Skip to main content
Top

Kinesin-5 inhibition improves neural regeneration in experimental autoimmune neuritis

Stay up to date with medical journals in your specialty

Already registered? Log in here

Looking for something specific?

Find articles from over 500 clinical journals from Springer with the search function.

About journals on Springer Medicine

The range of medical journals on Springer Medicine is extremely diverse. It includes the current editions and archives of around 500 English-language journals from almost all medical disciplines published by Springer. 

The specialist literature is usually available both online in full text and as a PDF for download. The online view is optimized in such a way that the specialist texts can be read comfortably on all screen sizes, from desktops to tablets to smartphones. We also include features to support your use of the journals for your research, such as bookmark setting.

Whether you’re interested in internal medicine, surgery, general medicine, gynecology, orthopedics, neurology, or pediatrics, there are excellent journals in almost every subject area, such as the BMC Series, Diabetologia, Breast Cancer Research, Current Obesity Reports, CNS Drugs and many others, all of which are an integral part of the everyday life of doctors across Europe. 

The breadth of content from this suite of journals allows the Springer Medicine team to collect and deliver broad-ranging content across the full spectrum of medical knowledge, with a special focus on topics highlighted by these leading journals and their editorial boards and specialist authors. This guarantees a high quality of content and ensures that our readers are offered the most relevant topics in their respective specialist area. 

Our experienced clinical content managers constantly monitor the needs of medical professionals to provide up-to-date reports from international congresses, expert interviews, and a range of digestible content on emerging topics in the field of medicine.

Published in:

Open Access 01-12-2023 | Guillain-Barré Syndrome | Research

Kinesin-5 inhibition improves neural regeneration in experimental autoimmune neuritis

Authors: Felix Kohle, Robin Ackfeld, Franziska Hommen, Ines Klein, Martin K. R. Svačina, Christian Schneider, Gereon R. Fink, Mohammed Barham, David Vilchez, Helmar C. Lehmann

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Background

Autoimmune neuropathies can result in long-term disability and incomplete recovery, despite adequate first-line therapy. Kinesin-5 inhibition was shown to accelerate neurite outgrowth in different preclinical studies. Here, we evaluated the potential neuro-regenerative effects of the small molecule kinesin-5 inhibitor monastrol in a rodent model of acute autoimmune neuropathies, experimental autoimmune neuritis.

Methods

Experimental autoimmune neuritis was induced in Lewis rats with the neurogenic P2-peptide. At the beginning of the recovery phase at day 18, the animals were treated with 1 mg/kg monastrol or sham and observed until day 30 post-immunisation. Electrophysiological and histological analysis for markers of inflammation and remyelination of the sciatic nerve were performed. Neuromuscular junctions of the tibialis anterior muscles were analysed for reinnervation. We further treated human induced pluripotent stem cells-derived secondary motor neurons with monastrol in different concentrations and performed a neurite outgrowth assay.

Results

Treatment with monastrol enhanced functional and histological recovery in experimental autoimmune neuritis. Motor nerve conduction velocity at day 30 in the treated animals was comparable to pre-neuritis values. Monastrol-treated animals showed partially reinnervated or intact neuromuscular junctions. A significant and dose-dependent accelerated neurite outgrowth was observed after kinesin-5 inhibition as a possible mode of action.

