhancer–edited hematopoietic stem cells persist in rhesus monkeys without toxicity. J Clin Invest 130(12):6677–6687 PubMedPubMedCentralCrossRef Demirci S, Zeng J, Wu Y, Uchida N, Shen AH, Pellin D, Gamer J, Yapundich M, Drysdale C, Bonanno J, Bonifacino AC (2020) BCL11A enhancer–edited hematopoietic stem cells persist in rhesus monkeys without toxicity. J Clin Invest 130(12):6677–6687 PubMedPubMedCentralCrossRef
45.
go back to reference Bauer DE, Orkin SH (2015) Hemoglobin switching’s surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev 33:62–70 PubMedPubMedCentralCrossRef Bauer DE, Orkin SH (2015) Hemoglobin switching’s surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev 33:62–70 PubMedPubMedCentralCrossRef
46.
go back to reference Jensen TI, Axelgaard E, Bak RO (2019) Therapeutic gene editing in haematological disorders with CRISPR/Cas9. Br J Haematol 185(5):821–835 PubMedCrossRef Jensen TI, Axelgaard E, Bak RO (2019) Therapeutic gene editing in haematological disorders with CRISPR/Cas9. Br J Haematol 185(5):821–835 PubMedCrossRef
47.
go back to reference Quintana-Bustamante O, Fañanas-Baquero S, Dessy-Rodriguez M, Ojeda-Pérez I, Segovia JC (2022) Gene editing for inherited red blood cell diseases. Front Physiol 28(13):848261 CrossRef Quintana-Bustamante O, Fañanas-Baquero S, Dessy-Rodriguez M, Ojeda-Pérez I, Segovia JC (2022) Gene editing for inherited red blood cell diseases. Front Physiol 28(13):848261 CrossRef
48.
go back to reference Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527(7577):192–197 PubMedPubMedCentralCrossRef Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527(7577):192–197 PubMedPubMedCentralCrossRef
49.
go back to reference Zeng J, Wu Y, Ren C, Bonanno J, Shen AH, Shea D, Gehrke JM, Clement K, Luk K, Yao Q, Kim R (2020) Therapeutic base editing of human hematopoietic stem cells. Nat Med 26(4):535–541 PubMedPubMedCentralCrossRef Zeng J, Wu Y, Ren C, Bonanno J, Shen AH, Shea D, Gehrke JM, Clement K, Luk K, Yao Q, Kim R (2020) Therapeutic base editing of human hematopoietic stem cells. Nat Med 26(4):535–541 PubMedPubMedCentralCrossRef
50.
go back to reference Wu Y, Zeng J, Roscoe BP, Liu P, Yao Q, Lazzarotto CR, Clement K, Cole MA, Luk K, Baricordi C, Shen AH (2019) Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med 25(5):776–783 PubMedPubMedCentralCrossRef Wu Y, Zeng J, Roscoe BP, Liu P, Yao Q, Lazzarotto CR, Clement K, Cole MA, Luk K, Baricordi C, Shen AH (2019) Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med 25(5):776–783 PubMedPubMedCentralCrossRef
51.
go back to reference Weber L, Frati G, Felix T, Hardouin G, Casini A, Wollenschlaeger C, Meneghini V, Masson C, De Cian A, Chalumeau A, Mavilio F (2020) Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci Adv 6(7):eaay9392 PubMedPubMedCentralCrossRef Weber L, Frati G, Felix T, Hardouin G, Casini A, Wollenschlaeger C, Meneghini V, Masson C, De Cian A, Chalumeau A, Mavilio F (2020) Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci Adv 6(7):eaay9392 PubMedPubMedCentralCrossRef
52.
go back to reference Masuda T, Wang X, Maeda M, Canver MC, Sher F, Funnell AP, Fisher C, Suciu M, Martyn GE, Norton LJ, Zhu C (2016) Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351(6270):285–289 PubMedPubMedCentralCrossRef Masuda T, Wang X, Maeda M, Canver MC, Sher F, Funnell AP, Fisher C, Suciu M, Martyn GE, Norton LJ, Zhu C (2016) Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351(6270):285–289 PubMedPubMedCentralCrossRef
53.
go back to reference Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, Foell J, de la Fuente J, Grupp S, Handgretinger R, Ho TW (2021) CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 384(3):252–260 PubMedCrossRef Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, Foell J, de la Fuente J, Grupp S, Handgretinger R, Ho TW (2021) CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 384(3):252–260 PubMedCrossRef
54.
