Skip to main content
Top

Open Access 12-01-2025 | Heart Surgery | Review Article

Kidney Injury Following Cardiac Surgery: A Review of Our Current Understanding

Authors: Christine-Elena Kamla, Melanie Meersch-Dini, Lilian Monteiro Pereira Palma

Published in: American Journal of Cardiovascular Drugs

Login to get access

Abstract

Around one-quarter of all patients undergoing cardiac procedures, particularly those on cardiopulmonary bypass, develop cardiac surgery-associated acute kidney injury (CSA-AKI). This complication increases the risk of several serious morbidities and of mortality, representing a significant burden for both patients and the healthcare system. Patients with diminished kidney function before surgery, such as those with chronic kidney disease, are at heightened risk of developing CSA-AKI and have poorer outcomes than patients without preexisting kidney injury who develop CSA-AKI. Several mechanisms are involved in the development of CSA-AKI; injury is primarily thought to result from an amplification loop of inflammation and cell death, with complement and immune system activation, cardiopulmonary bypass, and ischemia-reperfusion injury all contributing to pathogenesis. At present there are no effective, targeted pharmacological therapies for the prevention or treatment of CSA-AKI, although several preclinical trials have shown promise, and clinical trials are under way. Progress in the understanding of the complex pathophysiology of CSA-AKI is needed to improve the development of successful strategies for its prevention, management, and treatment. In this review, we outline our current understanding of CSA-AKI development and management strategies and discuss potential future therapeutic targets under investigation.
Literature
1.
go back to reference Hansen MK, Gammelager H, Jacobsen CJ, Hjortdal VE, Layton JB, Rasmussen BS, et al. Acute kidney injury and long-term risk of cardiovascular events after cardiac surgery: a population-based cohort study. J Cardiothorac Vasc Anesth. 2015;29(3):617–25.PubMedCrossRef Hansen MK, Gammelager H, Jacobsen CJ, Hjortdal VE, Layton JB, Rasmussen BS, et al. Acute kidney injury and long-term risk of cardiovascular events after cardiac surgery: a population-based cohort study. J Cardiothorac Vasc Anesth. 2015;29(3):617–25.PubMedCrossRef
2.
go back to reference Schurle A, Koyner JL. CSA-AKI: incidence, epidemiology, clinical outcomes, and economic impact. J Clin Med. 2021;10(24):5746. Schurle A, Koyner JL. CSA-AKI: incidence, epidemiology, clinical outcomes, and economic impact. J Clin Med. 2021;10(24):5746.
3.
go back to reference Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, Thottakkara P, Efron PA, Moore FA, et al. Cost and mortality associated with postoperative acute kidney injury. Ann Surg. 2015;261(6):1207–14.PubMedCrossRef Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, Thottakkara P, Efron PA, Moore FA, et al. Cost and mortality associated with postoperative acute kidney injury. Ann Surg. 2015;261(6):1207–14.PubMedCrossRef
4.
go back to reference See EJ, Toussaint ND, Bailey M, Johnson DW, Polkinghorne KR, Robbins R, et al. Risk factors for major adverse kidney events in the first year after acute kidney injury. Clin Kidney J. 2021;14(2):556–63.PubMedCrossRef See EJ, Toussaint ND, Bailey M, Johnson DW, Polkinghorne KR, Robbins R, et al. Risk factors for major adverse kidney events in the first year after acute kidney injury. Clin Kidney J. 2021;14(2):556–63.PubMedCrossRef
5.
go back to reference Molina Andujar A, Escudero VJ, Pineiro GJ, Lucas A, Rovira I, Matute P, et al. Impact of cardiac surgery associated acute kidney injury on 1-year major adverse kidney events. Front Nephrol. 2023;3:1059668.PubMedPubMedCentralCrossRef Molina Andujar A, Escudero VJ, Pineiro GJ, Lucas A, Rovira I, Matute P, et al. Impact of cardiac surgery associated acute kidney injury on 1-year major adverse kidney events. Front Nephrol. 2023;3:1059668.PubMedPubMedCentralCrossRef
6.
go back to reference McKown AC, Wang L, Wanderer JP, Ehrenfeld J, Rice TW, Bernard GR, et al. Predicting major adverse kidney events among critically ill adults using the electronic health record. J Med Syst. 2017;41(10):156.PubMedPubMedCentralCrossRef McKown AC, Wang L, Wanderer JP, Ehrenfeld J, Rice TW, Bernard GR, et al. Predicting major adverse kidney events among critically ill adults using the electronic health record. J Med Syst. 2017;41(10):156.PubMedPubMedCentralCrossRef
7.
go back to reference Bhatraju PK, Zelnick LR, Chinchilli VM, Moledina DG, Coca SG, Parikh CR, et al. Association between early recovery of kidney function after acute kidney injury and long-term clinical outcomes. JAMA Netw Open. 2020;3(4): e202682.PubMedPubMedCentralCrossRef Bhatraju PK, Zelnick LR, Chinchilli VM, Moledina DG, Coca SG, Parikh CR, et al. Association between early recovery of kidney function after acute kidney injury and long-term clinical outcomes. JAMA Netw Open. 2020;3(4): e202682.PubMedPubMedCentralCrossRef
8.
go back to reference Brown JR, Kramer RS, Coca SG, Parikh CR. Duration of acute kidney injury impacts long-term survival after cardiac surgery. Ann Thorac Surg. 2010;90(4):1142–8.PubMedCrossRef Brown JR, Kramer RS, Coca SG, Parikh CR. Duration of acute kidney injury impacts long-term survival after cardiac surgery. Ann Thorac Surg. 2010;90(4):1142–8.PubMedCrossRef
9.
go back to reference Xu JR, Zhu JM, Jiang J, Ding XQ, Fang Y, Shen B, et al. Risk factors for long-term mortality and progressive chronic kidney disease associated with acute kidney injury after cardiac surgery. Medicine (Baltimore). 2015;94(45): e2025.PubMedCrossRef Xu JR, Zhu JM, Jiang J, Ding XQ, Fang Y, Shen B, et al. Risk factors for long-term mortality and progressive chronic kidney disease associated with acute kidney injury after cardiac surgery. Medicine (Baltimore). 2015;94(45): e2025.PubMedCrossRef
10.
go back to reference Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.PubMedCrossRef Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.PubMedCrossRef
11.
go back to reference Ryden L, Sartipy U, Evans M, Holzmann MJ. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation. 2014;130(23):2005–11.PubMedCrossRef Ryden L, Sartipy U, Evans M, Holzmann MJ. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation. 2014;130(23):2005–11.PubMedCrossRef
12.
go back to reference Menez S, Moledina DG, Garg AX, Thiessen-Philbrook H, McArthur E, Jia Y, et al. Results from the TRIBE-AKI Study found associations between post-operative blood biomarkers and risk of chronic kidney disease after cardiac surgery. Kidney Int. 2021;99(3):716–24.PubMedCrossRef Menez S, Moledina DG, Garg AX, Thiessen-Philbrook H, McArthur E, Jia Y, et al. Results from the TRIBE-AKI Study found associations between post-operative blood biomarkers and risk of chronic kidney disease after cardiac surgery. Kidney Int. 2021;99(3):716–24.PubMedCrossRef
13.
go back to reference Menez S, Ju W, Menon R, Moledina DG, Thiessen Philbrook H, McArthur E, et al. Urinary EGF and MCP-1 and risk of CKD after cardiac surgery. JCI Insight. 2021;6(11):e147464. Menez S, Ju W, Menon R, Moledina DG, Thiessen Philbrook H, McArthur E, et al. Urinary EGF and MCP-1 and risk of CKD after cardiac surgery. JCI Insight. 2021;6(11):e147464.
