Skip to main content
Top

05-03-2025 | Heart Failure | Magnetic Resonance

Prevalence and prognostic significance of reduced myocardial perfusion reserve in diabetic heart failure with preserved ejection fraction using quantitative perfusion cardiac magnetic resonance

Authors: Yang Yang, Donglu Qin, Chenyu Li, Leting Tang, Shuai Wang, Xiaoman Chen, Daoquan Peng, Mu Zeng, Bilian Yu

Published in: European Radiology

Login to get access

Abstract

Objectives

To use cardiac magnetic resonance (CMR) to quantify coronary microvascular function, explore the relationship between perfusion and fibrosis, and assess the impact of coronary microvascular dysfunction (CMD) on adverse clinical outcomes.

Materials and methods

In a prospective, observational study, patients with type 2 diabetes mellitus (T2DM) and heart failure were recruited alongside control subjects. Participants underwent clinical assessment and CMR, which included T1 mapping, extracellular volume mapping, as well as measurement of myocardial blood flow at rest and during maximal hyperaemia. Primary outcomes were all-cause death or hospitalization with a cardiovascular cause.

Results

Of 202 participants included, 55 T2DM patients were categorized as heart failure with preserved ejection fraction (DM-HFpEF), 70 as heart failure with ejection fraction less than 50% (DM-HFrEF/HFmrEF), 42 as T2DM control subjects (DM-control) and 35 as asymptomatic control group. DM-HFpEF group exhibited a comparatively diminished myocardial perfusion reserve (MPR) than other three cohorts (all p < 0.05). Reduced MPR (< 2.0) was present in 81.82% of patients with DM-HFpEF. MPR was associated with cardiac troponin T and diffuse fibrosis. MPR demonstrated independent predictability of adverse outcomes even adjusting for clinical, blood, and imaging parameters. Patients with lower MPR exhibited a higher risk of adverse outcomes.

Conclusions

In symptomatic patients with T2DM, a high prevalence of impaired MPR was observed specifically in individuals with HFpEF. MPR was associated with markers of myocardial injury and fibrosis and was predictive of adverse clinical outcomes. These findings could help identify high-risk patients, leading to more intensive treatment.