go back to reference Fu B, Liao J, Chen S, Li W, Wang Q, Hu J, Yang F, Hsiao S, Jiang Y, Wang L, Chen F (2022) CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nat Med 28(8):1573–1580 PubMedCrossRef Fu B, Liao J, Chen S, Li W, Wang Q, Hu J, Yang F, Hsiao S, Jiang Y, Wang L, Chen F (2022) CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nat Med 28(8):1573–1580 PubMedCrossRef
55.
go back to reference Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, Ciuculescu MF, Daley H, MacKinnon B, Morris E, Federico A, Abriss D (2021) Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med 384(3):205–215 PubMedCrossRef Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, Ciuculescu MF, Daley H, MacKinnon B, Morris E, Federico A, Abriss D (2021) Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N Engl J Med 384(3):205–215 PubMedCrossRef
57.
go back to reference Thein SL (2017) Genetic basis and genetic modifiers of β-thalassemia and sickle cell disease. Gene and Cell Therapies for Beta-Globinopathies 27–57 Thein SL (2017) Genetic basis and genetic modifiers of β-thalassemia and sickle cell disease. Gene and Cell Therapies for Beta-Globinopathies 27–57
58.
go back to reference Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Luo M, Sun X (2015) Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 24(9):1053–1065 PubMedCrossRef Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Luo M, Sun X (2015) Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 24(9):1053–1065 PubMedCrossRef
59.
go back to reference Niu X, He W, Song B, Ou Z, Fan D, Chen Y, Fan Y, Sun X (2016) Combining single strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in β-thalassemia-induced pluripotent stem cells. J Biol Chem 291(32):16576–16585 PubMedPubMedCentralCrossRef Niu X, He W, Song B, Ou Z, Fan D, Chen Y, Fan Y, Sun X (2016) Combining single strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in β-thalassemia-induced pluripotent stem cells. J Biol Chem 291(32):16576–16585 PubMedPubMedCentralCrossRef
60.
go back to reference Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW (2014) Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24(9):1526–1533 PubMedPubMedCentralCrossRef Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW (2014) Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24(9):1526–1533 PubMedPubMedCentralCrossRef
61.
go back to reference Xu P, Tong Y, Liu XZ, Wang TT, Cheng L, Wang BY, Lv X, Huang Y, Liu DP (2015) Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C> T) mutation in β-thalassemia-derived iPSCs. Sci Rep 5(1):1–2 Xu P, Tong Y, Liu XZ, Wang TT, Cheng L, Wang BY, Lv X, Huang Y, Liu DP (2015) Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C> T) mutation in β-thalassemia-derived iPSCs. Sci Rep 5(1):1–2
63.
go back to reference Wilkinson AC, Dever DP, Baik R, Camarena J, Hsu I, Charlesworth CT, Morita C, Nakauchi H, Porteus MH (2021) Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice. Nat Commun 12(1):1–9 CrossRef Wilkinson AC, Dever DP, Baik R, Camarena J, Hsu I, Charlesworth CT, Morita C, Nakauchi H, Porteus MH (2021) Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice. Nat Commun 12(1):1–9 CrossRef
64.
go back to reference Lattanzi A, Camarena J, Lahiri P, Segal H, Srifa W, Vakulskas CA, Frock RL, Kenrick J, Lee C, Talbott N, Skowronski J (2021) Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med 13(598):eabf2444 PubMedPubMedCentralCrossRef Lattanzi A, Camarena J, Lahiri P, Segal H, Srifa W, Vakulskas CA, Frock RL, Kenrick J, Lee C, Talbott N, Skowronski J (2021) Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med 13(598):eabf2444 PubMedPubMedCentralCrossRef
65.
go back to reference Cai L, Bai H, Mahairaki V, Gao Y, He C, Wen Y, Jin YC, Wang Y, Pan RL, Qasba A, Ye Z (2018) A universal approach to correct various HBB gene mutations in human stem cells for gene therapy of beta-thalassemia and sickle cell disease. Stem Cells Transl Med 7(1):87–97 PubMedCrossRef Cai L, Bai H, Mahairaki V, Gao Y, He C, Wen Y, Jin YC, Wang Y, Pan RL, Qasba A, Ye Z (2018) A universal approach to correct various HBB gene mutations in human stem cells for gene therapy of beta-thalassemia and sickle cell disease. Stem Cells Transl Med 7(1):87–97 PubMedCrossRef
67.
go back to reference Iyer DN, Schimmer AD, Chang H (2023) Applying CRISPR-Cas9 screens to dissect hematological malignancies. Blood Adv 7(10):2252–2270 Iyer DN, Schimmer AD, Chang H (2023) Applying CRISPR-Cas9 screens to dissect hematological malignancies. Blood Adv 7(10):2252–2270
68.
go back to reference Sterner RC, Sterner RM (2021) CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 11(4):1 CrossRef Sterner RC, Sterner RM (2021) CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 11(4):1 CrossRef
69.
