Skip to main content
Top
Published in:

Open Access 07-08-2024 | Heart Failure | Heart Failure (HJ Eisen, Section Editor)

Precision Genetic Therapies: Balancing Risk and Benefit in Patients with Heart Failure

Authors: Jamie R. Johnston, Eric D. Adler

Published in: Current Cardiology Reports | Issue 9/2024

Login to get access

Abstract

Purpose of Review

Precision genetic medicine is evolving at a rapid pace and bears significant implications for clinical cardiology. Herein, we discuss the latest advancements and emerging strategies in gene therapy for cardiomyopathy and heart failure.

Recent Findings

Elucidating the genetic architecture of heart failure has paved the way for precision therapies in cardiovascular medicine. Recent preclinical studies and early-phase clinical trials have demonstrated encouraging results that support the development of gene therapies for heart failure arising from a variety of etiologies. In addition to the discovery of new therapeutic targets, innovative delivery platforms are being leveraged to improve the safety and efficacy of cardiac gene therapies.

Summary

Precision genetic therapy represents a potentially safe and effective approach for improving outcomes in patients with heart failure. It holds promise for radically transforming the treatment paradigm for heart failure by directly targeting the underlying etiology. As this new generation of cardiovascular medicines progress to the clinic, it is especially important to carefully evaluate the benefits and risks for patients.
Literature
1.
go back to reference Tsao CW, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8):e153–639.PubMedCrossRef Tsao CW, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8):e153–639.PubMedCrossRef
2.
go back to reference Savarese G, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–87.PubMedCrossRef Savarese G, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–87.PubMedCrossRef
4.
go back to reference Heidenreich PA, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895–1032.PubMed Heidenreich PA, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895–1032.PubMed
6.
go back to reference Lucas T, Bonauer A, Dimmeler S. RNA Therapeutics in Cardiovascular Disease. Circ Res. 2018;123(2):205–20.PubMedCrossRef Lucas T, Bonauer A, Dimmeler S. RNA Therapeutics in Cardiovascular Disease. Circ Res. 2018;123(2):205–20.PubMedCrossRef
7.
10.
go back to reference Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013;113(6):660–75.PubMedCrossRef Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013;113(6):660–75.PubMedCrossRef
11.
go back to reference Helms AS, Thompson AD, Day SM. Translation of New and Emerging Therapies for Genetic Cardiomyopathies. JACC Basic Transl Sci. 2022;7(1):70–83.PubMedCrossRef Helms AS, Thompson AD, Day SM. Translation of New and Emerging Therapies for Genetic Cardiomyopathies. JACC Basic Transl Sci. 2022;7(1):70–83.PubMedCrossRef
12.
go back to reference Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science. 2023;379(6629):eadd864.CrossRef Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science. 2023;379(6629):eadd864.CrossRef
13.
go back to reference Wright AV, Nunez JK, Doudna JA. Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering. Cell. 2016;164(1–2):29–44.PubMedCrossRef Wright AV, Nunez JK, Doudna JA. Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering. Cell. 2016;164(1–2):29–44.PubMedCrossRef
14.
go back to reference Yeh CD, Richardson CD, Corn JE. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol. 2019;21(12):1468–78.PubMedCrossRef Yeh CD, Richardson CD, Corn JE. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol. 2019;21(12):1468–78.PubMedCrossRef
18.
go back to reference Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front Bioeng Biotechnol. 2023;11:1138596.PubMedPubMedCentralCrossRef Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front Bioeng Biotechnol. 2023;11:1138596.PubMedPubMedCentralCrossRef
20.
go back to reference Hakim CH, et al. Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models. Nat Commun. 2021;12(1):6769.PubMedPubMedCentralCrossRef Hakim CH, et al. Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models. Nat Commun. 2021;12(1):6769.PubMedPubMedCentralCrossRef
25.
go back to reference Hilton IB, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510–7.PubMedPubMedCentralCrossRef Hilton IB, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510–7.PubMedPubMedCentralCrossRef
29.
go back to reference Anttila V, et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol Ther. 2023;31(3):866–74.PubMedCrossRef Anttila V, et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol Ther. 2023;31(3):866–74.PubMedCrossRef
31.