Key Points

Question Data on cardiac MRI for quantifying myocardial blood flow in diabetic patients with heart failure with preserved ejection fraction are limited.
Findings A markedly impaired myocardial perfusion reserve was observed in diabetic patients with heart failure with preserved ejection fraction.
Clinical relevance Myocardial blood flow could provide incremental value in the diagnosis and risk stratification in diabetic patients with heart failure with preserved ejection fraction.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200PubMedCrossRef Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200PubMedCrossRef
2.
3.
go back to reference Lewis GA, Schelbert EB, Williams SG et al (2017) Biological phenotypes of heart failure with preserved ejection fraction. J Am Coll Cardiol 70:2186–2200PubMedCrossRef Lewis GA, Schelbert EB, Williams SG et al (2017) Biological phenotypes of heart failure with preserved ejection fraction. J Am Coll Cardiol 70:2186–2200PubMedCrossRef
4.
go back to reference Thorvaldsen T, Claggett BL, Shah A et al (2017) Predicting risk in patients hospitalized for acute decompensated heart failure and preserved ejection fraction: The atherosclerosis risk in communities study heart failure community surveillance. Circ Heart Fail 10:e003992PubMedPubMedCentralCrossRef Thorvaldsen T, Claggett BL, Shah A et al (2017) Predicting risk in patients hospitalized for acute decompensated heart failure and preserved ejection fraction: The atherosclerosis risk in communities study heart failure community surveillance. Circ Heart Fail 10:e003992PubMedPubMedCentralCrossRef
5.
go back to reference Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271PubMedCrossRef Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271PubMedCrossRef
6.
go back to reference Mohammed SF, Hussain S, Mirzoyev SA et al (2015) Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131:550–559PubMedCrossRef Mohammed SF, Hussain S, Mirzoyev SA et al (2015) Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131:550–559PubMedCrossRef
7.
go back to reference Taqueti VR, Solomon SD, Shah AM et al (2018) Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J 39:840–849PubMedCrossRef Taqueti VR, Solomon SD, Shah AM et al (2018) Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J 39:840–849PubMedCrossRef
8.
go back to reference McHugh K, DeVore AD, Wu J et al (2019) Heart failure with preserved ejection fraction and diabetes: JACC state-of-the-art review. J Am Coll Cardiol 73:602–611PubMedCrossRef McHugh K, DeVore AD, Wu J et al (2019) Heart failure with preserved ejection fraction and diabetes: JACC state-of-the-art review. J Am Coll Cardiol 73:602–611PubMedCrossRef
9.
go back to reference Lindman BR, Davila-Roman VG, Mann DL et al (2014) Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol 64:541–549PubMedPubMedCentralCrossRef Lindman BR, Davila-Roman VG, Mann DL et al (2014) Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol 64:541–549PubMedPubMedCentralCrossRef
10.
go back to reference Kristensen SL, Mogensen UM, Jhund PS et al (2017) Clinical and echocardiographic characteristics and cardiovascular outcomes according to diabetes status in patients with heart failure and preserved ejection fraction: a report from the I-preserve trial (Irbesartan in heart failure with preserved ejection fraction). Circulation 135:724–735PubMedCrossRef Kristensen SL, Mogensen UM, Jhund PS et al (2017) Clinical and echocardiographic characteristics and cardiovascular outcomes according to diabetes status in patients with heart failure and preserved ejection fraction: a report from the I-preserve trial (Irbesartan in heart failure with preserved ejection fraction). Circulation 135:724–735PubMedCrossRef
11.
go back to reference Jackson AM, Rorth R, Liu J et al (2022) Diabetes and pre-diabetes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 24:497–509PubMedCrossRef Jackson AM, Rorth R, Liu J et al (2022) Diabetes and pre-diabetes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 24:497–509PubMedCrossRef
12.
go back to reference Aguilar D, Deswal A, Ramasubbu K et al (2010) Comparison of patients with heart failure and preserved left ventricular ejection fraction among those with versus without diabetes mellitus. Am J Cardiol 105:373–377PubMedCrossRef Aguilar D, Deswal A, Ramasubbu K et al (2010) Comparison of patients with heart failure and preserved left ventricular ejection fraction among those with versus without diabetes mellitus. Am J Cardiol 105:373–377PubMedCrossRef
13.
