Skip to main content
Top

Open Access 29-01-2025 | Heart Failure | Mini Review

Renal denervation in the setting of heart failure

Authors: Franziska Koppe-Schmeißer, Karl Fengler, Karl-Patrik Kresoja, Philipp Lurz, Karl-Philipp Rommel

Published in: Heart Failure Reviews

Login to get access

Abstract

Renal Denervation (RDN) has emerged over the last decade as a third pillar in the treatment of arterial hypertension, alongside pharmacotherapy and lifestyle modifications. Mechanistically, it reduces central sympathetic overactivation, a process also relevant to heart failure. In this mini-review, we summarize the development of RDN for heart failure, discuss the current evidence supporting its effects, and provide an outlook on future developments.
Literature
1.
go back to reference McDonagh TA et al (2022) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Rev Esp Cardiol 75(6):005 McDonagh TA et al (2022) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Rev Esp Cardiol 75(6):005
2.
go back to reference Savarese G et al (2023) Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res 118(17):3272–3287PubMedCrossRef Savarese G et al (2023) Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res 118(17):3272–3287PubMedCrossRef
3.
go back to reference Shah KS et al (2017) Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 70(20):2476–2486PubMedCrossRef Shah KS et al (2017) Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 70(20):2476–2486PubMedCrossRef
4.
go back to reference Kawaguchi M et al (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107(5):714–720PubMedCrossRef Kawaguchi M et al (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107(5):714–720PubMedCrossRef
5.
go back to reference Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32(6):670–679PubMedCrossRef Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32(6):670–679PubMedCrossRef
6.
go back to reference Levy D et al (1996) The progression from hypertension to congestive heart failure. JAMA 275(20):1557–1562PubMedCrossRef Levy D et al (1996) The progression from hypertension to congestive heart failure. JAMA 275(20):1557–1562PubMedCrossRef
7.
go back to reference Petersson M et al (2005) Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J 26(9):906–913PubMedCrossRef Petersson M et al (2005) Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J 26(9):906–913PubMedCrossRef
8.
go back to reference Hasking GJ et al (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73(4):615–621PubMedCrossRef Hasking GJ et al (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73(4):615–621PubMedCrossRef
9.
go back to reference Schultz HD, Li YL, Ding Y (2007) Arterial chemoreceptors and sympathetic nerve activity: implications for hypertension and heart failure. Hypertension 50(1):6–13PubMedCrossRef Schultz HD, Li YL, Ding Y (2007) Arterial chemoreceptors and sympathetic nerve activity: implications for hypertension and heart failure. Hypertension 50(1):6–13PubMedCrossRef
10.
go back to reference Böhm M et al (2020) Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet 395(10234):1444–1451PubMedCrossRef Böhm M et al (2020) Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet 395(10234):1444–1451PubMedCrossRef
11.
go back to reference Azizi M et al (2018) Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391(10137):2335–2345PubMedCrossRef Azizi M et al (2018) Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391(10137):2335–2345PubMedCrossRef
12.
go back to reference Krum H et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373(9671):1275–1281PubMedCrossRef Krum H et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373(9671):1275–1281PubMedCrossRef
13.
go back to reference Esler MD et al (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376(9756):1903–1909PubMedCrossRef Esler MD et al (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376(9756):1903–1909PubMedCrossRef
14.
go back to reference Bhatt DL et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401PubMedCrossRef Bhatt DL et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401PubMedCrossRef
15.
18.
go back to reference Zhang H et al (2022) Pulmonary artery denervation for pulmonary arterial hypertension: a sham-controlled randomized PADN-CFDA trial. JACC Cardiovasc Interv 15(23):2412–2423PubMedCrossRef Zhang H et al (2022) Pulmonary artery denervation for pulmonary arterial hypertension: a sham-controlled randomized PADN-CFDA trial. JACC Cardiovasc Interv 15(23):2412–2423PubMedCrossRef
19.
go back to reference Singh JP, Kandala J, Camm AJ (2014) Non-pharmacological modulation of the autonomic tone to treat heart failure. Eur Heart J 35(2):77–85PubMedCrossRef Singh JP, Kandala J, Camm AJ (2014) Non-pharmacological modulation of the autonomic tone to treat heart failure. Eur Heart J 35(2):77–85PubMedCrossRef
21.