go back to reference Cannata A, et al. Gene Therapy for the Heart Lessons Learned and Future Perspectives. Circ Res. 2020;126(10):1394–414.PubMedCrossRef Cannata A, et al. Gene Therapy for the Heart Lessons Learned and Future Perspectives. Circ Res. 2020;126(10):1394–414.PubMedCrossRef
32.
go back to reference Rincon MY, VandenDriessche T, Chuah MK. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res. 2015;108(1):4–20.PubMedPubMedCentralCrossRef Rincon MY, VandenDriessche T, Chuah MK. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res. 2015;108(1):4–20.PubMedPubMedCentralCrossRef
33.
go back to reference Schiedner G, et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet. 1998;18(2):180–3.PubMedCrossRef Schiedner G, et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet. 1998;18(2):180–3.PubMedCrossRef
34.
go back to reference Raper SE, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58.PubMedCrossRef Raper SE, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58.PubMedCrossRef
38.
go back to reference Mendell JR, et al. Testing preexisting antibodies prior to AAV gene transfer therapy: rationale, lessons and future considerations. Mol Ther Methods Clin Dev. 2022;25:74–83.PubMedPubMedCentralCrossRef Mendell JR, et al. Testing preexisting antibodies prior to AAV gene transfer therapy: rationale, lessons and future considerations. Mol Ther Methods Clin Dev. 2022;25:74–83.PubMedPubMedCentralCrossRef
40.
go back to reference Tabebordbar M, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell. 2021;184(19):4919-4938 e22.PubMedPubMedCentralCrossRef Tabebordbar M, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell. 2021;184(19):4919-4938 e22.PubMedPubMedCentralCrossRef
41.
go back to reference Weinmann J, et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun. 2020;11(1):5432.PubMedPubMedCentralCrossRef Weinmann J, et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun. 2020;11(1):5432.PubMedPubMedCentralCrossRef
43.
44.
go back to reference Papayannakos C, Daniel R. Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy. Gene Ther. 2013;20(6):581–8.PubMedCrossRef Papayannakos C, Daniel R. Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy. Gene Ther. 2013;20(6):581–8.PubMedCrossRef
47.
50.
go back to reference Wei T, et al. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11(1):3232.PubMedPubMedCentralCrossRef Wei T, et al. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11(1):3232.PubMedPubMedCentralCrossRef
53.
54.
go back to reference Greenwell AA, et al. Barth syndrome-related cardiomyopathy is associated with a reduction in myocardial glucose oxidation. Am J Physiol Heart Circ Physiol. 2021;320(6):H2255–69.PubMedCrossRef Greenwell AA, et al. Barth syndrome-related cardiomyopathy is associated with a reduction in myocardial glucose oxidation. Am J Physiol Heart Circ Physiol. 2021;320(6):H2255–69.PubMedCrossRef
55.
go back to reference Thompson R, et al. Current and future treatment approaches for Barth syndrome. J Inherit Metab Dis. 2022;45(1):17–28.PubMedCrossRef Thompson R, et al. Current and future treatment approaches for Barth syndrome. J Inherit Metab Dis. 2022;45(1):17–28.PubMedCrossRef
56.
58.
59.
go back to reference Taylor MRG, et al. Danon disease presenting with dilated cardiomyopathy and a complex phenotype. J Hum Genet. 2007;52(10):830–5.PubMedCrossRef Taylor MRG, et al. Danon disease presenting with dilated cardiomyopathy and a complex phenotype. J Hum Genet. 2007;52(10):830–5.PubMedCrossRef
60.
go back to reference Yang Z, et al. Danon disease as an underrecognized cause of hypertrophic cardiomyopathy in children. Circulation. 2005;112(11):1612–7.PubMedCrossRef Yang Z, et al. Danon disease as an underrecognized cause of hypertrophic cardiomyopathy in children. Circulation. 2005;112(11):1612–7.PubMedCrossRef
63.
64.
go back to reference Keyt LK, et al. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med. 2022;9:972301.PubMedPubMedCentralCrossRef Keyt LK, et al. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med. 2022;9:972301.PubMedPubMedCentralCrossRef
65.
67.
go back to reference Mearini G, et al. Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun. 2014;5:5515.PubMedCrossRef Mearini G, et al. Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun. 2014;5:5515.PubMedCrossRef
70.
go back to reference Martin TG, et al. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat Commun. 2021;12(1):2942.PubMedPubMedCentralCrossRef Martin TG, et al. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat Commun. 2021;12(1):2942.PubMedPubMedCentralCrossRef
71.
go back to reference Qu HQ, Feldman AM, Hakonarson H. Genetics of BAG3: A Paradigm for Developing Precision Therapies for Dilated Cardiomyopathies. J Am Heart Assoc. 2022;11(23):e027373.PubMedPubMedCentralCrossRef Qu HQ, Feldman AM, Hakonarson H. Genetics of BAG3: A Paradigm for Developing Precision Therapies for Dilated Cardiomyopathies. J Am Heart Assoc. 2022;11(23):e027373.PubMedPubMedCentralCrossRef