Conclusion

Pharmacological kinesin-5 inhibition improves the functional outcome in experimental autoimmune neuritis through accelerated motor neurite outgrowth and histological recovery. This approach could be of interest to improve the outcome of autoimmune neuropathy patients.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Forsberg A, de Pedro-Cuesta J, Widén Holmqvist L. Use of healthcare, patient satisfaction and burden of care in Guillain-Barre syndrome. J Rehabil Med. 2006;38:230–6.PubMedCrossRef Forsberg A, de Pedro-Cuesta J, Widén Holmqvist L. Use of healthcare, patient satisfaction and burden of care in Guillain-Barre syndrome. J Rehabil Med. 2006;38:230–6.PubMedCrossRef
4.
go back to reference Lehmann HC, Meyer Horste G, Kieseier BC, Hartung HP. Pathogenesis and treatment of immune-mediated neuropathies. Ther Adv Neurol Disord. 2009;2:261–81.PubMedPubMedCentralCrossRef Lehmann HC, Meyer Horste G, Kieseier BC, Hartung HP. Pathogenesis and treatment of immune-mediated neuropathies. Ther Adv Neurol Disord. 2009;2:261–81.PubMedPubMedCentralCrossRef
5.
go back to reference Gold R, Hartung HP, Toyka KV. Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today. 2000;6:88–91.PubMedCrossRef Gold R, Hartung HP, Toyka KV. Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today. 2000;6:88–91.PubMedCrossRef
6.
go back to reference Altmann P, De Simoni D, Kaider A, Ludwig B, Rath J, Leutmezer F, Zimprich F, Hoeftberger R, Lunn MP, Heslegrave A, et al. Increased serum neurofilament light chain concentration indicates poor outcome in Guillain–Barré syndrome. J Neuroinflammation. 2020;17:86.PubMedPubMedCentralCrossRef Altmann P, De Simoni D, Kaider A, Ludwig B, Rath J, Leutmezer F, Zimprich F, Hoeftberger R, Lunn MP, Heslegrave A, et al. Increased serum neurofilament light chain concentration indicates poor outcome in Guillain–Barré syndrome. J Neuroinflammation. 2020;17:86.PubMedPubMedCentralCrossRef
7.
go back to reference Grüter T, Motte J, Fisse AL, Bulut Y, Köse N, Athanasopoulos D, Otto S, Yoon MS, Schneider-Gold C, Gold R, Pitarokoili K. Pathological spontaneous activity as a prognostic marker in chronic inflammatory demyelinating polyneuropathy. Eur J Neurol. 2020;27:2595–603.PubMedCrossRef Grüter T, Motte J, Fisse AL, Bulut Y, Köse N, Athanasopoulos D, Otto S, Yoon MS, Schneider-Gold C, Gold R, Pitarokoili K. Pathological spontaneous activity as a prognostic marker in chronic inflammatory demyelinating polyneuropathy. Eur J Neurol. 2020;27:2595–603.PubMedCrossRef
8.
go back to reference Griffin JW, Pan B, Polley MA, Hoffman PN, Farah MH. Measuring nerve regeneration in the mouse. Exp Neurol. 2010;223:60–71.PubMedCrossRef Griffin JW, Pan B, Polley MA, Hoffman PN, Farah MH. Measuring nerve regeneration in the mouse. Exp Neurol. 2010;223:60–71.PubMedCrossRef
9.
go back to reference Prokop A. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Dev. 2013;8:17–17.PubMedPubMedCentralCrossRef Prokop A. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Dev. 2013;8:17–17.PubMedPubMedCentralCrossRef
10.
go back to reference Cao Y, Lipka J, Stucchi R, Burute M, Pan X, Portegies S, Tas R, Willems J, Will L, MacGillavry H, et al. Microtubule minus-end binding protein CAMSAP2 and kinesin-14 motor KIFC3 control dendritic microtubule organization. Curr Biol. 2020;30:899-908.e896.PubMedPubMedCentralCrossRef Cao Y, Lipka J, Stucchi R, Burute M, Pan X, Portegies S, Tas R, Willems J, Will L, MacGillavry H, et al. Microtubule minus-end binding protein CAMSAP2 and kinesin-14 motor KIFC3 control dendritic microtubule organization. Curr Biol. 2020;30:899-908.e896.PubMedPubMedCentralCrossRef