go back to reference Sharp TE 3rd, Lefer DJ (2021) Renal denervation to treat heart failure. Annu Rev Physiol 83:39–58 Sharp TE 3rd, Lefer DJ (2021) Renal denervation to treat heart failure. Annu Rev Physiol 83:39–58
22.
go back to reference Volpe M et al (1991) Failure of atrial natriuretic factor to increase with saline load in patients with dilated cardiomyopathy and mild heart failure. J Clin Invest 88(5):1481–1489PubMedPubMedCentralCrossRef Volpe M et al (1991) Failure of atrial natriuretic factor to increase with saline load in patients with dilated cardiomyopathy and mild heart failure. J Clin Invest 88(5):1481–1489PubMedPubMedCentralCrossRef
23.
go back to reference Volpe M et al (1993) Abnormalities of sodium handling and of cardiovascular adaptations during high salt diet in patients with mild heart failure. Circulation 88(4 Pt 1):1620–1627PubMedCrossRef Volpe M et al (1993) Abnormalities of sodium handling and of cardiovascular adaptations during high salt diet in patients with mild heart failure. Circulation 88(4 Pt 1):1620–1627PubMedCrossRef
24.
go back to reference Volpe M et al (1997) Intrarenal determinants of sodium retention in mild heart failure: effects of angiotensin-converting enzyme inhibition. Hypertension 30(2 Pt 1):168–176PubMedCrossRef Volpe M et al (1997) Intrarenal determinants of sodium retention in mild heart failure: effects of angiotensin-converting enzyme inhibition. Hypertension 30(2 Pt 1):168–176PubMedCrossRef
25.
go back to reference De Nicola L, Blantz RC, Gabbai FB (1992) Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat. J Clin Invest 89(4):1248–56 De Nicola L, Blantz RC, Gabbai FB (1992) Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat. J Clin Invest 89(4):1248–56
26.
go back to reference Haywood GA et al (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93(6):1087–1094PubMedCrossRef Haywood GA et al (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93(6):1087–1094PubMedCrossRef
28.
go back to reference Magri P et al (1998) Early impairment of renal hemodynamic reserve in patients with asymptomatic heart failure is restored by angiotensin II antagonism. Circulation 98(25):2849–2854PubMedCrossRef Magri P et al (1998) Early impairment of renal hemodynamic reserve in patients with asymptomatic heart failure is restored by angiotensin II antagonism. Circulation 98(25):2849–2854PubMedCrossRef
29.
go back to reference Fengler K et al (2017) Blood pressure response to main renal artery and combined main renal artery plus branch renal denervation in patients with resistant hypertension. J Am Heart Assoc 6(8):006196CrossRef Fengler K et al (2017) Blood pressure response to main renal artery and combined main renal artery plus branch renal denervation in patients with resistant hypertension. J Am Heart Assoc 6(8):006196CrossRef
30.
go back to reference Fengler K et al (2017) Ultrasound-based renal sympathetic denervation for the treatment of therapy-resistant hypertension: a single-center experience. J Hypertens 35(6):1310–1317PubMedCrossRef Fengler K et al (2017) Ultrasound-based renal sympathetic denervation for the treatment of therapy-resistant hypertension: a single-center experience. J Hypertens 35(6):1310–1317PubMedCrossRef
31.
go back to reference Fengler K et al (2019) A three-arm randomized trial of different renal denervation devices and techniques in patients with resistant hypertension (RADIOSOUND-HTN). Circulation 139(5):590–600PubMedCrossRef Fengler K et al (2019) A three-arm randomized trial of different renal denervation devices and techniques in patients with resistant hypertension (RADIOSOUND-HTN). Circulation 139(5):590–600PubMedCrossRef
32.
go back to reference Schlaich MP et al (2013) Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol 168(3):2214–2220PubMedCrossRef Schlaich MP et al (2013) Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol 168(3):2214–2220PubMedCrossRef
33.
go back to reference Polhemus DJ et al (2017) Renal sympathetic denervation protects the failing heart via inhibition of neprilysin activity in the kidney. J Am Coll Cardiol 70(17):2139–2153PubMedCrossRef Polhemus DJ et al (2017) Renal sympathetic denervation protects the failing heart via inhibition of neprilysin activity in the kidney. J Am Coll Cardiol 70(17):2139–2153PubMedCrossRef
34.
