Skip to main content
Top

25-04-2024 | Heart Failure | Review

Percutaneous intravascular micro-axial blood pump: current state and perspective from engineering view

Authors: Eiji Okamoto, Yoshinori Mitamura

Published in: Journal of Artificial Organs

Login to get access

Abstract

The utilization of a minimally invasively placed catheter-mounted intravascular micro-axial flow blood pump (IMFBP) is increasing in the population with advanced heart failure. The current development of IMFBPs dates back around the 1990s, namely the Hemopump with a wire-drive system and the Valvopump with a direct-drive system. The wire-drive IMFBPs can use a brushless motor in an external console unit to transmit rotational force through the drive wire rotating the impeller inside the body. The direct-drive IMFBPs require an ultra-miniature and high-power brushless motor. Additionally, the direct-drive system necessitates a mechanism to protect against blood immersion into the motor. Therefore, the direct-drive IMFBPs can be categorized into two types of devices: those with seal mechanisms or those with sealless mechanisms using magnetically coupling. The IMFBPs can be classified into two groups depending on their purpose. One group is for cardiogenic shock following a heart attack or for use in high-risk percutaneous coronary intervention (PCI), and the other group serves the purpose of acute decompensated heart failure. Both direct-drive IMFBPs and wire-drive IMFBPs have their own advantages and disadvantages, and efforts are being made to develop and improve, and clinically implement them, leveraging their own strengths. In addition, there is a possibility that innovative new devices may be invented. For researchers in the field of artificial heart development, IMFBPs offer a new area of research and development, providing a novel treatment option for severe heart failure.
Literature
1.
go back to reference Weber DM, Raess DH, Henrques JPS, Siess T. Principles of Imella cardiac support. Card Interv Today. 2009;3:6. Weber DM, Raess DH, Henrques JPS, Siess T. Principles of Imella cardiac support. Card Interv Today. 2009;3:6.
3.
go back to reference Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B. Left ventricular assist devise-current state and perspectives. J Thorac Dis. 2016;8:E660-666.CrossRefPubMedPubMedCentral Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B. Left ventricular assist devise-current state and perspectives. J Thorac Dis. 2016;8:E660-666.CrossRefPubMedPubMedCentral
4.
go back to reference Rosenblum H, Kapur NK, Abraham WT, Udelson J, Itkin M, Uriel N, Voors AA, Burkhoff D. Conceptual considerations for device-based therapy in acute decompensated heart failure DRI2P2S. Cir Heart Fail. 2020;13:1–15. Rosenblum H, Kapur NK, Abraham WT, Udelson J, Itkin M, Uriel N, Voors AA, Burkhoff D. Conceptual considerations for device-based therapy in acute decompensated heart failure DRI2P2S. Cir Heart Fail. 2020;13:1–15.
5.
go back to reference Merhige ME, Smalling RW, Cassidy D, Barrett R, Short J, Wampler RK. Effect of the hemopump left ventricular assist device on regional myocardial perfusion and function. Criculation. 1989;80:158–66. Merhige ME, Smalling RW, Cassidy D, Barrett R, Short J, Wampler RK. Effect of the hemopump left ventricular assist device on regional myocardial perfusion and function. Criculation. 1989;80:158–66.
6.
go back to reference Butler KC, Moise CJ, Wampler RK. The Hemopump®-a new cardiac prothesis device. IEEE Trans BME. 1990;37:193–6.CrossRef Butler KC, Moise CJ, Wampler RK. The Hemopump®-a new cardiac prothesis device. IEEE Trans BME. 1990;37:193–6.CrossRef
7.
go back to reference Yamazaki K, Okamoto E, Yamamoto K, Mitamura Y, Tanaka T, Yozu R. The valvopump, an axial blood pump implanted at the heart valve position: concept and initial results. Artif Org. 1992;16:297–9.CrossRef Yamazaki K, Okamoto E, Yamamoto K, Mitamura Y, Tanaka T, Yozu R. The valvopump, an axial blood pump implanted at the heart valve position: concept and initial results. Artif Org. 1992;16:297–9.CrossRef
8.
go back to reference Mitamura Y, Fujiyoshi M, Yoshida T, Yozu R, Okamoto E, Tanaka T, Kawada S. A ferrofluidic seal specially designed for rotary blood pumps. Artif Org. 1996;20:497–502.CrossRef Mitamura Y, Fujiyoshi M, Yoshida T, Yozu R, Okamoto E, Tanaka T, Kawada S. A ferrofluidic seal specially designed for rotary blood pumps. Artif Org. 1996;20:497–502.CrossRef