go back to reference Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N (2019) CAR T cell therapy: a new era for cancer treatment. Oncol Rep 42(6):2183–2195 PubMed Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N (2019) CAR T cell therapy: a new era for cancer treatment. Oncol Rep 42(6):2183–2195 PubMed
71.
go back to reference Holstein SA, Lunning MA (2020) CAR T-cell therapy in hematologic malignancies: a voyage in progress. Clin Pharmacol Ther 107(1):112–122 PubMedCrossRef Holstein SA, Lunning MA (2020) CAR T-cell therapy in hematologic malignancies: a voyage in progress. Clin Pharmacol Ther 107(1):112–122 PubMedCrossRef
72.
go back to reference Dimitri A, Herbst F, Fraietta JA (2022) Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer 21(1):1–3 CrossRef Dimitri A, Herbst F, Fraietta JA (2022) Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer 21(1):1–3 CrossRef
73.
go back to reference Razeghian E, Nasution MK, Rahman HS, Gardanova ZR, Abdelbasset WK, Aravindhan S, Bokov DO, Suksatan W, Nakhaei P, Shariatzadeh S, Marofi F (2021) A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res Ther 12(1):1–7 CrossRef Razeghian E, Nasution MK, Rahman HS, Gardanova ZR, Abdelbasset WK, Aravindhan S, Bokov DO, Suksatan W, Nakhaei P, Shariatzadeh S, Marofi F (2021) A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res Ther 12(1):1–7 CrossRef
74.
go back to reference Khan A, Sarkar E (2022) Review CRISPR/Cas9 encouraged CAR-T cell immunotherapy reporting efficient and safe clinical results towards cancer. Cancer Treat Res Commun 27:100641 CrossRef Khan A, Sarkar E (2022) Review CRISPR/Cas9 encouraged CAR-T cell immunotherapy reporting efficient and safe clinical results towards cancer. Cancer Treat Res Commun 27:100641 CrossRef
75.
go back to reference Wang L, Chen Y, Liu X, Li Z, Dai X (2022) The application of CRISPR/Cas9 technology for cancer immunotherapy: current status and problems. Front Oncol 17(11):5853 Wang L, Chen Y, Liu X, Li Z, Dai X (2022) The application of CRISPR/Cas9 technology for cancer immunotherapy: current status and problems. Front Oncol 17(11):5853
76.
go back to reference Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, Hansen MJ, Jin F, Ayasoufi K, Hefazi M, Schick KJ (2019) GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood J American Soc Hematol 133(7):697–709 Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, Hansen MJ, Jin F, Ayasoufi K, Hefazi M, Schick KJ (2019) GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood J American Soc Hematol 133(7):697–709
77.
go back to reference Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, Wei XF, Han W, Wang H (2020) TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI insight 5(4) Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, Wei XF, Han W, Wang H (2020) TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI insight 5(4)
78.
go back to reference Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gönen M, Sadelain M (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543(7643):113–117 PubMedPubMedCentralCrossRef Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gönen M, Sadelain M (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543(7643):113–117 PubMedPubMedCentralCrossRef
79.
go back to reference Georgiadis C, Preece R, Nickolay L, Etuk A, Petrova A, Ladon D, Danyi A, Humphryes-Kirilov N, Ajetunmobi A, Kim D, Kim JS (2018) Long terminal repeat CRISPR-CAR-coupled “universal” T cells mediate potent anti-leukemic effects. Mol Ther 26(5):1215–1227 PubMedPubMedCentralCrossRef Georgiadis C, Preece R, Nickolay L, Etuk A, Petrova A, Ladon D, Danyi A, Humphryes-Kirilov N, Ajetunmobi A, Kim D, Kim JS (2018) Long terminal repeat CRISPR-CAR-coupled “universal” T cells mediate potent anti-leukemic effects. Mol Ther 26(5):1215–1227 PubMedPubMedCentralCrossRef
80.
go back to reference Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, Marson A (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7(1):1 CrossRef Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, Marson A (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7(1):1 CrossRef
81.
go back to reference Stenger D, Stief TA, Kaeuferle T, Willier S, Rataj F, Schober K, Vick B, Lotfi R, Wagner B, Grünewald TG, Kobold S (2020) Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood 136(12):1407–1418 PubMedCrossRef Stenger D, Stief TA, Kaeuferle T, Willier S, Rataj F, Schober K, Vick B, Lotfi R, Wagner B, Grünewald TG, Kobold S (2020) Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood 136(12):1407–1418 PubMedCrossRef
82.