go back to reference Frisk M, Le C, Shen X et al (2021) Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction. J Am Coll Cardiol 77:405–419PubMedPubMedCentralCrossRef Frisk M, Le C, Shen X et al (2021) Etiology-dependent impairment of diastolic cardiomyocyte calcium homeostasis in heart failure with preserved ejection fraction. J Am Coll Cardiol 77:405–419PubMedPubMedCentralCrossRef
14.
go back to reference Hulot JS, Livrozet M (2021) HFpEF: should we consider diabetic patients separately?: The cardiomyocytes say yes. J Am Coll Cardiol 77:420–422PubMedCrossRef Hulot JS, Livrozet M (2021) HFpEF: should we consider diabetic patients separately?: The cardiomyocytes say yes. J Am Coll Cardiol 77:420–422PubMedCrossRef
15.
go back to reference Taqueti VR, Di Carli MF (2018) Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol 72:2625–2641PubMedPubMedCentralCrossRef Taqueti VR, Di Carli MF (2018) Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol 72:2625–2641PubMedPubMedCentralCrossRef
16.
go back to reference Levelt E, Piechnik SK, Liu A et al (2017) Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 diabetes mellitus without obstructive coronary artery disease. J Cardiovasc Magn Reson 19:81PubMedPubMedCentralCrossRef Levelt E, Piechnik SK, Liu A et al (2017) Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 diabetes mellitus without obstructive coronary artery disease. J Cardiovasc Magn Reson 19:81PubMedPubMedCentralCrossRef
17.
go back to reference Levelt E, Rodgers CT, Clarke WT et al (2016) Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur Heart J 37:3461–3469PubMedCrossRef Levelt E, Rodgers CT, Clarke WT et al (2016) Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur Heart J 37:3461–3469PubMedCrossRef
18.
go back to reference Liu X, Yang ZG, Gao Y et al (2018) Left ventricular subclinical myocardial dysfunction in uncomplicated type 2 diabetes mellitus is associated with impaired myocardial perfusion: a contrast-enhanced cardiovascular magnetic resonance study. Cardiovasc Diabetol 17:139PubMedPubMedCentralCrossRef Liu X, Yang ZG, Gao Y et al (2018) Left ventricular subclinical myocardial dysfunction in uncomplicated type 2 diabetes mellitus is associated with impaired myocardial perfusion: a contrast-enhanced cardiovascular magnetic resonance study. Cardiovasc Diabetol 17:139PubMedPubMedCentralCrossRef
19.
go back to reference Sirajuddin A, Mirmomen SM, Kligerman SJ et al (2021) Ischemic heart disease: noninvasive imaging techniques and findings. Radiographics 41:990–1021PubMedCrossRef Sirajuddin A, Mirmomen SM, Kligerman SJ et al (2021) Ischemic heart disease: noninvasive imaging techniques and findings. Radiographics 41:990–1021PubMedCrossRef
20.
go back to reference Lejeune S, Roy C, Slimani A et al (2021) Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort. Cardiovasc Diabetol 20:48PubMedPubMedCentralCrossRef Lejeune S, Roy C, Slimani A et al (2021) Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort. Cardiovasc Diabetol 20:48PubMedPubMedCentralCrossRef
21.
go back to reference Hsu LY, Jacobs M, Benovoy M et al (2018) Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance. JACC Cardiovasc Imaging 11:697–707PubMedPubMedCentralCrossRef Hsu LY, Jacobs M, Benovoy M et al (2018) Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance. JACC Cardiovasc Imaging 11:697–707PubMedPubMedCentralCrossRef
22.
go back to reference Lockie T, Ishida M, Perera D et al (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57:70–75PubMedCrossRef Lockie T, Ishida M, Perera D et al (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57:70–75PubMedCrossRef
23.
go back to reference Morton G, Chiribiri A, Ishida M et al (2012) Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol 60:1546–1555PubMedPubMedCentralCrossRef Morton G, Chiribiri A, Ishida M et al (2012) Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol 60:1546–1555PubMedPubMedCentralCrossRef
24.
go back to reference Knott KD, Seraphim A, Augusto JB et al (2020) The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping. Circulation 141:1282–1291PubMedPubMedCentral Knott KD, Seraphim A, Augusto JB et al (2020) The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping. Circulation 141:1282–1291PubMedPubMedCentral
25.
go back to reference Zorach B, Shaw PW, Bourque J et al (2018) Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson 20:14PubMedPubMedCentralCrossRef Zorach B, Shaw PW, Bourque J et al (2018) Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson 20:14PubMedPubMedCentralCrossRef
26.