9.
go back to reference Okamoto E, Yano T, Sekine K, Inoue Y, Shiraishi Y, Yambe T, Mitamura Y. Development and initial performance of a miniature axial flow blood pump using magnetic fluid shaft seal. J Artif Org. 2023;23:12–6.CrossRef Okamoto E, Yano T, Sekine K, Inoue Y, Shiraishi Y, Yambe T, Mitamura Y. Development and initial performance of a miniature axial flow blood pump using magnetic fluid shaft seal. J Artif Org. 2023;23:12–6.CrossRef
10.
go back to reference Van Mieghem NM, Daemen J, den Uil C, Dur O, Joziasse L, Maugenest AM, Fitzgerald K, Parker C, Muller P, van Geuns R-J. Design and principle of the HeartMate PHP (percutaneous heart pump). Euro Interv. 2018;13:1662–6. Van Mieghem NM, Daemen J, den Uil C, Dur O, Joziasse L, Maugenest AM, Fitzgerald K, Parker C, Muller P, van Geuns R-J. Design and principle of the HeartMate PHP (percutaneous heart pump). Euro Interv. 2018;13:1662–6.
13.
go back to reference Kapur NK, Jorde UP, Sharma S, Pyo RT, Rajagopal V, Lotun K, Kimmelstiel C, Kuo HC, Zhang Z, Ying SW, West NEJ, Kandzari DE. Early experience with the HeartMate percutaneous heart pump from the shield ii trial. ASAIO J. 2022;68:492–8.CrossRefPubMed Kapur NK, Jorde UP, Sharma S, Pyo RT, Rajagopal V, Lotun K, Kimmelstiel C, Kuo HC, Zhang Z, Ying SW, West NEJ, Kandzari DE. Early experience with the HeartMate percutaneous heart pump from the shield ii trial. ASAIO J. 2022;68:492–8.CrossRefPubMed
15.
go back to reference RetainÖhlinPeterzénGranfeldtSteenEmanuelsson ÖHBHSH. Initial tests with a new cardiac assist device: ASAIO J. 1999;45:317–21.CrossRef RetainÖhlinPeterzénGranfeldtSteenEmanuelsson ÖHBHSH. Initial tests with a new cardiac assist device: ASAIO J. 1999;45:317–21.CrossRef
16.
go back to reference RetainSteenÖhlin ÖSH. Hemodynamic effects of a new percutaneous circulatory support device in a left ventricular failure modelm. ASAIO J. 2003;49:731–6.CrossRef RetainSteenÖhlin ÖSH. Hemodynamic effects of a new percutaneous circulatory support device in a left ventricular failure modelm. ASAIO J. 2003;49:731–6.CrossRef
18.
go back to reference SmithRetainKeebleDixonRothman EJÖTKMT. A first-in-man study of the retain catheter pump for circulatory support fin patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv. 2009;73:859–65.CrossRef SmithRetainKeebleDixonRothman EJÖTKMT. A first-in-man study of the retain catheter pump for circulatory support fin patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv. 2009;73:859–65.CrossRef
19.
go back to reference Keeble TR, Karamasis GV, Rothman MT, Ricksten SE, Ferrari M, Hullin R, Schersén F, Retain Ö, Kirking ST, Cleland JGF, Smith EJ. Percutaneous haemodynamic and renal support in patients presenting with decompensated heart failure: a multi-centre efficacy study using the Reitan Catheter Pump(RCP). Int J Cardio. 2019;275:53–8.CrossRef Keeble TR, Karamasis GV, Rothman MT, Ricksten SE, Ferrari M, Hullin R, Schersén F, Retain Ö, Kirking ST, Cleland JGF, Smith EJ. Percutaneous haemodynamic and renal support in patients presenting with decompensated heart failure: a multi-centre efficacy study using the Reitan Catheter Pump(RCP). Int J Cardio. 2019;275:53–8.CrossRef
20.
go back to reference Napp LC, Mariani S, Ruhparwasr A, Schmack B, Keeble T, Retain Ö, Hanke JS, Dogan G, Hiss M, Bauersachs J, Haverich A, Schmitto JD. Fisrt-in-man use of the percutaneous 10F reitan catheter pump for cardiorenal syndrome. ASAIO J. 2022;68:e99-101.CrossRefPubMed Napp LC, Mariani S, Ruhparwasr A, Schmack B, Keeble T, Retain Ö, Hanke JS, Dogan G, Hiss M, Bauersachs J, Haverich A, Schmitto JD. Fisrt-in-man use of the percutaneous 10F reitan catheter pump for cardiorenal syndrome. ASAIO J. 2022;68:e99-101.CrossRefPubMed
22.
go back to reference Miller LW, Ebner A, Leonhardt H, Richardson MJ. First in human experience with the second heart assist device. ASAIO J. 2020;66:29. Miller LW, Ebner A, Leonhardt H, Richardson MJ. First in human experience with the second heart assist device. ASAIO J. 2020;66:29.
23.