go back to reference Stadtmauer EA, Cohen AD, Weber K, Lacey SF, Gonzalez VE, Melenhorst JJ, June CH (2019) First-in-human assessment of feasibility and safety of multiplexed genetic engineering of autologous T cells expressing NY-ESO-1 TCR and CRISPR/Cas9 gene edited to eliminate endogenous TCR and PD-1 (NYCE T cells) in advanced multiple myeloma (MM) and sarcoma. Blood 134:49 Stadtmauer EA, Cohen AD, Weber K, Lacey SF, Gonzalez VE, Melenhorst JJ, June CH (2019) First-in-human assessment of feasibility and safety of multiplexed genetic engineering of autologous T cells expressing NY-ESO-1 TCR and CRISPR/Cas9 gene edited to eliminate endogenous TCR and PD-1 (NYCE T cells) in advanced multiple myeloma (MM) and sarcoma. Blood 134:49
83.
go back to reference Wei G, Zhang Y, Zhao H, Wang Y, Liu Y, Liang B, Wang X, Xu H, Cui J, Wu W, Zhao K (2021) CD19/CD22 dual-targeted CAR T-cell therapy for relapsed/refractory aggressive B-cell lymphoma: a safety and efficacy study. Cancer Immunol Res 9(9):1061–1070 PubMedCrossRef Wei G, Zhang Y, Zhao H, Wang Y, Liu Y, Liang B, Wang X, Xu H, Cui J, Wu W, Zhao K (2021) CD19/CD22 dual-targeted CAR T-cell therapy for relapsed/refractory aggressive B-cell lymphoma: a safety and efficacy study. Cancer Immunol Res 9(9):1061–1070 PubMedCrossRef
84.
go back to reference Asada S, Fujino T, Goyama S, Kitamura T (2019) The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci 76(13):2511–2523 PubMedCrossRef Asada S, Fujino T, Goyama S, Kitamura T (2019) The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci 76(13):2511–2523 PubMedCrossRef
85.
go back to reference Valletta S, Dolatshad H, Bartenstein M, Yip BH, Bello E, Gordon S, Yu Y, Shaw J, Roy S, Scifo L, Schuh A (2015) ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 6(42):44061 PubMedPubMedCentralCrossRef Valletta S, Dolatshad H, Bartenstein M, Yip BH, Bello E, Gordon S, Yu Y, Shaw J, Roy S, Scifo L, Schuh A (2015) ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 6(42):44061 PubMedPubMedCentralCrossRef
86.
go back to reference Felce SL, Anderson AP, Maguire S, Gascoyne DM, Armstrong RN, Wong KK, Li D, Banham AH (2020) CRISPR/Cas9-mediated Foxp1 silencing restores immune surveillance in an immunocompetent A20 lymphoma model. Front Oncol 3(10):448 CrossRef Felce SL, Anderson AP, Maguire S, Gascoyne DM, Armstrong RN, Wong KK, Li D, Banham AH (2020) CRISPR/Cas9-mediated Foxp1 silencing restores immune surveillance in an immunocompetent A20 lymphoma model. Front Oncol 3(10):448 CrossRef
87.
go back to reference Schlager S, Salomon C, Olt S, Albrecht C, Ebert A, Bergner O, Wachter J, Trapani F, Gerlach D, Voss T, Traunbauer A (2020) Inducible knock-out of BCL6 in lymphoma cells results in tumor stasis. Oncotarget 11(9):875 PubMedPubMedCentralCrossRef Schlager S, Salomon C, Olt S, Albrecht C, Ebert A, Bergner O, Wachter J, Trapani F, Gerlach D, Voss T, Traunbauer A (2020) Inducible knock-out of BCL6 in lymphoma cells results in tumor stasis. Oncotarget 11(9):875 PubMedPubMedCentralCrossRef
88.
go back to reference Khaled M, Moustafa AS, El-Khazragy N, Ahmed MI, Abd Elkhalek MA, El-Salahy EM (2021) CRISPR/Cas9 mediated knock-out of VPREB1 gene induces a cytotoxic effect in myeloma cells. PLoS One 16(1):e0245349 PubMedPubMedCentralCrossRef Khaled M, Moustafa AS, El-Khazragy N, Ahmed MI, Abd Elkhalek MA, El-Salahy EM (2021) CRISPR/Cas9 mediated knock-out of VPREB1 gene induces a cytotoxic effect in myeloma cells. PLoS One 16(1):e0245349 PubMedPubMedCentralCrossRef
89.
go back to reference Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, Mupo A, Grinkevich V, Li M, Mazan M, Gozdecka M (2016) A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep 17(4):1193–1205 PubMedPubMedCentralCrossRef Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, Mupo A, Grinkevich V, Li M, Mazan M, Gozdecka M (2016) A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep 17(4):1193–1205 PubMedPubMedCentralCrossRef
90.