11.
go back to reference Baas PW, Matamoros AJ. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism. Neural Regen Res. 2015;10:845–9.PubMedPubMedCentralCrossRef Baas PW, Matamoros AJ. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism. Neural Regen Res. 2015;10:845–9.PubMedPubMedCentralCrossRef
13.
go back to reference Lin S, Liu M, Son YJ, Timothy Himes B, Snow DM, Yu W, Baas PW. Inhibition of Kinesin-5, a microtubule-based motor protein, as a strategy for enhancing regeneration of adult axons. Traffic. 2011;12:269–86.PubMedPubMedCentralCrossRef Lin S, Liu M, Son YJ, Timothy Himes B, Snow DM, Yu W, Baas PW. Inhibition of Kinesin-5, a microtubule-based motor protein, as a strategy for enhancing regeneration of adult axons. Traffic. 2011;12:269–86.PubMedPubMedCentralCrossRef
14.
15.
go back to reference Xu C, Klaw MC, Lemay MA, Baas PW, Tom VJ. Pharmacologically inhibiting kinesin-5 activity with monastrol promotes axonal regeneration following spinal cord injury. Exp Neurol. 2015;263:172–6.PubMedCrossRef Xu C, Klaw MC, Lemay MA, Baas PW, Tom VJ. Pharmacologically inhibiting kinesin-5 activity with monastrol promotes axonal regeneration following spinal cord injury. Exp Neurol. 2015;263:172–6.PubMedCrossRef
17.
go back to reference Bobylev I, Peters D, Vyas M, Barham M, Klein I, von Strandmann EP, Neiss WF, Lehmann HC. Kinesin-5 blocker monastrol protects against bortezomib-induced peripheral neurotoxicity. Neurotox Res. 2017;32:555–62.PubMedCrossRef Bobylev I, Peters D, Vyas M, Barham M, Klein I, von Strandmann EP, Neiss WF, Lehmann HC. Kinesin-5 blocker monastrol protects against bortezomib-induced peripheral neurotoxicity. Neurotox Res. 2017;32:555–62.PubMedCrossRef
18.
go back to reference DeBonis S, Simorre JP, Crevel I, Lebeau L, Skoufias DA, Blangy A, Ebel C, Gans P, Cross R, Hackney DD, et al. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry. 2003;42:338–49.PubMedCrossRef DeBonis S, Simorre JP, Crevel I, Lebeau L, Skoufias DA, Blangy A, Ebel C, Gans P, Cross R, Hackney DD, et al. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry. 2003;42:338–49.PubMedCrossRef
19.
go back to reference Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science. 1999;286:971–4.PubMedCrossRef Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science. 1999;286:971–4.PubMedCrossRef
20.
go back to reference Enders U, Lobb R, Pepinsky RB, Hartung HP, Toyka KV, Gold R. The role of the very late antigen-4 and its counterligand vascular cell adhesion molecule-1 in the pathogenesis of experimental autoimmune neuritis of the Lewis rat. Brain. 1998;121(Pt 7):1257–66.PubMedCrossRef Enders U, Lobb R, Pepinsky RB, Hartung HP, Toyka KV, Gold R. The role of the very late antigen-4 and its counterligand vascular cell adhesion molecule-1 in the pathogenesis of experimental autoimmune neuritis of the Lewis rat. Brain. 1998;121(Pt 7):1257–66.PubMedCrossRef
21.
go back to reference King RH, Craggs RI, Gross ML, Thomas PK. Effects of glucocorticoids on experimental allergic neuritis. Exp Neurol. 1985;87:9–19.PubMedCrossRef King RH, Craggs RI, Gross ML, Thomas PK. Effects of glucocorticoids on experimental allergic neuritis. Exp Neurol. 1985;87:9–19.PubMedCrossRef
22.
go back to reference Kohle F, Sprenger A, Klein I, Fink GR, Lehmann HC. Nerve conductions studies in experimental models of autoimmune neuritis: a meta-analysis and guideline. J Neuroimmunol. 2021;352: 577470.PubMedCrossRef Kohle F, Sprenger A, Klein I, Fink GR, Lehmann HC. Nerve conductions studies in experimental models of autoimmune neuritis: a meta-analysis and guideline. J Neuroimmunol. 2021;352: 577470.PubMedCrossRef