14.
go back to reference Hougardy JM, Revercez P, Pourcelet A, Oumeiri BE, Racape J, Le Moine A, et al. Chronic kidney disease as major determinant of the renal risk related to on-pump cardiac surgery: a single-center cohort study. Acta Chir Belg. 2016;116(4):217–24.PubMedCrossRef Hougardy JM, Revercez P, Pourcelet A, Oumeiri BE, Racape J, Le Moine A, et al. Chronic kidney disease as major determinant of the renal risk related to on-pump cardiac surgery: a single-center cohort study. Acta Chir Belg. 2016;116(4):217–24.PubMedCrossRef
15.
go back to reference O'Neal JB, Shaw AD, Billings FT. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016;20(1):187. O'Neal JB, Shaw AD, Billings FT. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016;20(1):187.
16.
go back to reference Machado MN, Nakazone MA, Maia LN. Prognostic value of acute kidney injury after cardiac surgery according to kidney disease: improving global outcomes definition and staging (KDIGO) criteria. PLoS ONE. 2014;9(5): e98028.PubMedPubMedCentralCrossRef Machado MN, Nakazone MA, Maia LN. Prognostic value of acute kidney injury after cardiac surgery according to kidney disease: improving global outcomes definition and staging (KDIGO) criteria. PLoS ONE. 2014;9(5): e98028.PubMedPubMedCentralCrossRef
17.
go back to reference Lysak N, Bihorac A, Hobson C. Mortality and cost of acute and chronic kidney disease after cardiac surgery. Curr Opin Anaesthesiol. 2017;30(1):113–7.PubMedPubMedCentralCrossRef Lysak N, Bihorac A, Hobson C. Mortality and cost of acute and chronic kidney disease after cardiac surgery. Curr Opin Anaesthesiol. 2017;30(1):113–7.PubMedPubMedCentralCrossRef
18.
go back to reference Alshaikh HN, Katz NM, Gani F, Nagarajan N, Canner JK, Kacker S, et al. Financial impact of acute kidney injury after cardiac operations in the United States. Ann Thorac Surg. 2018;105(2):469–75.PubMedCrossRef Alshaikh HN, Katz NM, Gani F, Nagarajan N, Canner JK, Kacker S, et al. Financial impact of acute kidney injury after cardiac operations in the United States. Ann Thorac Surg. 2018;105(2):469–75.PubMedCrossRef
19.
go back to reference Ortega-Loubon C, Fernandez-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E. Cardiac surgery-associated acute kidney injury. Ann Card Anaesth. 2016;19(4):687–98.PubMedPubMedCentralCrossRef Ortega-Loubon C, Fernandez-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E. Cardiac surgery-associated acute kidney injury. Ann Card Anaesth. 2016;19(4):687–98.PubMedPubMedCentralCrossRef
20.
go back to reference Hu J, Chen R, Liu S, Yu X, Zou J, Ding X. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2016;30(1):82–9.PubMedCrossRef Hu J, Chen R, Liu S, Yu X, Zou J, Ding X. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2016;30(1):82–9.PubMedCrossRef
21.
go back to reference Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15(6):1597–605.PubMedCrossRef Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15(6):1597–605.PubMedCrossRef
22.
go back to reference Gaffney AM, Sladen RN. Acute kidney injury in cardiac surgery. Curr Opin Anaesthesiol. 2015;28(1):50–9.PubMedCrossRef Gaffney AM, Sladen RN. Acute kidney injury in cardiac surgery. Curr Opin Anaesthesiol. 2015;28(1):50–9.PubMedCrossRef
23.
go back to reference Brown JR, Baker RA, Shore-Lesserson L, Fox AA, Mongero LB, Lobdell KW, et al. The Society of Thoracic Surgeons/Society of Cardiovascular Anesthesiologists/American Society of Extracorporeal Technology clinical practice guidelines for the prevention of adult cardiac surgery-associated acute kidney injury. Ann Thorac Surg. 2023;115(1):34–42.PubMedCrossRef Brown JR, Baker RA, Shore-Lesserson L, Fox AA, Mongero LB, Lobdell KW, et al. The Society of Thoracic Surgeons/Society of Cardiovascular Anesthesiologists/American Society of Extracorporeal Technology clinical practice guidelines for the prevention of adult cardiac surgery-associated acute kidney injury. Ann Thorac Surg. 2023;115(1):34–42.PubMedCrossRef
24.
go back to reference Mao H, Katz N, Ariyanon W, Blanca-Martos L, Adybelli Z, Giuliani A, et al. Cardiac surgery-associated acute kidney injury. Cardiorenal Med. 2013;3(3):178–99.PubMedPubMedCentralCrossRef Mao H, Katz N, Ariyanon W, Blanca-Martos L, Adybelli Z, Giuliani A, et al. Cardiac surgery-associated acute kidney injury. Cardiorenal Med. 2013;3(3):178–99.PubMedPubMedCentralCrossRef
25.
go back to reference Zarbock A, Weiss R, Albert F, Rutledge K, Kellum JA, Bellomo R, et al. Epidemiology of surgery associated acute kidney injury (EPIS-AKI): a prospective international observational multi-center clinical study. Intensive Care Med. 2023;49(12):1441–55.PubMedPubMedCentralCrossRef Zarbock A, Weiss R, Albert F, Rutledge K, Kellum JA, Bellomo R, et al. Epidemiology of surgery associated acute kidney injury (EPIS-AKI): a prospective international observational multi-center clinical study. Intensive Care Med. 2023;49(12):1441–55.PubMedPubMedCentralCrossRef
26.
go back to reference Vives M, Hernandez A, Parramon F, Estanyol N, Pardina B, Munoz A, et al. Acute kidney injury after cardiac surgery: prevalence, impact and management challenges. Int J Nephrol Renovasc Dis. 2019;12:153–66.PubMedPubMedCentralCrossRef Vives M, Hernandez A, Parramon F, Estanyol N, Pardina B, Munoz A, et al. Acute kidney injury after cardiac surgery: prevalence, impact and management challenges. Int J Nephrol Renovasc Dis. 2019;12:153–66.PubMedPubMedCentralCrossRef
27.
go back to reference Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.PubMedCrossRef Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.PubMedCrossRef
28.
go back to reference Meersch M, Weiss R, Strauss C, Albert F, Booke H, Forni L, et al. Acute kidney disease beyond day 7 after major surgery: a secondary analysis of the EPIS-AKI trial. Intensive Care Med. 2024;50(2):247–57.PubMedPubMedCentralCrossRef Meersch M, Weiss R, Strauss C, Albert F, Booke H, Forni L, et al. Acute kidney disease beyond day 7 after major surgery: a secondary analysis of the EPIS-AKI trial. Intensive Care Med. 2024;50(2):247–57.PubMedPubMedCentralCrossRef
29.
go back to reference Parolari A, Pesce LL, Pacini D, Mazzanti V, Salis S, Sciacovelli C, et al. Risk factors for perioperative acute kidney injury after adult cardiac surgery: role of perioperative management. Ann Thorac Surg. 2012;93(2):584–91.PubMedCrossRef Parolari A, Pesce LL, Pacini D, Mazzanti V, Salis S, Sciacovelli C, et al. Risk factors for perioperative acute kidney injury after adult cardiac surgery: role of perioperative management. Ann Thorac Surg. 2012;93(2):584–91.PubMedCrossRef
30.