go back to reference Kapur N, Hernandez-Montfort J, Kanwar MK. A new dawn for ventricular unloading as a bridge to heart transplantation. ASAIO J. 2022;68:760–2.CrossRefPubMed Kapur N, Hernandez-Montfort J, Kanwar MK. A new dawn for ventricular unloading as a bridge to heart transplantation. ASAIO J. 2022;68:760–2.CrossRefPubMed
26.
go back to reference Flores JJ, Valdovinos J. Development of a catheter-deliverable implantable intravascular blood pump speed controller. ASAIO J. 2022;68 supplement 2:46.CrossRef Flores JJ, Valdovinos J. Development of a catheter-deliverable implantable intravascular blood pump speed controller. ASAIO J. 2022;68 supplement 2:46.CrossRef
27.
go back to reference Shabari FR, George J, Cuchiara MP, Langsner RJ, Heuring JJ, Cohn WE, Hertzog BA, Delgado R. Improved hemodynamics with a novel miniaturized intra-aortic axial flow pump in a pocine model of acute left ventricular dysfunction. ASAIO J. 2013;59:240–5.CrossRefPubMed Shabari FR, George J, Cuchiara MP, Langsner RJ, Heuring JJ, Cohn WE, Hertzog BA, Delgado R. Improved hemodynamics with a novel miniaturized intra-aortic axial flow pump in a pocine model of acute left ventricular dysfunction. ASAIO J. 2013;59:240–5.CrossRefPubMed
28.
go back to reference Annamalai SK, Esposito ML, Reyelt LA, Natov P, Jorde LE, Karas RH, Kapur NK. Abdominal positioning of the next generation intra-aortic fluid entrainment pump(Aortix) improves cardiac output in a swine model of heart failure. Circ Heart Fail. 2018;11:e005115.CrossRefPubMedPubMedCentral Annamalai SK, Esposito ML, Reyelt LA, Natov P, Jorde LE, Karas RH, Kapur NK. Abdominal positioning of the next generation intra-aortic fluid entrainment pump(Aortix) improves cardiac output in a swine model of heart failure. Circ Heart Fail. 2018;11:e005115.CrossRefPubMedPubMedCentral
29.
go back to reference Vora AN, Jones WS, DeVore AD, Ebner A, Clifton W, Patel MR. First-in-human experience with aortix intraaortic pump. Catheter interv. 2019;93:428–33.CrossRef Vora AN, Jones WS, DeVore AD, Ebner A, Clifton W, Patel MR. First-in-human experience with aortix intraaortic pump. Catheter interv. 2019;93:428–33.CrossRef
31.
go back to reference Lu C, Krisher J, Benavides O, Palmer A, Edidin A, Durst C, Heuring J. Long-term safety and durability of novel intra-aortic percutaneous mechanical circulatory support device. JHLT. 2022;41:1712–5. Lu C, Krisher J, Benavides O, Palmer A, Edidin A, Durst C, Heuring J. Long-term safety and durability of novel intra-aortic percutaneous mechanical circulatory support device. JHLT. 2022;41:1712–5.
32.
go back to reference Cowger JA. Safety and performance of the Aortix™ device in patients with decompensated heart failure and cardiorenal syndrome. Boston: Presented at Technology and Heart Failure Therapeutics conference; 2023. Cowger JA. Safety and performance of the Aortix™ device in patients with decompensated heart failure and cardiorenal syndrome. Boston: Presented at Technology and Heart Failure Therapeutics conference; 2023.
34.
go back to reference GeorgesTrudeauMartineauRochonPotvinEbnerGénéreux GFJDMJAP. First-in-human experience with the ModulHeart device for mechanical circulatory support and renal perfusion. J SCAI. 2022;1:100449. GeorgesTrudeauMartineauRochonPotvinEbnerGénéreux GFJDMJAP. First-in-human experience with the ModulHeart device for mechanical circulatory support and renal perfusion. J SCAI. 2022;1:100449.
35.
go back to reference Georges G, Trudeau F, Potvin J, Potus F, Martineau S, Généreux P. Preservation of von willebrand factor activity with the modulheart device. J Am Coll Cardio Basic Trans Sci. 2023;04:1–10. Georges G, Trudeau F, Potvin J, Potus F, Martineau S, Généreux P. Preservation of von willebrand factor activity with the modulheart device. J Am Coll Cardio Basic Trans Sci. 2023;04:1–10.
36.
go back to reference Siess T, Nix C, Menzler F. From a lab type to a product: a retrospective view on Impella’s assist technology. Artif Organs. 2001;25:414–21.CrossRefPubMed Siess T, Nix C, Menzler F. From a lab type to a product: a retrospective view on Impella’s assist technology. Artif Organs. 2001;25:414–21.CrossRefPubMed
38.
go back to reference Pieri M, Pappalardo F. Impella RP in the treatment of right ventricular failure: what we know and where we go. J Cardiothorac Vasc Anesth. 2018;32:2339–43.CrossRefPubMed Pieri M, Pappalardo F. Impella RP in the treatment of right ventricular failure: what we know and where we go. J Cardiothorac Vasc Anesth. 2018;32:2339–43.CrossRefPubMed