go back to reference Shah SJ, Lam CSP, Svedlund S et al (2018) Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J 39:3439–3450PubMedPubMedCentralCrossRef Shah SJ, Lam CSP, Svedlund S et al (2018) Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J 39:3439–3450PubMedPubMedCentralCrossRef
27.
go back to reference Dryer K, Gajjar M, Narang N et al (2018) Coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 314:H1033–H1042PubMedPubMedCentralCrossRef Dryer K, Gajjar M, Narang N et al (2018) Coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 314:H1033–H1042PubMedPubMedCentralCrossRef
28.
go back to reference Yang JH, Obokata M, Reddy YNV et al (2020) Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 22:432–441PubMedCrossRef Yang JH, Obokata M, Reddy YNV et al (2020) Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Eur J Heart Fail 22:432–441PubMedCrossRef
29.
go back to reference Rush CJ, Berry C, Oldroyd KG et al (2021) Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. JAMA Cardiol 6:1130–1143PubMedCrossRef Rush CJ, Berry C, Oldroyd KG et al (2021) Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. JAMA Cardiol 6:1130–1143PubMedCrossRef
30.
go back to reference Arnold JR, Kanagala P, Budgeon CA et al (2022) Prevalence and prognostic significance of microvascular dysfunction in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging 15:1001–1011PubMedCrossRef Arnold JR, Kanagala P, Budgeon CA et al (2022) Prevalence and prognostic significance of microvascular dysfunction in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging 15:1001–1011PubMedCrossRef
31.
go back to reference Zhao W, Li K, Tang L et al (2024) Coronary microvascular dysfunction and diffuse myocardial fibrosis in patients with type 2 diabetes using quantitative perfusion MRI. J Magn Reson Imaging 60:2395–2406PubMedCrossRef Zhao W, Li K, Tang L et al (2024) Coronary microvascular dysfunction and diffuse myocardial fibrosis in patients with type 2 diabetes using quantitative perfusion MRI. J Magn Reson Imaging 60:2395–2406PubMedCrossRef
32.
go back to reference Jacobs M, Benovoy M, Chang LC et al (2016) Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson 18:17PubMedPubMedCentralCrossRef Jacobs M, Benovoy M, Chang LC et al (2016) Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson 18:17PubMedPubMedCentralCrossRef
33.
go back to reference Patel AR, Salerno M, Kwong RY et al (2021) Stress cardiac magnetic resonance myocardial perfusion imaging: JACC review topic of the week. J Am Coll Cardiol 78:1655–1668PubMedPubMedCentralCrossRef Patel AR, Salerno M, Kwong RY et al (2021) Stress cardiac magnetic resonance myocardial perfusion imaging: JACC review topic of the week. J Am Coll Cardiol 78:1655–1668PubMedPubMedCentralCrossRef
34.
go back to reference Kunadian V, Chieffo A, Camici PG et al (2021) An EAPCI Expert Consensus Document on Ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on coronary pathophysiology & microcirculation endorsed by Coronary Vasomotor Disorders International Study Group. EuroIntervention 16:1049–1069PubMedPubMedCentralCrossRef Kunadian V, Chieffo A, Camici PG et al (2021) An EAPCI Expert Consensus Document on Ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on coronary pathophysiology & microcirculation endorsed by Coronary Vasomotor Disorders International Study Group. EuroIntervention 16:1049–1069PubMedPubMedCentralCrossRef
35.
go back to reference Kellman P, Wilson JR, Xue H et al (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63PubMedPubMedCentral Kellman P, Wilson JR, Xue H et al (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63PubMedPubMedCentral
36.
go back to reference Sorensen MH, Bojer AS, Pontoppidan JRN et al (2020) Reduced myocardial perfusion reserve in type 2 diabetes is caused by increased perfusion at rest and decreased maximal perfusion during stress. Diabetes Care 43:1285–1292PubMedCrossRef Sorensen MH, Bojer AS, Pontoppidan JRN et al (2020) Reduced myocardial perfusion reserve in type 2 diabetes is caused by increased perfusion at rest and decreased maximal perfusion during stress. Diabetes Care 43:1285–1292PubMedCrossRef
37.
go back to reference Kawata T, Daimon M, Miyazaki S et al (2015) Coronary microvascular function is independently associated with left ventricular filling pressure in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 14:98PubMedPubMedCentralCrossRef Kawata T, Daimon M, Miyazaki S et al (2015) Coronary microvascular function is independently associated with left ventricular filling pressure in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 14:98PubMedPubMedCentralCrossRef
38.