go back to reference Mercier FE, Shi J, Sykes DB, Oki T, Jankovic M, Man CH, Kfoury YS, Miller E, He S, Zhu A, Vasic R (2022) In vivo genome-wide CRISPR screening in murine acute myeloid leukemia uncovers microenvironmental dependencies. Blood Adv 6(17):5072–5084 PubMedPubMedCentralCrossRef Mercier FE, Shi J, Sykes DB, Oki T, Jankovic M, Man CH, Kfoury YS, Miller E, He S, Zhu A, Vasic R (2022) In vivo genome-wide CRISPR screening in murine acute myeloid leukemia uncovers microenvironmental dependencies. Blood Adv 6(17):5072–5084 PubMedPubMedCentralCrossRef
91.
go back to reference Ohmori T (2020) Advances in gene therapy for hemophilia: basis, current status, and future perspectives. Int J Hematol 111(1):31–41 PubMedCrossRef Ohmori T (2020) Advances in gene therapy for hemophilia: basis, current status, and future perspectives. Int J Hematol 111(1):31–41 PubMedCrossRef
92.
go back to reference Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW, Kim JS (2015) Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17(2):213–220 PubMedCrossRef Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW, Kim JS (2015) Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17(2):213–220 PubMedCrossRef
93.
go back to reference Dinh LV, Fine E, Ameri A, Luu BW, Kumar S, Diego VP, Curran JE, Peralta JM, Mead H, Escobar MA, Williams-Blangero S (2020) Specific correction of the intron-22 inverted factor VIII gene in autologous blood outgrowth endothelial cells from patients with severe hemophilia A. Blood 5(136):30–31 CrossRef Dinh LV, Fine E, Ameri A, Luu BW, Kumar S, Diego VP, Curran JE, Peralta JM, Mead H, Escobar MA, Williams-Blangero S (2020) Specific correction of the intron-22 inverted factor VIII gene in autologous blood outgrowth endothelial cells from patients with severe hemophilia A. Blood 5(136):30–31 CrossRef
94.
go back to reference Luo S, Li Z, Dai X, Zhang R, Liang Z, Li W, Zeng M, Su J, Wang J, Liang X, Wu Y (2021) CRISPR/Cas9-mediated in vivo genetic correction in a mouse model of hemophilia A. Front Cell Dev Biol 16(9):672564 CrossRef Luo S, Li Z, Dai X, Zhang R, Liang Z, Li W, Zeng M, Su J, Wang J, Liang X, Wu Y (2021) CRISPR/Cas9-mediated in vivo genetic correction in a mouse model of hemophilia A. Front Cell Dev Biol 16(9):672564 CrossRef
95.
go back to reference Tantawy AA  (2010) Molecular genetics of hemophilia A: Clinical perspectives. Egypt J Med Hum Genet 11(2) Tantawy AA  (2010) Molecular genetics of hemophilia A: Clinical perspectives. Egypt J Med Hum Genet 11(2)
96.
go back to reference Everett LA, Cleuren AC, Khoriaty RN, Ginsburg D (2014) Murine coagulation factor VIII is synthesized in endothelial cells. Blood J American Soc Hematol 123(24):3697–3705 Everett LA, Cleuren AC, Khoriaty RN, Ginsburg D (2014) Murine coagulation factor VIII is synthesized in endothelial cells. Blood J American Soc Hematol 123(24):3697–3705
97.
go back to reference Shahani T, Covens K, Lavend'Homme R, Jazouli N, Sokal E, Peerlinck K, Jacquemin M (2014) Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J Thromb Haemost 12(1):36–42 PubMedCrossRef Shahani T, Covens K, Lavend'Homme R, Jazouli N, Sokal E, Peerlinck K, Jacquemin M (2014) Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. J Thromb Haemost 12(1):36–42 PubMedCrossRef
98.
go back to reference Zhang JP, Cheng XX, Zhao M, Li GH, Xu J, Zhang F, Yin MD, Meng FY, Dai XY, Fu YW, Yang ZX (2019) Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse. Genome Biol 20(1):1–7 CrossRef Zhang JP, Cheng XX, Zhao M, Li GH, Xu J, Zhang F, Yin MD, Meng FY, Dai XY, Fu YW, Yang ZX (2019) Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse. Genome Biol 20(1):1–7 CrossRef
99.
go back to reference Chen H, Shi M, Gilam A, Zheng Q, Zhang Y, Afrikanova I, Li J, Gluzman Z, Jiang R, Kong LJ, Chen-Tsai RY (2019) Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Sci Rep 9(1):1–5 Chen H, Shi M, Gilam A, Zheng Q, Zhang Y, Afrikanova I, Li J, Gluzman Z, Jiang R, Kong LJ, Chen-Tsai RY (2019) Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Sci Rep 9(1):1–5
100.