23.
go back to reference Crowe AR, Yue W. Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio-Protoc. 2019;9: e3465.PubMedPubMedCentralCrossRef Crowe AR, Yue W. Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio-Protoc. 2019;9: e3465.PubMedPubMedCentralCrossRef
24.
go back to reference Pitarokoili K, Kohle F, Motte J, Fatoba O, Pedreiturria X, Gold R, Yoon MS. Anti-inflammatory and immunomodulatory potential of human immunoglobulin applied intrathecally in Lewis rat experimental autoimmune neuritis. J Neuroimmunol. 2017;309:58–67.PubMedCrossRef Pitarokoili K, Kohle F, Motte J, Fatoba O, Pedreiturria X, Gold R, Yoon MS. Anti-inflammatory and immunomodulatory potential of human immunoglobulin applied intrathecally in Lewis rat experimental autoimmune neuritis. J Neuroimmunol. 2017;309:58–67.PubMedCrossRef
25.
26.
go back to reference Biscoe TJ, Nickels SM, Stirling CA. Numbers and sizes of nerve fibres in mouse spinal roots. Q J Exp Physiol. 1982;67:473–94.PubMedCrossRef Biscoe TJ, Nickels SM, Stirling CA. Numbers and sizes of nerve fibres in mouse spinal roots. Q J Exp Physiol. 1982;67:473–94.PubMedCrossRef
27.
go back to reference Sleigh JN, Burgess RW, Gillingwater TH, Cader MZ. Morphological analysis of neuromuscular junction development and degeneration in rodent lumbrical muscles. J Neurosci Methods. 2014;227:159–65.PubMedPubMedCentralCrossRef Sleigh JN, Burgess RW, Gillingwater TH, Cader MZ. Morphological analysis of neuromuscular junction development and degeneration in rodent lumbrical muscles. J Neurosci Methods. 2014;227:159–65.PubMedPubMedCentralCrossRef
28.
go back to reference Hill SJ, Mordes DA, Cameron LA, Neuberg DS, Landini S, Eggan K, Livingston DM. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage. Proc Natl Acad Sci. 2016;113:E7701–9.PubMedPubMedCentralCrossRef Hill SJ, Mordes DA, Cameron LA, Neuberg DS, Landini S, Eggan K, Livingston DM. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage. Proc Natl Acad Sci. 2016;113:E7701–9.PubMedPubMedCentralCrossRef
29.
go back to reference Meijering E, Jacob M, Sarria J-CF, Steiner P, Hirling H, Unser M. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytom Part A. 2004;58A:167–76.CrossRef Meijering E, Jacob M, Sarria J-CF, Steiner P, Hirling H, Unser M. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytom Part A. 2004;58A:167–76.CrossRef
30.
go back to reference Plomp JJ, Willison HJ. Pathophysiological actions of neuropathy-related anti-ganglioside antibodies at the neuromuscular junction. J Physiol. 2009;587:3979–99.PubMedPubMedCentralCrossRef Plomp JJ, Willison HJ. Pathophysiological actions of neuropathy-related anti-ganglioside antibodies at the neuromuscular junction. J Physiol. 2009;587:3979–99.PubMedPubMedCentralCrossRef
31.
go back to reference Halstead SK, O’Hanlon GM, Humphreys PD, Morrison DB, Morgan BP, Todd AJ, Plomp JJ, Willison HJ. Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain. 2004;127:2109–23.PubMedCrossRef Halstead SK, O’Hanlon GM, Humphreys PD, Morrison DB, Morgan BP, Todd AJ, Plomp JJ, Willison HJ. Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain. 2004;127:2109–23.PubMedCrossRef
32.
go back to reference Halstead SK, Morrison I, O’Hanlon GM, Humphreys PD, Goodfellow JA, Plomp JJ, Willison HJ. Anti-disialosyl antibodies mediate selective neuronal or Schwann cell injury at mouse neuromuscular junctions. Glia. 2005;52:177–89.PubMedCrossRef Halstead SK, Morrison I, O’Hanlon GM, Humphreys PD, Goodfellow JA, Plomp JJ, Willison HJ. Anti-disialosyl antibodies mediate selective neuronal or Schwann cell injury at mouse neuromuscular junctions. Glia. 2005;52:177–89.PubMedCrossRef