go back to reference Li Z, Fan G, Zheng X, Gong X, Chen T, Liu X, et al. Risk factors and clinical significance of acute kidney injury after on-pump or off-pump coronary artery bypass grafting: a propensity score-matched study. Interact Cardiovasc Thorac Surg. 2019;28(6):893–9.PubMedCrossRef Li Z, Fan G, Zheng X, Gong X, Chen T, Liu X, et al. Risk factors and clinical significance of acute kidney injury after on-pump or off-pump coronary artery bypass grafting: a propensity score-matched study. Interact Cardiovasc Thorac Surg. 2019;28(6):893–9.PubMedCrossRef
31.
go back to reference Leballo G, Moutlana HJ, Muteba MK, Chakane PM. Factors associated with acute kidney injury and mortality during cardiac surgery. Cardiovasc J Afr. 2021;32(6):308–13.PubMedPubMedCentralCrossRef Leballo G, Moutlana HJ, Muteba MK, Chakane PM. Factors associated with acute kidney injury and mortality during cardiac surgery. Cardiovasc J Afr. 2021;32(6):308–13.PubMedPubMedCentralCrossRef
32.
go back to reference Zhang D, Teng J, Luo Z, Ding X, Jiang W. Risk factors and prognosis of acute kidney injury after cardiac surgery in patients with chronic kidney disease. Blood Purif. 2023;52(2):166–73.PubMedCrossRef Zhang D, Teng J, Luo Z, Ding X, Jiang W. Risk factors and prognosis of acute kidney injury after cardiac surgery in patients with chronic kidney disease. Blood Purif. 2023;52(2):166–73.PubMedCrossRef
33.
go back to reference Wu VC, Huang TM, Lai CF, Shiao CC, Lin YF, Chu TS, et al. Acute-on-chronic kidney injury at hospital discharge is associated with long-term dialysis and mortality. Kidney Int. 2011;80(11):1222–30.PubMedCrossRef Wu VC, Huang TM, Lai CF, Shiao CC, Lin YF, Chu TS, et al. Acute-on-chronic kidney injury at hospital discharge is associated with long-term dialysis and mortality. Kidney Int. 2011;80(11):1222–30.PubMedCrossRef
34.
go back to reference Casanova AG, Sancho-Martinez SM, Vicente-Vicente L, Ruiz Bueno P, Jorge-Monjas P, Tamayo E, et al. Diagnosis of cardiac surgery-associated acute kidney injury: state of the art and perspectives. J Clin Med. 2022;11(15):4576. Casanova AG, Sancho-Martinez SM, Vicente-Vicente L, Ruiz Bueno P, Jorge-Monjas P, Tamayo E, et al. Diagnosis of cardiac surgery-associated acute kidney injury: state of the art and perspectives. J Clin Med. 2022;11(15):4576.
36.
go back to reference Roy AK, Mc Gorrian C, Treacy C, Kavanaugh E, Brennan A, Mahon NG, et al. A comparison of traditional and novel definitions (RIFLE, AKIN, and KDIGO) of acute kidney injury for the prediction of outcomes in acute decompensated heart failure. Cardiorenal Med. 2013;3(1):26–37.PubMedPubMedCentralCrossRef Roy AK, Mc Gorrian C, Treacy C, Kavanaugh E, Brennan A, Mahon NG, et al. A comparison of traditional and novel definitions (RIFLE, AKIN, and KDIGO) of acute kidney injury for the prediction of outcomes in acute decompensated heart failure. Cardiorenal Med. 2013;3(1):26–37.PubMedPubMedCentralCrossRef
37.
go back to reference Atkinson MA, Ng DK, Warady BA, Furth SL, Flynn JT. The CKiD study: overview and summary of findings related to kidney disease progression. Pediatr Nephrol. 2021;36(3):527–38.PubMedCrossRef Atkinson MA, Ng DK, Warady BA, Furth SL, Flynn JT. The CKiD study: overview and summary of findings related to kidney disease progression. Pediatr Nephrol. 2021;36(3):527–38.PubMedCrossRef
38.
go back to reference Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med. 2021;385(19):1737–49.PubMedPubMedCentralCrossRef Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med. 2021;385(19):1737–49.PubMedPubMedCentralCrossRef
39.
go back to reference Sharma A, Mucino MJ, Ronco C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin Pract. 2014;127(1–4):94–100.PubMedCrossRef Sharma A, Mucino MJ, Ronco C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin Pract. 2014;127(1–4):94–100.PubMedCrossRef
40.
go back to reference Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52.PubMedCrossRef Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Rev Dis Primers. 2021;7(1):52.PubMedCrossRef
41.
go back to reference Gunes-Altan M, Bosch A, Striepe K, Bramlage P, Schiffer M, Schmieder RE, et al. Is GFR decline induced by SGLT2 inhibitor of clinical importance? Cardiovasc Diabetol. 2024;23(1):184.PubMedPubMedCentralCrossRef Gunes-Altan M, Bosch A, Striepe K, Bramlage P, Schiffer M, Schmieder RE, et al. Is GFR decline induced by SGLT2 inhibitor of clinical importance? Cardiovasc Diabetol. 2024;23(1):184.PubMedPubMedCentralCrossRef
42.
go back to reference Ostermann M, Kunst G, Baker E, Weerapolchai K, Lumlertgul N. Cardiac surgery associated AKI prevention strategies and medical treatment for CSA-AKI. J Clin Med. 2021;10(22):5285. Ostermann M, Kunst G, Baker E, Weerapolchai K, Lumlertgul N. Cardiac surgery associated AKI prevention strategies and medical treatment for CSA-AKI. J Clin Med. 2021;10(22):5285.
43.
go back to reference Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, et al. Recommendations on acute kidney injury biomarkers from the Acute Disease Quality Initiative Consensus Conference: a consensus statement. JAMA Netw Open. 2020;3(10): e2019209.PubMedCrossRef Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, et al. Recommendations on acute kidney injury biomarkers from the Acute Disease Quality Initiative Consensus Conference: a consensus statement. JAMA Netw Open. 2020;3(10): e2019209.PubMedCrossRef
44.
go back to reference Kellum JA, Lameire N, Aspelin P, et al. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1–138. Kellum JA, Lameire N, Aspelin P, et al. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1–138.
45.
go back to reference Okusa MD, Davenport A. Reading between the (guide)lines—the KDIGO practice guideline on acute kidney injury in the individual patient. Kidney Int. 2014;85(1):39–48.PubMedCrossRef Okusa MD, Davenport A. Reading between the (guide)lines—the KDIGO practice guideline on acute kidney injury in the individual patient. Kidney Int. 2014;85(1):39–48.PubMedCrossRef
46.
go back to reference Husain-Syed F, Ferrari F, Sharma A, Danesi TH, Bezerra P, Lopez-Giacoman S, et al. Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann Thorac Surg. 2018;105(4):1094–101.PubMedCrossRef Husain-Syed F, Ferrari F, Sharma A, Danesi TH, Bezerra P, Lopez-Giacoman S, et al. Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann Thorac Surg. 2018;105(4):1094–101.PubMedCrossRef
47.
go back to reference Cottam D, Azzopardi G, Forni LG. Biomarkers for early detection and predicting outcomes in acute kidney injury. Br J Hosp Med (Lond). 2022;83(8):1–11.PubMedCrossRef Cottam D, Azzopardi G, Forni LG. Biomarkers for early detection and predicting outcomes in acute kidney injury. Br J Hosp Med (Lond). 2022;83(8):1–11.PubMedCrossRef
48.