go back to reference Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L, Wang L, Zeng L, Shao Y, Chen Y, Ma N (2016) CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 8(5):477–488 PubMedPubMedCentralCrossRef Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L, Wang L, Zeng L, Shao Y, Chen Y, Ma N (2016) CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 8(5):477–488 PubMedPubMedCentralCrossRef
101.
go back to reference Sung JJ, Park CY, Leem JW et al (2019) Restoration of FVIII expression by targeted gene insertion in the FVIII locus in hemophilia A patient-derived iPSCs. Exp Mol Med 51:1–9 PubMedCrossRef Sung JJ, Park CY, Leem JW et al (2019) Restoration of FVIII expression by targeted gene insertion in the FVIII locus in hemophilia A patient-derived iPSCs. Exp Mol Med 51:1–9 PubMedCrossRef
102.
go back to reference Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, Liang D (2019) ssODN-mediated in-frame deletion with CRISPR/Cas9 restores FVIII function in hemophilia A-patient-derived iPSCs and ECs. Mol Ther Nucleic Acids 6(17):198–209 CrossRef Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, Liang D (2019) ssODN-mediated in-frame deletion with CRISPR/Cas9 restores FVIII function in hemophilia A-patient-derived iPSCs and ECs. Mol Ther Nucleic Acids 6(17):198–209 CrossRef
104.
go back to reference Han JP, Kim M, Choi BS, Lee JH, Lee GS, Jeong M, Lee Y, Kim EA, Oh HK, Go N, Lee H (2022) In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci Adv 8(3):eabj6901 PubMedPubMedCentralCrossRef Han JP, Kim M, Choi BS, Lee JH, Lee GS, Jeong M, Lee Y, Kim EA, Oh HK, Go N, Lee H (2022) In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci Adv 8(3):eabj6901 PubMedPubMedCentralCrossRef
105.
go back to reference Hu YF, Fang YH, Lai YR, Feng XQ, Xu SQ (2022) Application of gene therapy in hemophilia. Curr Med Sci 19:1–7 Hu YF, Fang YH, Lai YR, Feng XQ, Xu SQ (2022) Application of gene therapy in hemophilia. Curr Med Sci 19:1–7
106.
go back to reference Sun J, Wang J, Zheng D, Hu X (2020) Advances in therapeutic application of CRISPR-Cas9. Brief Funct Genom 19(3):164–174 CrossRef Sun J, Wang J, Zheng D, Hu X (2020) Advances in therapeutic application of CRISPR-Cas9. Brief Funct Genom 19(3):164–174 CrossRef
107.
108.
go back to reference Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV–CRISPR–Cas9 and its host response. Nat Methods 13(10):868–874 PubMedPubMedCentralCrossRef Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV–CRISPR–Cas9 and its host response. Nat Methods 13(10):868–874 PubMedPubMedCentralCrossRef
109.
go back to reference Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25(2):249–254 PubMedPubMedCentralCrossRef Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25(2):249–254 PubMedPubMedCentralCrossRef
110.
go back to reference Ferdosi SR, Ewaisha R, Moghadam F, Krishna S, Park JG, Ebrahimkhani MR, Kiani S, Anderson KS (2019) Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun 10(1):1 CrossRef Ferdosi SR, Ewaisha R, Moghadam F, Krishna S, Park JG, Ebrahimkhani MR, Kiani S, Anderson KS (2019) Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun 10(1):1 CrossRef
111.
go back to reference Pavani G, Fabiano A, Laurent M, Amor F, Cantelli E, Chalumeau A, Maule G, Tachtsidi A, Concordet JP, Cereseto A, Mavilio F (2021) Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood Adv 5(5):1137–1153 PubMedPubMedCentralCrossRef Pavani G, Fabiano A, Laurent M, Amor F, Cantelli E, Chalumeau A, Maule G, Tachtsidi A, Concordet JP, Cereseto A, Mavilio F (2021) Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood Adv 5(5):1137–1153 PubMedPubMedCentralCrossRef
112.
go back to reference Li L, Yi H, Liu Z, Long P, Pan T, Huang Y, Li Y, Li Q, Ma Y (2022) Genetic correction of concurrent α-and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology. Stem Cell Res Ther 13(1):102 PubMedPubMedCentralCrossRef Li L, Yi H, Liu Z, Long P, Pan T, Huang Y, Li Y, Li Q, Ma Y (2022) Genetic correction of concurrent α-and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology. Stem Cell Res Ther 13(1):102 PubMedPubMedCentralCrossRef
113.