39.
go back to reference Han JJ. Impella RP Flex with SmartAssist receives FDA pre-market approval. Artif Organs. 2023;47:10–1.CrossRefPubMed Han JJ. Impella RP Flex with SmartAssist receives FDA pre-market approval. Artif Organs. 2023;47:10–1.CrossRefPubMed
40.
go back to reference Janeczek C, Gföhler M, Harasek M, Mohl W 2018Evaluation of hemolysis caused by a miniature heart catheter pump. In 2018 11th Biomedical Engineering International conference BMEiCON 1–5. IEEE Janeczek C, Gföhler M, Harasek M, Mohl W 2018Evaluation of hemolysis caused by a miniature heart catheter pump. In 2018 11th Biomedical Engineering International conference BMEiCON 1–5. IEEE
41.
go back to reference ZakyNordanKapurVestDenorrioChenCouperKawabori MTNKARDFYGSM. Impella 5.5 suport beyond 50 days as bridge to heart transprant in end-stage heart failure patients. ASAIO J. 2023;69:159–62. ZakyNordanKapurVestDenorrioChenCouperKawabori MTNKARDFYGSM. Impella 5.5 suport beyond 50 days as bridge to heart transprant in end-stage heart failure patients. ASAIO J. 2023;69:159–62.
42.
go back to reference Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possingger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D. Clinical experiences with magnetic drug targeting: a phase 1 study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996;56:4686–93.PubMed Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possingger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D. Clinical experiences with magnetic drug targeting: a phase 1 study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996;56:4686–93.PubMed
43.
go back to reference Prince PM, Mahmoud WE, Al-Ghamdi A, Bronstein LM. Magnetic drug delivery: where the field is going. Front Chem. 2018;6:619.CrossRef Prince PM, Mahmoud WE, Al-Ghamdi A, Bronstein LM. Magnetic drug delivery: where the field is going. Front Chem. 2018;6:619.CrossRef
44.
go back to reference Xue Y, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of magnetic particle imaging in biomedicine : advancements and prospects. Front Phys. 2022;13:898426.CrossRef Xue Y, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of magnetic particle imaging in biomedicine : advancements and prospects. Front Phys. 2022;13:898426.CrossRef
45.
go back to reference Sekine K, Mitamura Y. Evaluation of the cytotoxicity of oil-based magnetic fluid based on cell proliferation study. J Chin Soc Mech Eng. 2020;41:647–52. Sekine K, Mitamura Y. Evaluation of the cytotoxicity of oil-based magnetic fluid based on cell proliferation study. J Chin Soc Mech Eng. 2020;41:647–52.
46.
go back to reference Mitamura Y, Sekine K, Okamoto E. Magnetic fluid seals working in liquid environments: factor limiting their life and solution methods. J Magn Magn Mater. 2020;500:1–5.CrossRef Mitamura Y, Sekine K, Okamoto E. Magnetic fluid seals working in liquid environments: factor limiting their life and solution methods. J Magn Magn Mater. 2020;500:1–5.CrossRef
47.
go back to reference Moreal G, Koenig SC, Takkin ME, Shambaugh C, LaRose JA, Slaughter MS. Feasibility testing of the RT cardiac systems percutaneous mechanical circulatory support device. ASAIO J. 2023;69:519–26.CrossRef Moreal G, Koenig SC, Takkin ME, Shambaugh C, LaRose JA, Slaughter MS. Feasibility testing of the RT cardiac systems percutaneous mechanical circulatory support device. ASAIO J. 2023;69:519–26.CrossRef
Metadata
Title
Percutaneous intravascular micro-axial blood pump: current state and perspective from engineering view
Authors
Eiji Okamoto
Yoshinori Mitamura
Publication date
25-04-2024
Publisher
Springer Nature Singapore
Keyword
Heart Failure
Published in
Journal of Artificial Organs
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-024-01433-3
Webinar | 06-02-2024 | 20:00 (CET)

Mastering chronic pancreatitis pain: A multidisciplinary approach and practical solutions

Severe pain is the most common symptom of chronic pancreatitis. In this webinar, experts share the latest insights in pain management for chronic pancreatitis patients. Experts from a range of disciplines discuss pertinent cases and provide practical suggestions for use within clinical practice.

Sponsored by: Viatris

Developed by: Springer Healthcare