go back to reference Macedo E, Bouchard J, Soroko SH, Chertow GM, Himmelfarb J, Ikizler TA, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14(3):R82.PubMedPubMedCentralCrossRef Macedo E, Bouchard J, Soroko SH, Chertow GM, Himmelfarb J, Ikizler TA, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14(3):R82.PubMedPubMedCentralCrossRef
49.
go back to reference Guzzi LM, Bergler T, Binnall B, Engelman DT, Forni L, Germain MJ, et al. Clinical use of [TIMP-2]*[IGFBP7] biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel. Crit Care. 2019;23(1):225.PubMedPubMedCentralCrossRef Guzzi LM, Bergler T, Binnall B, Engelman DT, Forni L, Germain MJ, et al. Clinical use of [TIMP-2]*[IGFBP7] biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel. Crit Care. 2019;23(1):225.PubMedPubMedCentralCrossRef
50.
go back to reference Gocze I, Jauch D, Gotz M, Kennedy P, Jung B, Zeman F, et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study. Ann Surg. 2018;267(6):1013–20.PubMedCrossRef Gocze I, Jauch D, Gotz M, Kennedy P, Jung B, Zeman F, et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study. Ann Surg. 2018;267(6):1013–20.PubMedCrossRef
51.
go back to reference Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.PubMedPubMedCentralCrossRef Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.PubMedPubMedCentralCrossRef
52.
go back to reference Zarbock A, Kullmar M, Ostermann M, Lucchese G, Baig K, Cennamo A, et al. Prevention of cardiac surgery-associated acute kidney injury by implementing the KDIGO guidelines in high-risk patients identified by biomarkers: the PrevAKI-multicenter randomized controlled trial. Anesth Analg. 2021;133(2):292–302.PubMed Zarbock A, Kullmar M, Ostermann M, Lucchese G, Baig K, Cennamo A, et al. Prevention of cardiac surgery-associated acute kidney injury by implementing the KDIGO guidelines in high-risk patients identified by biomarkers: the PrevAKI-multicenter randomized controlled trial. Anesth Analg. 2021;133(2):292–302.PubMed
53.
go back to reference Goldstein SL, Akcan-Arikan A, Afonso N, Askenazi DJ, Basalely AM, Basu RK, et al. Derivation and validation of an optimal neutrophil gelatinase-associated lipocalin cutoff to predict stage 2/3 acute kidney injury (AKI) in critically ill children. Kidney Int Rep. 2024;9(8):2443–52.PubMedPubMedCentralCrossRef Goldstein SL, Akcan-Arikan A, Afonso N, Askenazi DJ, Basalely AM, Basu RK, et al. Derivation and validation of an optimal neutrophil gelatinase-associated lipocalin cutoff to predict stage 2/3 acute kidney injury (AKI) in critically ill children. Kidney Int Rep. 2024;9(8):2443–52.PubMedPubMedCentralCrossRef
54.
go back to reference Volovelsky O, Terrell TC, Swain H, Bennett MR, Cooper DS, Goldstein SL. Pre-operative level of FGF23 predicts severe acute kidney injury after heart surgery in children. Pediatr Nephrol. 2018;33(12):2363–70.PubMedCrossRef Volovelsky O, Terrell TC, Swain H, Bennett MR, Cooper DS, Goldstein SL. Pre-operative level of FGF23 predicts severe acute kidney injury after heart surgery in children. Pediatr Nephrol. 2018;33(12):2363–70.PubMedCrossRef
55.
go back to reference Birnie K, Verheyden V, Pagano D, Bhabra M, Tilling K, Sterne JA, et al. Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit Care. 2014;18(6):606.PubMedPubMedCentralCrossRef Birnie K, Verheyden V, Pagano D, Bhabra M, Tilling K, Sterne JA, et al. Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit Care. 2014;18(6):606.PubMedPubMedCentralCrossRef
56.
go back to reference Vives M, Candela A, Monedero P, Tamayo E, Hernandez A, Wijeysundera DN, et al. Improving the performance of the Cleveland Clinic Score for predicting acute kidney injury after cardiac surgery: a prospective multicenter cohort study. Minerva Anestesiol. 2024;90(4):245–53.PubMedCrossRef Vives M, Candela A, Monedero P, Tamayo E, Hernandez A, Wijeysundera DN, et al. Improving the performance of the Cleveland Clinic Score for predicting acute kidney injury after cardiac surgery: a prospective multicenter cohort study. Minerva Anestesiol. 2024;90(4):245–53.PubMedCrossRef
57.
go back to reference Shahian DM, Jacobs JP, Badhwar V, Kurlansky PA, Furnary AP, Cleveland JC Jr, et al. The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 1-background, design considerations, and model development. Ann Thorac Surg. 2018;105(5):1411–8.PubMedCrossRef Shahian DM, Jacobs JP, Badhwar V, Kurlansky PA, Furnary AP, Cleveland JC Jr, et al. The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 1-background, design considerations, and model development. Ann Thorac Surg. 2018;105(5):1411–8.PubMedCrossRef
58.
go back to reference O’Brien SM, Feng L, He X, Xian Y, Jacobs JP, Badhwar V, et al. The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 2-statistical methods and results. Ann Thorac Surg. 2018;105(5):1419–28.PubMed O’Brien SM, Feng L, He X, Xian Y, Jacobs JP, Badhwar V, et al. The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 2-statistical methods and results. Ann Thorac Surg. 2018;105(5):1419–28.PubMed
59.
go back to reference Basu RK, Kaddourah A, Goldstein SL, Investigators AS. Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child Adolesc Health. 2018;2(2):112–20.PubMedPubMedCentralCrossRef Basu RK, Kaddourah A, Goldstein SL, Investigators AS. Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child Adolesc Health. 2018;2(2):112–20.PubMedPubMedCentralCrossRef
60.
go back to reference Goldstein SL, Krallman KA, Roy JP, Collins M, Chima RS, Basu RK, et al. Real-time acute kidney injury risk stratification-biomarker directed fluid management improves outcomes in critically ill children and young adults. Kidney Int Rep. 2023;8(12):2690–700.PubMedPubMedCentralCrossRef Goldstein SL, Krallman KA, Roy JP, Collins M, Chima RS, Basu RK, et al. Real-time acute kidney injury risk stratification-biomarker directed fluid management improves outcomes in critically ill children and young adults. Kidney Int Rep. 2023;8(12):2690–700.PubMedPubMedCentralCrossRef
61.
go back to reference Yu Y, Li C, Zhu S, Jin L, Hu Y, Ling X, et al. Diagnosis, pathophysiology and preventive strategies for cardiac surgery-associated acute kidney injury: a narrative review. Eur J Med Res. 2023;28(1):45.PubMedPubMedCentralCrossRef Yu Y, Li C, Zhu S, Jin L, Hu Y, Ling X, et al. Diagnosis, pathophysiology and preventive strategies for cardiac surgery-associated acute kidney injury: a narrative review. Eur J Med Res. 2023;28(1):45.PubMedPubMedCentralCrossRef
62.
go back to reference Lannemyr L, Bragadottir G, Krumbholz V, Redfors B, Sellgren J, Ricksten S-E. Effects of cardiopulmonary bypass on renal perfusion, filtration, and oxygenation in patients undergoing cardiac surgery. Anesthesiology. 2017;126(2):205–13.PubMedCrossRef Lannemyr L, Bragadottir G, Krumbholz V, Redfors B, Sellgren J, Ricksten S-E. Effects of cardiopulmonary bypass on renal perfusion, filtration, and oxygenation in patients undergoing cardiac surgery. Anesthesiology. 2017;126(2):205–13.PubMedCrossRef
63.