go back to reference Brandt MC et al (2012) Effects of renal sympathetic denervation on arterial stiffness and central hemodynamics in patients with resistant hypertension. J Am Coll Cardiol 60(19):1956–1965PubMedCrossRef Brandt MC et al (2012) Effects of renal sympathetic denervation on arterial stiffness and central hemodynamics in patients with resistant hypertension. J Am Coll Cardiol 60(19):1956–1965PubMedCrossRef
35.
go back to reference Pokushalov E et al (2013) Ganglionated plexus ablation vs linear ablation in patients undergoing pulmonary vein isolation for persistent/long-standing persistent atrial fibrillation: a randomized comparison. Heart Rhythm 10(9):1280–1286PubMedCrossRef Pokushalov E et al (2013) Ganglionated plexus ablation vs linear ablation in patients undergoing pulmonary vein isolation for persistent/long-standing persistent atrial fibrillation: a randomized comparison. Heart Rhythm 10(9):1280–1286PubMedCrossRef
36.
go back to reference Ferguson DW, Berg WJ, Sanders JS (1990) Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct microneurographic recordings. J Am Coll Cardiol 16(5):1125–1134PubMedCrossRef Ferguson DW, Berg WJ, Sanders JS (1990) Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct microneurographic recordings. J Am Coll Cardiol 16(5):1125–1134PubMedCrossRef
37.
go back to reference Fitzgerald AA et al (2011) Impact of medication nonadherence on hospitalizations and mortality in heart failure. J Card Fail 17(8):664–669PubMedCrossRef Fitzgerald AA et al (2011) Impact of medication nonadherence on hospitalizations and mortality in heart failure. J Card Fail 17(8):664–669PubMedCrossRef
38.
go back to reference Dibner-Dunlap ME, Thames MD (1992) Control of sympathetic nerve activity by vagal mechanoreflexes is blunted in heart failure. Circulation 86(6):1929–1934PubMedCrossRef Dibner-Dunlap ME, Thames MD (1992) Control of sympathetic nerve activity by vagal mechanoreflexes is blunted in heart failure. Circulation 86(6):1929–1934PubMedCrossRef
40.
go back to reference Li M et al (2023) Renal denervation in management of heart failure with reduced ejection fraction: a systematic review and meta-analysis. J Cardiol 81(6):513–521PubMedCrossRef Li M et al (2023) Renal denervation in management of heart failure with reduced ejection fraction: a systematic review and meta-analysis. J Cardiol 81(6):513–521PubMedCrossRef
41.
go back to reference Nammas W et al (2017) Renal sympathetic denervation for treatment of patients with heart failure: summary of the available evidence. Ann Med 49(5):384–395PubMedCrossRef Nammas W et al (2017) Renal sympathetic denervation for treatment of patients with heart failure: summary of the available evidence. Ann Med 49(5):384–395PubMedCrossRef
42.
go back to reference Geng J et al (2018) Influence of renal sympathetic denervation in patients with early-stage heart failure versus late-stage heart failure. Int Heart J 59(1):99–104PubMedCrossRef Geng J et al (2018) Influence of renal sympathetic denervation in patients with early-stage heart failure versus late-stage heart failure. Int Heart J 59(1):99–104PubMedCrossRef
43.
go back to reference Bradfield JS et al (2020) Renal denervation as adjunctive therapy to cardiac sympathetic denervation for ablation refractory ventricular tachycardia. Heart Rhythm 17(2):220–227PubMedCrossRef Bradfield JS et al (2020) Renal denervation as adjunctive therapy to cardiac sympathetic denervation for ablation refractory ventricular tachycardia. Heart Rhythm 17(2):220–227PubMedCrossRef
44.
go back to reference Armaganijan LV et al (2015) 6-Month outcomes in patients with implantable cardioverter-defibrillators undergoing renal sympathetic denervation for the treatment of refractory ventricular arrhythmias. JACC Cardiovasc Interv 8(7):984–990PubMedCrossRef Armaganijan LV et al (2015) 6-Month outcomes in patients with implantable cardioverter-defibrillators undergoing renal sympathetic denervation for the treatment of refractory ventricular arrhythmias. JACC Cardiovasc Interv 8(7):984–990PubMedCrossRef
45.