go back to reference Sorensen MH, Bojer AS, Broadbent DA et al (2020) Cardiac perfusion, structure, and function in type 2 diabetes mellitus with and without diabetic complications. Eur Heart J Cardiovasc Imaging 21:887–895PubMedCrossRef Sorensen MH, Bojer AS, Broadbent DA et al (2020) Cardiac perfusion, structure, and function in type 2 diabetes mellitus with and without diabetic complications. Eur Heart J Cardiovasc Imaging 21:887–895PubMedCrossRef
39.
go back to reference Li XM, Shi R, Shen MT et al (2023) Subclinical left ventricular deformation and microvascular dysfunction in T2DM patients with and without peripheral neuropathy: assessed by 3.0 T cardiac magnetic resonance imaging. Cardiovasc Diabetol 22:256PubMedPubMedCentralCrossRef Li XM, Shi R, Shen MT et al (2023) Subclinical left ventricular deformation and microvascular dysfunction in T2DM patients with and without peripheral neuropathy: assessed by 3.0 T cardiac magnetic resonance imaging. Cardiovasc Diabetol 22:256PubMedPubMedCentralCrossRef
40.
go back to reference Srivaratharajah K, Coutinho T, deKemp R et al (2016) Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ Heart Fail 9:e002562PubMedCrossRef Srivaratharajah K, Coutinho T, deKemp R et al (2016) Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ Heart Fail 9:e002562PubMedCrossRef
41.
go back to reference Kato S, Saito N, Kirigaya H et al (2016) Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc 5:e002649PubMedPubMedCentralCrossRef Kato S, Saito N, Kirigaya H et al (2016) Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc 5:e002649PubMedPubMedCentralCrossRef
42.
go back to reference Loffler AI, Pan JA, Balfour Jr. PC, et al (2019) Frequency of coronary microvascular dysfunction and diffuse myocardial fibrosis (measured by cardiovascular magnetic resonance) in patients with heart failure and preserved left ventricular ejection fraction. Am J Cardiol 124:1584–1589.PubMedPubMedCentralCrossRef Loffler AI, Pan JA, Balfour Jr. PC, et al (2019) Frequency of coronary microvascular dysfunction and diffuse myocardial fibrosis (measured by cardiovascular magnetic resonance) in patients with heart failure and preserved left ventricular ejection fraction. Am J Cardiol 124:1584–1589.PubMedPubMedCentralCrossRef
43.
go back to reference Sinha A, Rahman H, Webb A et al (2021) Untangling the pathophysiologic link between coronary microvascular dysfunction and heart failure with preserved ejection fraction. Eur Heart J 42:4431–4441PubMedPubMedCentralCrossRef Sinha A, Rahman H, Webb A et al (2021) Untangling the pathophysiologic link between coronary microvascular dysfunction and heart failure with preserved ejection fraction. Eur Heart J 42:4431–4441PubMedPubMedCentralCrossRef
44.
go back to reference Horton WB, Barrett EJ (2021) Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr Rev 42:29–55PubMedCrossRef Horton WB, Barrett EJ (2021) Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr Rev 42:29–55PubMedCrossRef
46.
go back to reference Marwick TH, Gimelli A, Plein S et al (2022) Multimodality imaging approach to left ventricular dysfunction in diabetes: an expert consensus document from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 23:e62–e84PubMedCrossRef Marwick TH, Gimelli A, Plein S et al (2022) Multimodality imaging approach to left ventricular dysfunction in diabetes: an expert consensus document from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 23:e62–e84PubMedCrossRef
47.
go back to reference Del Buono MG, Montone RA, Camilli M et al (2021) Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: jacc state-of-the-art review. J Am Coll Cardiol 78:1352–1371PubMedPubMedCentralCrossRef Del Buono MG, Montone RA, Camilli M et al (2021) Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: jacc state-of-the-art review. J Am Coll Cardiol 78:1352–1371PubMedPubMedCentralCrossRef
48.
go back to reference Paulus WJ, Dal Canto E (2018) Distinct myocardial targets for diabetes therapy in heart failure with preserved or reduced ejection fraction. JACC Heart Fail 6:1–7PubMedCrossRef Paulus WJ, Dal Canto E (2018) Distinct myocardial targets for diabetes therapy in heart failure with preserved or reduced ejection fraction. JACC Heart Fail 6:1–7PubMedCrossRef
Metadata
Title
Prevalence and prognostic significance of reduced myocardial perfusion reserve in diabetic heart failure with preserved ejection fraction using quantitative perfusion cardiac magnetic resonance
Authors
Yang Yang
Donglu Qin
Chenyu Li
Leting Tang
Shuai Wang
Xiaoman Chen
Daoquan Peng
Mu Zeng
Bilian Yu
Publication date
05-03-2025
Publisher
Springer Berlin Heidelberg
Published in
European Radiology
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-025-11474-8