go back to reference Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.PubMedCrossRef Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.PubMedCrossRef
64.
go back to reference Danobeitia JS, Djamali A, Fernandez LA. The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis. Fibrogenesis Tissue Repair. 2014;7:16.PubMedPubMedCentralCrossRef Danobeitia JS, Djamali A, Fernandez LA. The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis. Fibrogenesis Tissue Repair. 2014;7:16.PubMedPubMedCentralCrossRef
66.
go back to reference Rabb H, Griffin MD, McKay DB, Swaminathan S, Pickkers P, Rosner MH, et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol. 2016;27(2):371–9.PubMedCrossRef Rabb H, Griffin MD, McKay DB, Swaminathan S, Pickkers P, Rosner MH, et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J Am Soc Nephrol. 2016;27(2):371–9.PubMedCrossRef
67.
go back to reference Rosner MH, Okusa MD. Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol. 2006;1(1):19–32.PubMedCrossRef Rosner MH, Okusa MD. Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol. 2006;1(1):19–32.PubMedCrossRef
68.
go back to reference Billings FT, Ball SK, Roberts LJ 2nd, Pretorius M. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med. 2011;50(11):1480–7.PubMedPubMedCentralCrossRef Billings FT, Ball SK, Roberts LJ 2nd, Pretorius M. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med. 2011;50(11):1480–7.PubMedPubMedCentralCrossRef
69.
go back to reference Bhirowo YP, Raksawardana YK, Setianto BY, Sudadi S, Tandean TN, Zaharo AF, et al. Hemolysis and cardiopulmonary bypass: meta-analysis and systematic review of contributing factors. J Cardiothorac Surg. 2023;18(1):291.PubMedPubMedCentralCrossRef Bhirowo YP, Raksawardana YK, Setianto BY, Sudadi S, Tandean TN, Zaharo AF, et al. Hemolysis and cardiopulmonary bypass: meta-analysis and systematic review of contributing factors. J Cardiothorac Surg. 2023;18(1):291.PubMedPubMedCentralCrossRef
70.
go back to reference Kumar AB, Suneja M. Cardiopulmonary bypass-associated acute kidney injury. Anesthesiology. 2011;114(4):964–70.PubMedCrossRef Kumar AB, Suneja M. Cardiopulmonary bypass-associated acute kidney injury. Anesthesiology. 2011;114(4):964–70.PubMedCrossRef
71.
go back to reference Milne B, Gilbey T, De Somer F, Kunst G. Adverse renal effects associated with cardiopulmonary bypass. Perfusion. 2024;39(3):452–68.PubMedCrossRef Milne B, Gilbey T, De Somer F, Kunst G. Adverse renal effects associated with cardiopulmonary bypass. Perfusion. 2024;39(3):452–68.PubMedCrossRef
72.
go back to reference Kanbay M, Copur S, Mizrak B, Ortiz A, Soler MJ. Intravenous fluid therapy in accordance with kidney injury risk: when to prescribe what volume of which solution. Clin Kidney J. 2023;16(4):684–92.PubMedCrossRef Kanbay M, Copur S, Mizrak B, Ortiz A, Soler MJ. Intravenous fluid therapy in accordance with kidney injury risk: when to prescribe what volume of which solution. Clin Kidney J. 2023;16(4):684–92.PubMedCrossRef
73.
go back to reference Salahuddin N, Sammani M, Hamdan A, Joseph M, Al-Nemary Y, Alquaiz R, et al. Fluid overload is an independent risk factor for acute kidney injury in critically Ill patients: results of a cohort study. BMC Nephrol. 2017;18(1):45.PubMedPubMedCentralCrossRef Salahuddin N, Sammani M, Hamdan A, Joseph M, Al-Nemary Y, Alquaiz R, et al. Fluid overload is an independent risk factor for acute kidney injury in critically Ill patients: results of a cohort study. BMC Nephrol. 2017;18(1):45.PubMedPubMedCentralCrossRef
74.
go back to reference Lamy A, Devereaux PJ, Prabhakaran D, Taggart DP, Hu S, Paolasso E, et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med. 2012;366(16):1489–97.PubMedCrossRef Lamy A, Devereaux PJ, Prabhakaran D, Taggart DP, Hu S, Paolasso E, et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med. 2012;366(16):1489–97.PubMedCrossRef
75.
go back to reference Cheungpasitporn W, Thongprayoon C, Kittanamongkolchai W, Srivali N, O’Corragain OA, Edmonds PJ, et al. Comparison of renal outcomes in off-pump versus on-pump coronary artery bypass grafting: a systematic review and meta-analysis of randomized controlled trials. Nephrology (Carlton). 2015;20(10):727–35.PubMedCrossRef Cheungpasitporn W, Thongprayoon C, Kittanamongkolchai W, Srivali N, O’Corragain OA, Edmonds PJ, et al. Comparison of renal outcomes in off-pump versus on-pump coronary artery bypass grafting: a systematic review and meta-analysis of randomized controlled trials. Nephrology (Carlton). 2015;20(10):727–35.PubMedCrossRef
76.
go back to reference Puskas JD, Martin J, Cheng DC, Benussi S, Bonatti JO, Diegeler A, et al. ISMICS consensus conference and statements of randomized controlled trials of off-pump versus conventional coronary artery bypass surgery. Innovations (Phila). 2015;10(4):219–29.PubMedCrossRef Puskas JD, Martin J, Cheng DC, Benussi S, Bonatti JO, Diegeler A, et al. ISMICS consensus conference and statements of randomized controlled trials of off-pump versus conventional coronary artery bypass surgery. Innovations (Phila). 2015;10(4):219–29.PubMedCrossRef
77.
go back to reference Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I—molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.PubMedPubMedCentralCrossRef Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I—molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.PubMedPubMedCentralCrossRef
78.
80.
go back to reference Merle NS, Boudhabhay I, Leon J, Fremeaux-Bacchi V, Roumenina LT. Complement activation during intravascular hemolysis: implication for sickle cell disease and hemolytic transfusion reactions. Transfus Clin Biol. 2019;26(2):116–24.PubMedCrossRef Merle NS, Boudhabhay I, Leon J, Fremeaux-Bacchi V, Roumenina LT. Complement activation during intravascular hemolysis: implication for sickle cell disease and hemolytic transfusion reactions. Transfus Clin Biol. 2019;26(2):116–24.PubMedCrossRef
81.
82.
go back to reference Thurman JM, Ljubanovic D, Edelstein CL, Gilkeson GS, Holers VM. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J Immunol. 2003;170(3):1517–23.PubMedCrossRef Thurman JM, Ljubanovic D, Edelstein CL, Gilkeson GS, Holers VM. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J Immunol. 2003;170(3):1517–23.PubMedCrossRef
83.
go back to reference Peng Q, Li K, Smyth LA, Xing G, Wang N, Meader L, et al. C3a and C5a promote renal ischemia-reperfusion injury. J Am Soc Nephrol. 2012;23(9):1474–85.PubMedPubMedCentralCrossRef Peng Q, Li K, Smyth LA, Xing G, Wang N, Meader L, et al. C3a and C5a promote renal ischemia-reperfusion injury. J Am Soc Nephrol. 2012;23(9):1474–85.PubMedPubMedCentralCrossRef
84.
go back to reference Kefalogianni R, Kamani F, Gaspar M, Aw TC, Donovan J, Laffan M, et al. Complement activation during cardiopulmonary bypass and association with clinical outcomes. EJHaem. 2022;3(1):86–96.PubMedPubMedCentralCrossRef Kefalogianni R, Kamani F, Gaspar M, Aw TC, Donovan J, Laffan M, et al. Complement activation during cardiopulmonary bypass and association with clinical outcomes. EJHaem. 2022;3(1):86–96.PubMedPubMedCentralCrossRef
85.