go back to reference Minamisawa M et al (2021) Association of hyper-polypharmacy with clinical outcomes in heart failure with preserved ejection fraction. Circ Heart Fail 14(11):22CrossRef Minamisawa M et al (2021) Association of hyper-polypharmacy with clinical outcomes in heart failure with preserved ejection fraction. Circ Heart Fail 14(11):22CrossRef
46.
go back to reference Verloop WL et al (2015) A systematic review concerning the relation between the sympathetic nervous system and heart failure with preserved left ventricular ejection fraction. PLoS One 10(2) Verloop WL et al (2015) A systematic review concerning the relation between the sympathetic nervous system and heart failure with preserved left ventricular ejection fraction. PLoS One 10(2)
47.
go back to reference Grassi G et al (2009) Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension 53(2):205–209PubMedCrossRef Grassi G et al (2009) Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension 53(2):205–209PubMedCrossRef
48.
go back to reference Pandey A et al (2021) Exercise intolerance in older adults with heart failure with preserved ejection fraction: JACC state-of-the-art review. J Am Coll Cardiol 78(11):1166–1187PubMedPubMedCentralCrossRef Pandey A et al (2021) Exercise intolerance in older adults with heart failure with preserved ejection fraction: JACC state-of-the-art review. J Am Coll Cardiol 78(11):1166–1187PubMedPubMedCentralCrossRef
49.
go back to reference Kresoja KP et al (2021) Renal sympathetic denervation in patients with heart failure with preserved ejection fraction. Circ Heart Fail 14(3):12CrossRef Kresoja KP et al (2021) Renal sympathetic denervation in patients with heart failure with preserved ejection fraction. Circ Heart Fail 14(3):12CrossRef
50.
51.
go back to reference Rosch S et al (2022) Characteristics of heart failure with preserved ejection fraction across the range of left ventricular ejection fraction. Circulation 146(7):506–518PubMedCrossRef Rosch S et al (2022) Characteristics of heart failure with preserved ejection fraction across the range of left ventricular ejection fraction. Circulation 146(7):506–518PubMedCrossRef
52.
go back to reference Rommel KP et al (2016) Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J Am Coll Cardiol 67(15):1815–1825PubMedCrossRef Rommel KP et al (2016) Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J Am Coll Cardiol 67(15):1815–1825PubMedCrossRef
53.
go back to reference Schwartzenberg S et al (2012) Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol 59(5):442–451PubMedCrossRef Schwartzenberg S et al (2012) Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol 59(5):442–451PubMedCrossRef
54.
go back to reference Popovic D et al (2023) Ventricular stiffening and chamber contracture in heart failure with higher ejection fraction. Eur J Heart Fail 25(5):657–668PubMedCrossRef Popovic D et al (2023) Ventricular stiffening and chamber contracture in heart failure with higher ejection fraction. Eur J Heart Fail 25(5):657–668PubMedCrossRef
55.
go back to reference Rommel KP et al (2023) Modulation of pulsatile left ventricular afterload by renal denervation in heart failure with preserved ejection fraction. Circ Heart Fail 16(10):30CrossRef Rommel KP et al (2023) Modulation of pulsatile left ventricular afterload by renal denervation in heart failure with preserved ejection fraction. Circ Heart Fail 16(10):30CrossRef
56.
go back to reference Lurz P et al (2020) Changes in stroke volume after renal denervation: insight from cardiac magnetic resonance imaging. Hypertension 75(3):707–713PubMedCrossRef Lurz P et al (2020) Changes in stroke volume after renal denervation: insight from cardiac magnetic resonance imaging. Hypertension 75(3):707–713PubMedCrossRef
57.
go back to reference Fengler K et al (2022) Sympathomodulation in heart failure with high vs. normal ejection fraction. Struct Heart 6(4) Fengler K et al (2022) Sympathomodulation in heart failure with high vs. normal ejection fraction. Struct Heart 6(4)
58.
go back to reference Thavabalan K et al (2024) Efficacy of renal denervation as an adjunct to pulmonary vein isolation for atrial fibrillation treatment: a systematic review and meta-analysis. Eur Heart J Open 4(4) Thavabalan K et al (2024) Efficacy of renal denervation as an adjunct to pulmonary vein isolation for atrial fibrillation treatment: a systematic review and meta-analysis. Eur Heart J Open 4(4)
59.