go back to reference Cosenza LC, Gasparello J, Romanini N, Zurlo M, Zuccato C, Gambari R, Finotti A (2021) Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β039-thalassemia patients. Mol Ther Methods Clin Dev 11(21):507–523 CrossRef Cosenza LC, Gasparello J, Romanini N, Zurlo M, Zuccato C, Gambari R, Finotti A (2021) Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β039-thalassemia patients. Mol Ther Methods Clin Dev 11(21):507–523 CrossRef
114.
go back to reference Uchida N, Drysdale CM, Nassehi T, Gamer J, Yapundich M, DiNicola J, Shibata Y, Hinds M, Gudmundsdottir B, Haro-Mora JJ, Demirci S (2021) Cas9 protein delivery non-integrating lentiviral vectors for gene correction in sickle cell disease. Mol Ther Methods Clin Dev 11(21):121–132 CrossRef Uchida N, Drysdale CM, Nassehi T, Gamer J, Yapundich M, DiNicola J, Shibata Y, Hinds M, Gudmundsdottir B, Haro-Mora JJ, Demirci S (2021) Cas9 protein delivery non-integrating lentiviral vectors for gene correction in sickle cell disease. Mol Ther Methods Clin Dev 11(21):121–132 CrossRef
115.
go back to reference Li C, Wang H, Georgakopoulou A, Gil S, Yannaki E, Lieber A (2021) In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model. Mol Ther 29(2):822–837 PubMedCrossRef Li C, Wang H, Georgakopoulou A, Gil S, Yannaki E, Lieber A (2021) In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model. Mol Ther 29(2):822–837 PubMedCrossRef
116.
go back to reference Patel RP, Ghilardi G, Porazzi P, Yang S, Qian D, Pajarillo R, Wang M, Zhang Y, Schuster SJ, Barta SK, Nimmagadda A (2022) Clinical development of Senza5TM CART5: a novel dual population CD5 CRISPR-Cas9 knocked out anti-CD5 chimeric antigen receptor T cell product for relapsed and refractory CD5+ nodal T-cell lymphomas. Blood 140(Supplement 1):1604–1605 CrossRef Patel RP, Ghilardi G, Porazzi P, Yang S, Qian D, Pajarillo R, Wang M, Zhang Y, Schuster SJ, Barta SK, Nimmagadda A (2022) Clinical development of Senza5TM CART5: a novel dual population CD5 CRISPR-Cas9 knocked out anti-CD5 chimeric antigen receptor T cell product for relapsed and refractory CD5+ nodal T-cell lymphomas. Blood 140(Supplement 1):1604–1605 CrossRef
117.
go back to reference Zhang J, Hu Y, Yang J, Li W, Tian Y, Wei G, Zhang L, Zhao K, Qi Y, Tan B, Zhang M (2020) Development and clinical evaluation of non-viral genome specific targeted CAR T cells in relapsed/refractory B-cell non-Hodgkin lymphoma. MedRxiv 23:2020–2009 Zhang J, Hu Y, Yang J, Li W, Tian Y, Wei G, Zhang L, Zhao K, Qi Y, Tan B, Zhang M (2020) Development and clinical evaluation of non-viral genome specific targeted CAR T cells in relapsed/refractory B-cell non-Hodgkin lymphoma. MedRxiv 23:2020–2009
118.
go back to reference Vuelta E, Ordoñez JL, Alonso-Pérez V, Méndez L, Hernández-Carabias P, Saldaña R, Sevilla J, Sebastián E, Muntión S, Sánchez-Guijo F, Hernández-Rivas JM (2021) CRISPR-Cas9 technology as a tool to target gene drivers in cancer: proof of concept and new opportunities to treat chronic myeloid leukemia. CRISPR J 4(4):519–535 PubMedCrossRef Vuelta E, Ordoñez JL, Alonso-Pérez V, Méndez L, Hernández-Carabias P, Saldaña R, Sevilla J, Sebastián E, Muntión S, Sánchez-Guijo F, Hernández-Rivas JM (2021) CRISPR-Cas9 technology as a tool to target gene drivers in cancer: proof of concept and new opportunities to treat chronic myeloid leukemia. CRISPR J 4(4):519–535 PubMedCrossRef
119.
go back to reference Narimani M, Sharifi M, Jalili A (2019) Knockout of BIRC5 gene by CRISPR/Cas9 induces apoptosis and inhibits cell proliferation in leukemic cell lines, HL60 and KG1. Blood Lymphat Cancer: targets and therapy 27:53–61 CrossRef Narimani M, Sharifi M, Jalili A (2019) Knockout of BIRC5 gene by CRISPR/Cas9 induces apoptosis and inhibits cell proliferation in leukemic cell lines, HL60 and KG1. Blood Lymphat Cancer: targets and therapy 27:53–61 CrossRef
120.