go back to reference Thurman JM, Lucia MS, Ljubanovic D, Holers VM. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int. 2005;67(2):524–30.PubMedCrossRef Thurman JM, Lucia MS, Ljubanovic D, Holers VM. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int. 2005;67(2):524–30.PubMedCrossRef
86.
go back to reference Stenson EK, Kendrick J, Dixon B, Thurman JM. The complement system in pediatric acute kidney injury. Pediatr Nephrol. 2023;38(5):1411–25.PubMedCrossRef Stenson EK, Kendrick J, Dixon B, Thurman JM. The complement system in pediatric acute kidney injury. Pediatr Nephrol. 2023;38(5):1411–25.PubMedCrossRef
87.
go back to reference Sun H, Xie Q, Peng Z. Does fenoldopam protect kidney in cardiac surgery? A systemic review and meta-analysis with trial sequential analysis. Shock. 2019;52(3):326–33.PubMedCrossRef Sun H, Xie Q, Peng Z. Does fenoldopam protect kidney in cardiac surgery? A systemic review and meta-analysis with trial sequential analysis. Shock. 2019;52(3):326–33.PubMedCrossRef
88.
go back to reference Mehta RH, Leimberger JD, van Diepen S, Meza J, Wang A, Jankowich R, et al. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med. 2017;376(21):2032–42.PubMedCrossRef Mehta RH, Leimberger JD, van Diepen S, Meza J, Wang A, Jankowich R, et al. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med. 2017;376(21):2032–42.PubMedCrossRef
89.
go back to reference Wang B, He X, Gong Y, Cheng B. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery: an update meta-analysis and trial sequential analysis. Biomed Res Int. 2018;2018:7563083.PubMedPubMedCentral Wang B, He X, Gong Y, Cheng B. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery: an update meta-analysis and trial sequential analysis. Biomed Res Int. 2018;2018:7563083.PubMedPubMedCentral
90.
go back to reference Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F, et al. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376(21):2021–31.PubMedCrossRef Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F, et al. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376(21):2021–31.PubMedCrossRef
91.
go back to reference Barba-Navarro R, Tapia-Silva M, Garza-Garcia C, Lopez-Giacoman S, Melgoza-Toral I, Vazquez-Rangel A, et al. The effect of spironolactone on acute kidney injury after cardiac surgery: a randomized, placebo-controlled trial. Am J Kidney Dis. 2017;69(2):192–9.PubMedCrossRef Barba-Navarro R, Tapia-Silva M, Garza-Garcia C, Lopez-Giacoman S, Melgoza-Toral I, Vazquez-Rangel A, et al. The effect of spironolactone on acute kidney injury after cardiac surgery: a randomized, placebo-controlled trial. Am J Kidney Dis. 2017;69(2):192–9.PubMedCrossRef
92.
go back to reference Tamargo C, Hanouneh M, Cervantes CE. Treatment of acute kidney injury: a review of current approaches and emerging innovations. J Clin Med. 2024;13(9):2455. Tamargo C, Hanouneh M, Cervantes CE. Treatment of acute kidney injury: a review of current approaches and emerging innovations. J Clin Med. 2024;13(9):2455.
93.
go back to reference Van den Eynde J, Cloet N, Van Lerberghe R, Sa M, Vlasselaers D, Toelen J, et al. Strategies to prevent acute kidney injury after pediatric cardiac surgery: a network meta-analysis. Clin J Am Soc Nephrol. 2021;16(10):1480–90.PubMedPubMedCentralCrossRef Van den Eynde J, Cloet N, Van Lerberghe R, Sa M, Vlasselaers D, Toelen J, et al. Strategies to prevent acute kidney injury after pediatric cardiac surgery: a network meta-analysis. Clin J Am Soc Nephrol. 2021;16(10):1480–90.PubMedPubMedCentralCrossRef
94.
go back to reference Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84.PubMedCrossRef Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84.PubMedCrossRef
95.
go back to reference Kullmar M, Weiss R, Ostermann M, Campos S, Grau Novellas N, Thomson G, et al. A multinational observational study exploring adherence with the kidney disease: improving global outcomes recommendations for prevention of acute kidney injury after cardiac surgery. Anesth Analg. 2020;130(4):910–6.PubMedCrossRef Kullmar M, Weiss R, Ostermann M, Campos S, Grau Novellas N, Thomson G, et al. A multinational observational study exploring adherence with the kidney disease: improving global outcomes recommendations for prevention of acute kidney injury after cardiac surgery. Anesth Analg. 2020;130(4):910–6.PubMedCrossRef
96.
go back to reference Brown JK, Shaw AD, Mythen MG, Guzzi L, Reddy VS, Crisafi C, et al. Adult cardiac surgery-associated acute kidney injury: joint consensus report. J Cardiothorac Vasc Anesth. 2023;37(9):1579–90.PubMedCrossRef Brown JK, Shaw AD, Mythen MG, Guzzi L, Reddy VS, Crisafi C, et al. Adult cardiac surgery-associated acute kidney injury: joint consensus report. J Cardiothorac Vasc Anesth. 2023;37(9):1579–90.PubMedCrossRef
97.
go back to reference Rizo-Topete LM, Rosner MH, Ronco C. Acute kidney injury risk assessment and the nephrology rapid response team. Blood Purif. 2017;43(1–3):82–8.PubMedCrossRef Rizo-Topete LM, Rosner MH, Ronco C. Acute kidney injury risk assessment and the nephrology rapid response team. Blood Purif. 2017;43(1–3):82–8.PubMedCrossRef
98.
go back to reference Ranucci M, Johnson I, Willcox T, Baker RA, Boer C, Baumann A, et al. Goal-directed perfusion to reduce acute kidney injury: A randomized trial. J Thorac Cardiovasc Surg. 2018;156(5):1918-27 e2.PubMedCrossRef Ranucci M, Johnson I, Willcox T, Baker RA, Boer C, Baumann A, et al. Goal-directed perfusion to reduce acute kidney injury: A randomized trial. J Thorac Cardiovasc Surg. 2018;156(5):1918-27 e2.PubMedCrossRef
99.
go back to reference Hariri G, Collet L, Duarte L, Martin GL, Resche-Rigon M, Lebreton G, et al. Prevention of cardiac surgery-associated acute kidney injury: a systematic review and meta-analysis of non-pharmacological interventions. Crit Care. 2023;27(1):354.PubMedPubMedCentralCrossRef Hariri G, Collet L, Duarte L, Martin GL, Resche-Rigon M, Lebreton G, et al. Prevention of cardiac surgery-associated acute kidney injury: a systematic review and meta-analysis of non-pharmacological interventions. Crit Care. 2023;27(1):354.PubMedPubMedCentralCrossRef
100.
go back to reference Wever KE, Menting TP, Rovers M, van der Vliet JA, Rongen GA, Masereeuw R, et al. Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PLoS ONE. 2012;7(2): e32296.PubMedPubMedCentralCrossRef Wever KE, Menting TP, Rovers M, van der Vliet JA, Rongen GA, Masereeuw R, et al. Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PLoS ONE. 2012;7(2): e32296.PubMedPubMedCentralCrossRef
101.