72.
73.
go back to reference Knezevic T, et al. Adeno-associated Virus Serotype 9 - Driven Expression of BAG3 Improves Left Ventricular Function in Murine Hearts with Left Ventricular Dysfunction Secondary to a Myocardial Infarction. JACC Basic Transl Sci. 2016;1(7):647–56.PubMedPubMedCentralCrossRef Knezevic T, et al. Adeno-associated Virus Serotype 9 - Driven Expression of BAG3 Improves Left Ventricular Function in Murine Hearts with Left Ventricular Dysfunction Secondary to a Myocardial Infarction. JACC Basic Transl Sci. 2016;1(7):647–56.PubMedPubMedCentralCrossRef
74.
go back to reference Myers VD, et al. Cardiac Transduction in Mini-Pigs After Low-Dose Retrograde Coronary Sinus Infusion of AAV9-BAG3: A Pilot Study. JACC Basic Transl Sci. 2022;7(9):951–3.PubMedPubMedCentralCrossRef Myers VD, et al. Cardiac Transduction in Mini-Pigs After Low-Dose Retrograde Coronary Sinus Infusion of AAV9-BAG3: A Pilot Study. JACC Basic Transl Sci. 2022;7(9):951–3.PubMedPubMedCentralCrossRef
76.
go back to reference Venugopal V, Pavlakis S. Duchenne muscular dystrophy. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Venugopal V, Pavlakis S. Duchenne muscular dystrophy. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
79.
go back to reference Mullard A. FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nat Rev Drug Discov. 2023;22(8):610.PubMedCrossRef Mullard A. FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nat Rev Drug Discov. 2023;22(8):610.PubMedCrossRef
80.
84.
go back to reference Bokhari SRA, Zulfiqar H, Hariz A. Fabry disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Bokhari SRA, Zulfiqar H, Hariz A. Fabry disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
85.
go back to reference Monda E, et al. Cardiovascular Involvement in Fabry’s Disease: New Advances in Diagnostic Strategies, Outcome Prediction and Management. Card Fail Rev. 2023;9:e12.PubMedPubMedCentralCrossRef Monda E, et al. Cardiovascular Involvement in Fabry’s Disease: New Advances in Diagnostic Strategies, Outcome Prediction and Management. Card Fail Rev. 2023;9:e12.PubMedPubMedCentralCrossRef
86.
go back to reference Pieroni M, et al. Cardiac Involvement in Fabry Disease: JACC Review Topic of the Week. J Am Coll Cardiol. 2021;77(7):922–36.PubMedCrossRef Pieroni M, et al. Cardiac Involvement in Fabry Disease: JACC Review Topic of the Week. J Am Coll Cardiol. 2021;77(7):922–36.PubMedCrossRef
87.
go back to reference Deng M, et al. Systematic gene therapy derived from an investigative study of AAV2/8 vector gene therapy for Fabry disease. Orphanet J Rare Dis. 2023;18(1):275.PubMedPubMedCentralCrossRef Deng M, et al. Systematic gene therapy derived from an investigative study of AAV2/8 vector gene therapy for Fabry disease. Orphanet J Rare Dis. 2023;18(1):275.PubMedPubMedCentralCrossRef
88.
go back to reference Jain A, Zahra F. Transthyretin amyloid cardiomyopathy (ATTR-CM). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Jain A, Zahra F. Transthyretin amyloid cardiomyopathy (ATTR-CM). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
89.
go back to reference Kittleson MM, et al. Cardiac Amyloidosis: Evolving Diagnosis and Management: A Scientific Statement From the American Heart Association. Circulation. 2020;142(1):e7–22.PubMedCrossRef Kittleson MM, et al. Cardiac Amyloidosis: Evolving Diagnosis and Management: A Scientific Statement From the American Heart Association. Circulation. 2020;142(1):e7–22.PubMedCrossRef
90.
go back to reference Aimo A, et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol. 2022;19(10):655–67.PubMedCrossRef Aimo A, et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol. 2022;19(10):655–67.PubMedCrossRef
91.
go back to reference Finn JD, et al. A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing. Cell Rep. 2018;22(9):2227–35.PubMedCrossRef Finn JD, et al. A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing. Cell Rep. 2018;22(9):2227–35.PubMedCrossRef
92.
go back to reference Gillmore JD, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med. 2021;385(6):493–502.PubMedCrossRef Gillmore JD, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med. 2021;385(6):493–502.PubMedCrossRef
94.
95.
go back to reference Silvestri NJ, et al. Cardiac involvement in the muscular dystrophies. Muscle Nerve. 2018;57(5):707–15.PubMedCrossRef Silvestri NJ, et al. Cardiac involvement in the muscular dystrophies. Muscle Nerve. 2018;57(5):707–15.PubMedCrossRef
97.
go back to reference Hermann H, Wuebbles RD, Burkin DJ. A gene therapy approach for the treatment of limb-girdle muscular dystrophy 2C/R5. Mol Ther Methods Clin Dev. 2023;29:160–1.PubMedPubMedCentralCrossRef Hermann H, Wuebbles RD, Burkin DJ. A gene therapy approach for the treatment of limb-girdle muscular dystrophy 2C/R5. Mol Ther Methods Clin Dev. 2023;29:160–1.PubMedPubMedCentralCrossRef