go back to reference Katsurada K et al (2021) Enhanced expression and function of renal SGLT2 (sodium-glucose cotransporter 2) in heart failure: role of renal nerves. Circ Heart Fail 14(12):18CrossRef Katsurada K et al (2021) Enhanced expression and function of renal SGLT2 (sodium-glucose cotransporter 2) in heart failure: role of renal nerves. Circ Heart Fail 14(12):18CrossRef
60.
go back to reference Elliott RH et al (2016) Is it time to think about the sodium glucose co-transporter 2 sympathetically? Nephrology 21(4):286–294PubMedCrossRef Elliott RH et al (2016) Is it time to think about the sodium glucose co-transporter 2 sympathetically? Nephrology 21(4):286–294PubMedCrossRef
61.
go back to reference Patel HC et al (2016) Renal denervation in heart failure with preserved ejection fraction (RDT-PEF): a randomized controlled trial. Eur J Heart Fail 18(6):703–712PubMedCrossRef Patel HC et al (2016) Renal denervation in heart failure with preserved ejection fraction (RDT-PEF): a randomized controlled trial. Eur J Heart Fail 18(6):703–712PubMedCrossRef
62.
go back to reference Chen W et al (2017) Preliminary effects of renal denervation with saline irrigated catheter on cardiac systolic function in patients with heart failure: a prospective, randomized, controlled, pilot study. Catheter Cardiovasc Interv 89(4):E153–E161PubMedCrossRef Chen W et al (2017) Preliminary effects of renal denervation with saline irrigated catheter on cardiac systolic function in patients with heart failure: a prospective, randomized, controlled, pilot study. Catheter Cardiovasc Interv 89(4):E153–E161PubMedCrossRef
63.
go back to reference Spadaro AG et al (2019) Renal denervation in patients with heart failure secondary to Chagas’ disease: a pilot randomized controlled trial. Catheter Cardiovasc Interv 94(4):644–650PubMedCrossRef Spadaro AG et al (2019) Renal denervation in patients with heart failure secondary to Chagas’ disease: a pilot randomized controlled trial. Catheter Cardiovasc Interv 94(4):644–650PubMedCrossRef
64.
go back to reference Gao JQ, Yang W, Liu ZJ (2019) Percutaneous renal artery denervation in patients with chronic systolic heart failure: a randomized controlled trial. Cardiol J 26(5):503–510PubMedPubMedCentralCrossRef Gao JQ, Yang W, Liu ZJ (2019) Percutaneous renal artery denervation in patients with chronic systolic heart failure: a randomized controlled trial. Cardiol J 26(5):503–510PubMedPubMedCentralCrossRef
65.
go back to reference Drożdż T et al (2019) Renal denervation in patients with symptomatic chronic heart failure despite resynchronization therapy - a pilot study. Postepy Kardiol Interwencyjnej 15(2):240–246PubMedPubMedCentral Drożdż T et al (2019) Renal denervation in patients with symptomatic chronic heart failure despite resynchronization therapy - a pilot study. Postepy Kardiol Interwencyjnej 15(2):240–246PubMedPubMedCentral
66.
go back to reference Feyz L et al (2022) Endovascular renal sympathetic denervation to improve heart failure with reduced ejection fraction: the IMPROVE-HF-I study. Neth Heart J 30(3):149–159PubMedCrossRef Feyz L et al (2022) Endovascular renal sympathetic denervation to improve heart failure with reduced ejection fraction: the IMPROVE-HF-I study. Neth Heart J 30(3):149–159PubMedCrossRef
67.
go back to reference Pietilä-Effati P et al (2022) Renal denervation in patients who do not respond to cardiac resynchronization therapy. Scand Cardiovasc J 56(1):103–106PubMedCrossRef Pietilä-Effati P et al (2022) Renal denervation in patients who do not respond to cardiac resynchronization therapy. Scand Cardiovasc J 56(1):103–106PubMedCrossRef
Metadata
Title
Renal denervation in the setting of heart failure
Authors
Franziska Koppe-Schmeißer
Karl Fengler
Karl-Patrik Kresoja
Philipp Lurz
Karl-Philipp Rommel
Publication date
29-01-2025
Publisher
Springer US
Published in
Heart Failure Reviews
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-025-10489-z

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now