go back to reference Bexte T, Alzubi J, Reindl LM, Wendel P, Schubert R, Salzmann-Manrique E, von Metzler I, Cathomen T, Ullrich E (2022) CRISPR-Cas9 based gene editing of the immune checkpoint NKG2A enhances NK cell mediated cytotoxicity against multiple myeloma. Oncoimmunology 11(1):2081415 PubMedPubMedCentralCrossRef Bexte T, Alzubi J, Reindl LM, Wendel P, Schubert R, Salzmann-Manrique E, von Metzler I, Cathomen T, Ullrich E (2022) CRISPR-Cas9 based gene editing of the immune checkpoint NKG2A enhances NK cell mediated cytotoxicity against multiple myeloma. Oncoimmunology 11(1):2081415 PubMedPubMedCentralCrossRef
121.
go back to reference Naeimi Kararoudi M, Nagai Y, Elmas E, de Souza Fernandes Pereira M, Ali SA, Imus PH, Wethington D, Borrello IM, Lee DA, Ghiaur G (2020) CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 136(21):2416–2427 PubMedPubMedCentralCrossRef Naeimi Kararoudi M, Nagai Y, Elmas E, de Souza Fernandes Pereira M, Ali SA, Imus PH, Wethington D, Borrello IM, Lee DA, Ghiaur G (2020) CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 136(21):2416–2427 PubMedPubMedCentralCrossRef
122.
go back to reference Chen X, Niu X, Liu Y, Zheng R, Yang L, Lu J, Yin S, Wei Y, Pan J, Sayed A, Ma X (2022) Long-term correction of hemophilia B through CRISPR/Cas9 induced homology-independent targeted integration. J Genet Genomics 49(12):1114–1126 Chen X, Niu X, Liu Y, Zheng R, Yang L, Lu J, Yin S, Wei Y, Pan J, Sayed A, Ma X (2022) Long-term correction of hemophilia B through CRISPR/Cas9 induced homology-independent targeted integration. J Genet Genomics 49(12):1114–1126
123.
go back to reference Wang Q, Zhong X, Li Q, Su J, Liu Y, Mo L, Deng H, Yang Y (2020) CRISPR-Cas9-mediated in vivo gene integration at the albumin locus recovers hemostasis in neonatal and adult hemophilia B mice. Mol Ther Methods Clin Dev 11(18):520–531 CrossRef Wang Q, Zhong X, Li Q, Su J, Liu Y, Mo L, Deng H, Yang Y (2020) CRISPR-Cas9-mediated in vivo gene integration at the albumin locus recovers hemostasis in neonatal and adult hemophilia B mice. Mol Ther Methods Clin Dev 11(18):520–531 CrossRef
124.
go back to reference Wang L, Yang Y, Breton CA, White J, Zhang J, Che Y, Saveliev A, McMenamin D, He Z, Latshaw C, Li M (2019) CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX–knockout mice. Blood J American Soc Hematol 133(26):2745–2752 Wang L, Yang Y, Breton CA, White J, Zhang J, Che Y, Saveliev A, McMenamin D, He Z, Latshaw C, Li M (2019) CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX–knockout mice. Blood J American Soc Hematol 133(26):2745–2752
125.
go back to reference Sung JJ, Park S, Choi SH, Kim J, Cho MS, Kim DW (2020) Generation of a gene edited hemophilia A patient-derived iPSC cell line, YCMi001-B-1, by targeted insertion of coagulation factor FVIII using CRISPR/Cas9. Stem Cell Res 1(48):101948 CrossRef Sung JJ, Park S, Choi SH, Kim J, Cho MS, Kim DW (2020) Generation of a gene edited hemophilia A patient-derived iPSC cell line, YCMi001-B-1, by targeted insertion of coagulation factor FVIII using CRISPR/Cas9. Stem Cell Res 1(48):101948 CrossRef
126.
go back to reference Park CY, Sung JJ, Cho SR, Kim J, Kim DW (2019) Universal correction of blood coagulation factor VIII in patient-derived induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rep 12(6):1242–1249 CrossRef Park CY, Sung JJ, Cho SR, Kim J, Kim DW (2019) Universal correction of blood coagulation factor VIII in patient-derived induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rep 12(6):1242–1249 CrossRef
Metadata
Title
CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia
Authors
Abdulfatah M. Alayoubi
Zakaria Y. Khawaji
Mohammed A. Mohammed
François E. Mercier
Publication date
22-09-2023
Publisher
Springer Berlin Heidelberg
Published in
Annals of Hematology
Print ISSN: 0939-5555
Electronic ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-023-05457-2