go back to reference Zhou C, Bulluck H, Fang N, Li L, Hausenloy DJ. Age and surgical complexity impact on renoprotection by remote ischemic preconditioning during adult cardiac surgery: a meta analysis. Sci Rep. 2017;7(1):215.PubMedPubMedCentralCrossRef Zhou C, Bulluck H, Fang N, Li L, Hausenloy DJ. Age and surgical complexity impact on renoprotection by remote ischemic preconditioning during adult cardiac surgery: a meta analysis. Sci Rep. 2017;7(1):215.PubMedPubMedCentralCrossRef
102.
go back to reference Kottenberg E, Thielmann M, Bergmann L, Heine T, Jakob H, Heusch G, et al. Protection by remote ischemic preconditioning during coronary artery bypass graft surgery with isoflurane but not propofol—a clinical trial. Acta Anaesthesiol Scand. 2012;56(1):30–8.PubMedCrossRef Kottenberg E, Thielmann M, Bergmann L, Heine T, Jakob H, Heusch G, et al. Protection by remote ischemic preconditioning during coronary artery bypass graft surgery with isoflurane but not propofol—a clinical trial. Acta Anaesthesiol Scand. 2012;56(1):30–8.PubMedCrossRef
103.
go back to reference Zarbock A, Schmidt C, Van Aken H, Wempe C, Martens S, Zahn PK, et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA. 2015;313(21):2133–41.PubMedCrossRef Zarbock A, Schmidt C, Van Aken H, Wempe C, Martens S, Zahn PK, et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA. 2015;313(21):2133–41.PubMedCrossRef
104.
go back to reference Weiss R, Meersch M, Wempe C, von Groote T, Agervald T, Zarbock A. Recombinant alpha-1-microglobulin (RMC-035) to prevent acute kidney injury in cardiac surgery patients: phase 1b evaluation of safety and pharmacokinetics. Kidney Int Rep. 2023;8(5):980–8.PubMedPubMedCentralCrossRef Weiss R, Meersch M, Wempe C, von Groote T, Agervald T, Zarbock A. Recombinant alpha-1-microglobulin (RMC-035) to prevent acute kidney injury in cardiac surgery patients: phase 1b evaluation of safety and pharmacokinetics. Kidney Int Rep. 2023;8(5):980–8.PubMedPubMedCentralCrossRef
105.
go back to reference Tasanarong A, Duangchana S, Sumransurp S, Homvises B, Satdhabudha O. Prophylaxis with erythropoietin versus placebo reduces acute kidney injury and neutrophil gelatinase-associated lipocalin in patients undergoing cardiac surgery: a randomized, double-blind controlled trial. BMC Nephrol. 2013;14:136.PubMedPubMedCentralCrossRef Tasanarong A, Duangchana S, Sumransurp S, Homvises B, Satdhabudha O. Prophylaxis with erythropoietin versus placebo reduces acute kidney injury and neutrophil gelatinase-associated lipocalin in patients undergoing cardiac surgery: a randomized, double-blind controlled trial. BMC Nephrol. 2013;14:136.PubMedPubMedCentralCrossRef
106.
go back to reference Tie HT, Luo MZ, Lin D, Zhang M, Wan JY, Wu QC. Erythropoietin administration for prevention of cardiac surgery-associated acute kidney injury: a meta-analysis of randomized controlled trials. Eur J Cardiothorac Surg. 2015;48(1):32–9.PubMedCrossRef Tie HT, Luo MZ, Lin D, Zhang M, Wan JY, Wu QC. Erythropoietin administration for prevention of cardiac surgery-associated acute kidney injury: a meta-analysis of randomized controlled trials. Eur J Cardiothorac Surg. 2015;48(1):32–9.PubMedCrossRef
107.
go back to reference Penny-Dimri JC, Cochrane AD, Perry LA, Smith JA. characterising the role of perioperative erythropoietin for preventing acute kidney injury after cardiac surgery: systematic review and meta-analysis. Heart Lung Circ. 2016;25(11):1067–76.PubMedCrossRef Penny-Dimri JC, Cochrane AD, Perry LA, Smith JA. characterising the role of perioperative erythropoietin for preventing acute kidney injury after cardiac surgery: systematic review and meta-analysis. Heart Lung Circ. 2016;25(11):1067–76.PubMedCrossRef
108.
go back to reference Sharif S, Chen B, Brewster P, Chen T, Dworkin L, Gong R. Rationale and design of assessing the effectiveness of short-term low-dose lithium therapy in averting cardiac surgery-associated acute kidney injury: a randomized, double blinded, placebo controlled pilot trial. Front Med (Lausanne). 2021;8: 639402.PubMedPubMedCentralCrossRef Sharif S, Chen B, Brewster P, Chen T, Dworkin L, Gong R. Rationale and design of assessing the effectiveness of short-term low-dose lithium therapy in averting cardiac surgery-associated acute kidney injury: a randomized, double blinded, placebo controlled pilot trial. Front Med (Lausanne). 2021;8: 639402.PubMedPubMedCentralCrossRef
109.
go back to reference Pickkers P, Angus DC, Bass K, Bellomo R, van den Berg E, Bernholz J, et al. Phase-3 trial of recombinant human alkaline phosphatase for patients with sepsis-associated acute kidney injury (REVIVAL). Intensive Care Med. 2024;50(1):68–78.PubMedPubMedCentralCrossRef Pickkers P, Angus DC, Bass K, Bellomo R, van den Berg E, Bernholz J, et al. Phase-3 trial of recombinant human alkaline phosphatase for patients with sepsis-associated acute kidney injury (REVIVAL). Intensive Care Med. 2024;50(1):68–78.PubMedPubMedCentralCrossRef
110.
go back to reference Landoni G, Monaco F, Ti LK, Baiardo Redaelli M, Bradic N, Comis M, et al. A randomized trial of intravenous amino acids for kidney protection. N Engl J Med. 2024;391(8):687–98.PubMedCrossRef Landoni G, Monaco F, Ti LK, Baiardo Redaelli M, Bradic N, Comis M, et al. A randomized trial of intravenous amino acids for kidney protection. N Engl J Med. 2024;391(8):687–98.PubMedCrossRef
111.
go back to reference Navaei AH, Shekerdemian LS, Mohammad MA, Coss-Bu JA, Bastero P, Ettinger NA, et al. Derangement of arginine and related amino acids in children undergoing surgery for congenital heart disease with cardiopulmonary bypass. Crit Care Explor. 2020;2(7): e0150.PubMedPubMedCentralCrossRef Navaei AH, Shekerdemian LS, Mohammad MA, Coss-Bu JA, Bastero P, Ettinger NA, et al. Derangement of arginine and related amino acids in children undergoing surgery for congenital heart disease with cardiopulmonary bypass. Crit Care Explor. 2020;2(7): e0150.PubMedPubMedCentralCrossRef
112.
go back to reference Roberts DM, Sevastos J, Carland JE, Stocker SL, Lea-Henry TN. Clinical pharmacokinetics in kidney disease: application to rational design of dosing regimens. Clin J Am Soc Nephrol. 2018;13(8):1254–63.PubMedPubMedCentralCrossRef Roberts DM, Sevastos J, Carland JE, Stocker SL, Lea-Henry TN. Clinical pharmacokinetics in kidney disease: application to rational design of dosing regimens. Clin J Am Soc Nephrol. 2018;13(8):1254–63.PubMedPubMedCentralCrossRef
113.