98.
go back to reference Seo YE, et al. Systemic gamma-sarcoglycan AAV gene transfer results in dose-dependent correction of muscle deficits in the LGMD 2C/R5 mouse model. Mol Ther Methods Clin Dev. 2023;28:284–99.PubMedPubMedCentralCrossRef Seo YE, et al. Systemic gamma-sarcoglycan AAV gene transfer results in dose-dependent correction of muscle deficits in the LGMD 2C/R5 mouse model. Mol Ther Methods Clin Dev. 2023;28:284–99.PubMedPubMedCentralCrossRef
99.
go back to reference Sakuru R. Bollu PC. Hurler syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Sakuru R. Bollu PC. Hurler syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
100.
102.
103.
go back to reference Salik I, Rawla P. Marfan syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Salik I, Rawla P. Marfan syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
105.
go back to reference Zeng Y, et al. Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Human Cells and Heterozygous Embryos. Mol Ther. 2018;26(11):2631–7.PubMedPubMedCentralCrossRef Zeng Y, et al. Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Human Cells and Heterozygous Embryos. Mol Ther. 2018;26(11):2631–7.PubMedPubMedCentralCrossRef
106.
go back to reference Sickles CK, Gross GP. Progeria. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Sickles CK, Gross GP. Progeria. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
108.
go back to reference Williams CT, De Jesus O. Friedreich Ataxia. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Williams CT, De Jesus O. Friedreich Ataxia. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
109.
go back to reference Lynch DR, Farmer G. Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal. 2021;5(2):NS20200093.PubMedPubMedCentralCrossRef Lynch DR, Farmer G. Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal. 2021;5(2):NS20200093.PubMedPubMedCentralCrossRef
110.
go back to reference Perdomini M, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20(5):542–7.PubMedCrossRef Perdomini M, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20(5):542–7.PubMedCrossRef
111.
go back to reference Salami CO, et al. Stress-Induced Mouse Model of the Cardiac Manifestations of Friedreich’s Ataxia Corrected by AAV-mediated Gene Therapy. Hum Gene Ther. 2020;31(15–16):819–27.PubMedCrossRef Salami CO, et al. Stress-Induced Mouse Model of the Cardiac Manifestations of Friedreich’s Ataxia Corrected by AAV-mediated Gene Therapy. Hum Gene Ther. 2020;31(15–16):819–27.PubMedCrossRef
112.
113.
go back to reference Rajkumar V, Dumpa V. Lysosomal storage disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Rajkumar V, Dumpa V. Lysosomal storage disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
114.
go back to reference Stevens D, Milani-Nejad S, Mozaffar T. Pompe Disease: a Clinical, Diagnostic, and Therapeutic Overview. Curr Treat Options Neurol. 2022;24(11):573–88.PubMedPubMedCentralCrossRef Stevens D, Milani-Nejad S, Mozaffar T. Pompe Disease: a Clinical, Diagnostic, and Therapeutic Overview. Curr Treat Options Neurol. 2022;24(11):573–88.PubMedPubMedCentralCrossRef
115.
go back to reference Eggers M, et al. Muscle-directed gene therapy corrects Pompe disease and uncovers species-specific GAA immunogenicity. EMBO Mol Med. 2022;14(1):e13968.PubMedCrossRef Eggers M, et al. Muscle-directed gene therapy corrects Pompe disease and uncovers species-specific GAA immunogenicity. EMBO Mol Med. 2022;14(1):e13968.PubMedCrossRef
118.
go back to reference Argiro A, Ding J, Adler E. Gene therapy for heart failure and cardiomyopathies. Rev Esp Cardiol (Engl Ed). 2023;76(12):1042–1054 Argiro A, Ding J, Adler E. Gene therapy for heart failure and cardiomyopathies. Rev Esp Cardiol (Engl Ed). 2023;76(12):1042–1054
119.
Metadata
Title
Precision Genetic Therapies: Balancing Risk and Benefit in Patients with Heart Failure
Authors
Jamie R. Johnston
Eric D. Adler
Publication date
07-08-2024
Publisher
Springer US
Published in
Current Cardiology Reports / Issue 9/2024
Print ISSN: 1523-3782
Electronic ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-024-02096-5

Other articles of this Issue 9/2024

Current Cardiology Reports 9/2024 Go to the issue

Invasive Electrophysiology and Pacing (EK Heist and S Nedios, Section Editors)

The use of Intracardiac Echocardiography in Catheter Ablation of Atrial Fibrillation

Valvular Heart Disease (TL Kiefer, Section Editor)

Obesity Paradox in Transcatheter Aortic Valve Replacement

Regenerative Medicine (SM Wu, Section Editor)

Molecular Regulation of Cardiac Conduction System Development

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now