go back to reference Smith PK, Carrier M, Chen JC, Haverich A, Levy JH, Menasche P, et al. Effect of pexelizumab in coronary artery bypass graft surgery with extended aortic cross-clamp time. Ann Thorac Surg. 2006;82(3):781–8 (discussion 8–9).PubMedCrossRef Smith PK, Carrier M, Chen JC, Haverich A, Levy JH, Menasche P, et al. Effect of pexelizumab in coronary artery bypass graft surgery with extended aortic cross-clamp time. Ann Thorac Surg. 2006;82(3):781–8 (discussion 8–9).PubMedCrossRef
114.
go back to reference Haverich A, Shernan SK, Levy JH, Chen JC, Carrier M, Taylor KM, et al. Pexelizumab reduces death and myocardial infarction in higher risk cardiac surgical patients. Ann Thorac Surg. 2006;82(2):486–92.PubMedCrossRef Haverich A, Shernan SK, Levy JH, Chen JC, Carrier M, Taylor KM, et al. Pexelizumab reduces death and myocardial infarction in higher risk cardiac surgical patients. Ann Thorac Surg. 2006;82(2):486–92.PubMedCrossRef
115.
go back to reference Smith PK, Shernan SK, Chen JC, Carrier M, Verrier ED, Adams PX, et al. Effects of C5 complement inhibitor pexelizumab on outcome in high-risk coronary artery bypass grafting: combined results from the PRIMO-CABG I and II trials. J Thorac Cardiovasc Surg. 2011;142(1):89–98.PubMedCrossRef Smith PK, Shernan SK, Chen JC, Carrier M, Verrier ED, Adams PX, et al. Effects of C5 complement inhibitor pexelizumab on outcome in high-risk coronary artery bypass grafting: combined results from the PRIMO-CABG I and II trials. J Thorac Cardiovasc Surg. 2011;142(1):89–98.PubMedCrossRef
116.
go back to reference Kulasekararaj AG, Hill A, Rottinghaus ST, Langemeijer S, Wells R, Gonzalez-Fernandez FA, et al. Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor-experienced adult patients with PNH: the 302 study. Blood. 2019;133(6):540–9.PubMedPubMedCentralCrossRef Kulasekararaj AG, Hill A, Rottinghaus ST, Langemeijer S, Wells R, Gonzalez-Fernandez FA, et al. Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor-experienced adult patients with PNH: the 302 study. Blood. 2019;133(6):540–9.PubMedPubMedCentralCrossRef
117.
go back to reference Lee JW, Sicre de Fontbrune F, Wong Lee Lee L, Pessoa V, Gualandro S, Fureder W, et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood. 2019;133(6):530–9. Lee JW, Sicre de Fontbrune F, Wong Lee Lee L, Pessoa V, Gualandro S, Fureder W, et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood. 2019;133(6):530–9.
118.
go back to reference Nishimura JI, Kawaguchi T, Ito S, Murai H, Shimono A, Matsuda T, et al. Real-world safety profile of eculizumab in patients with paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, or generalized myasthenia gravis: an integrated analysis of post-marketing surveillance in Japan. Int J Hematol. 2023;118(4):419–31.PubMedCrossRef Nishimura JI, Kawaguchi T, Ito S, Murai H, Shimono A, Matsuda T, et al. Real-world safety profile of eculizumab in patients with paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, or generalized myasthenia gravis: an integrated analysis of post-marketing surveillance in Japan. Int J Hematol. 2023;118(4):419–31.PubMedCrossRef
119.
go back to reference Hillmen P, Young NS, Schubert J, Brodsky RA, Socie G, Muus P, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006;355(12):1233–43.PubMedCrossRef Hillmen P, Young NS, Schubert J, Brodsky RA, Socie G, Muus P, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006;355(12):1233–43.PubMedCrossRef
120.
go back to reference Rondeau E, Scully M, Ariceta G, Barbour T, Cataland S, Heyne N, et al. The long-acting C5 inhibitor, ravulizumab, is effective and safe in adult patients with atypical hemolytic uremic syndrome naive to complement inhibitor treatment. Kidney Int. 2020;97(6):1287–96.PubMedCrossRef Rondeau E, Scully M, Ariceta G, Barbour T, Cataland S, Heyne N, et al. The long-acting C5 inhibitor, ravulizumab, is effective and safe in adult patients with atypical hemolytic uremic syndrome naive to complement inhibitor treatment. Kidney Int. 2020;97(6):1287–96.PubMedCrossRef
121.
go back to reference Kulasekararaj AG, Griffin M, Langemeijer S, Usuki K, Kulagin A, Ogawa M, et al. Long-term safety and efficacy of ravulizumab in patients with paroxysmal nocturnal hemoglobinuria: 2-year results from two pivotal phase 3 studies. Eur J Haematol. 2022;109(3):205–14.PubMedPubMedCentralCrossRef Kulasekararaj AG, Griffin M, Langemeijer S, Usuki K, Kulagin A, Ogawa M, et al. Long-term safety and efficacy of ravulizumab in patients with paroxysmal nocturnal hemoglobinuria: 2-year results from two pivotal phase 3 studies. Eur J Haematol. 2022;109(3):205–14.PubMedPubMedCentralCrossRef
122.
go back to reference Kulasekararaj A, Schrezenmeier H, Usuki K, Kulagin A, Gualandro SF, Notaro R, et al. Ravulizumab provides durable control of intravascular hemolysis and improves survival in patients with paroxysmal nocturnal hemoglobinuria: long-term follow-up of study 301 and comparisons with patients of the international PNH registry. Blood. 2023;142(Suppl 1):2714.CrossRef Kulasekararaj A, Schrezenmeier H, Usuki K, Kulagin A, Gualandro SF, Notaro R, et al. Ravulizumab provides durable control of intravascular hemolysis and improves survival in patients with paroxysmal nocturnal hemoglobinuria: long-term follow-up of study 301 and comparisons with patients of the international PNH registry. Blood. 2023;142(Suppl 1):2714.CrossRef
123.
go back to reference Fam S, Werneburg B, Pandya S, et al. Clinical and real-world pharmacovigilance data of meningococcal infections in eculizumab- or ravulizumab-treated patients. J Neurol Sci. 2023;455: 121883.CrossRef Fam S, Werneburg B, Pandya S, et al. Clinical and real-world pharmacovigilance data of meningococcal infections in eculizumab- or ravulizumab-treated patients. J Neurol Sci. 2023;455: 121883.CrossRef
124.
go back to reference McCullough JW, Renner B, Thurman JM. The role of the complement system in acute kidney injury. Semin Nephrol. 2013;33(6):543–56.PubMedCrossRef McCullough JW, Renner B, Thurman JM. The role of the complement system in acute kidney injury. Semin Nephrol. 2013;33(6):543–56.PubMedCrossRef
125.
go back to reference von Groote T, Meersch M, Romagnoli S, Ostermann M, Ripolles-Melchor J, Schneider AG, et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery (BigpAK-2 trial): study protocol for an international, prospective, randomised controlled multicentre trial. BMJ Open. 2023;13(3): e070240.CrossRef von Groote T, Meersch M, Romagnoli S, Ostermann M, Ripolles-Melchor J, Schneider AG, et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery (BigpAK-2 trial): study protocol for an international, prospective, randomised controlled multicentre trial. BMJ Open. 2023;13(3): e070240.CrossRef
Metadata
Title
Kidney Injury Following Cardiac Surgery: A Review of Our Current Understanding
Authors
Christine-Elena Kamla
Melanie Meersch-Dini
Lilian Monteiro Pereira Palma
Publication date
12-01-2025
Publisher
Springer International Publishing
Published in
American Journal of Cardiovascular Drugs
Print ISSN: 1175-3277
Electronic ISSN: 1179-187X
DOI
https://doi.org/10.1007/s40256-024-00715-8

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now