33.
go back to reference Vriesendorp FJ, Flynn RE, Pappolla MA, Koski CL. Complement depletion affects demyelination and inflammation in experimental allergic neuritis. J Neuroimmunol. 1995;58:157–65.PubMedCrossRef Vriesendorp FJ, Flynn RE, Pappolla MA, Koski CL. Complement depletion affects demyelination and inflammation in experimental allergic neuritis. J Neuroimmunol. 1995;58:157–65.PubMedCrossRef
34.
go back to reference Feasby TE, Gilbert JJ, Hahn AF, Neilson M. Complement depletion suppresses Lewis rat experimental allergic neuritis. Brain Res. 1987;419:97–103.PubMedCrossRef Feasby TE, Gilbert JJ, Hahn AF, Neilson M. Complement depletion suppresses Lewis rat experimental allergic neuritis. Brain Res. 1987;419:97–103.PubMedCrossRef
35.
go back to reference Auld DS, Robitaille R. Perisynaptic Schwann cells at the neuromuscular junction: nerve- and activity-dependent contributions to synaptic efficacy, plasticity, and reinnervation. Neuroscientist. 2003;9:144–57.PubMedCrossRef Auld DS, Robitaille R. Perisynaptic Schwann cells at the neuromuscular junction: nerve- and activity-dependent contributions to synaptic efficacy, plasticity, and reinnervation. Neuroscientist. 2003;9:144–57.PubMedCrossRef
37.
go back to reference Kuitwaard K, Bos-Eyssen ME, Blomkwist-Markens PH, van Doorn PA. Recurrences, vaccinations and long-term symptoms in GBS and CIDP. J Peripher Nerv Syst. 2009;14:310–5.PubMedCrossRef Kuitwaard K, Bos-Eyssen ME, Blomkwist-Markens PH, van Doorn PA. Recurrences, vaccinations and long-term symptoms in GBS and CIDP. J Peripher Nerv Syst. 2009;14:310–5.PubMedCrossRef
38.
go back to reference Ruts L, Drenthen J, Jongen JL, Hop WC, Visser GH, Jacobs BC, van Doorn PA. Pain in Guillain-Barre syndrome: a long-term follow-up study. Neurology. 2010;75:1439–47.PubMedCrossRef Ruts L, Drenthen J, Jongen JL, Hop WC, Visser GH, Jacobs BC, van Doorn PA. Pain in Guillain-Barre syndrome: a long-term follow-up study. Neurology. 2010;75:1439–47.PubMedCrossRef
39.
go back to reference Leonhard SE, Mandarakas MR, Gondim FAA, Bateman K, Ferreira MLB, Cornblath DR, van Doorn PA, Dourado ME, Hughes RAC, Islam B, et al. Diagnosis and management of Guillain–Barré syndrome in ten steps. Nat Rev Neurol. 2019;15:671–83.PubMedPubMedCentralCrossRef Leonhard SE, Mandarakas MR, Gondim FAA, Bateman K, Ferreira MLB, Cornblath DR, van Doorn PA, Dourado ME, Hughes RAC, Islam B, et al. Diagnosis and management of Guillain–Barré syndrome in ten steps. Nat Rev Neurol. 2019;15:671–83.PubMedPubMedCentralCrossRef
40.
go back to reference van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA. Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014;10:469–82.PubMedCrossRef van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA. Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014;10:469–82.PubMedCrossRef
41.
go back to reference Doets AY, Lingsma HF, Walgaard C, Islam B, Papri N, Davidson A, Yamagishi Y, Kusunoki S, Dimachkie MM, Waheed W, et al. Predicting outcome in Guillain–Barré syndrome: international validation of the modified erasmus GBS outcome score. Neurology. 2022;98:e518–32.PubMedPubMedCentralCrossRef Doets AY, Lingsma HF, Walgaard C, Islam B, Papri N, Davidson A, Yamagishi Y, Kusunoki S, Dimachkie MM, Waheed W, et al. Predicting outcome in Guillain–Barré syndrome: international validation of the modified erasmus GBS outcome score. Neurology. 2022;98:e518–32.PubMedPubMedCentralCrossRef
42.
go back to reference Kalita J, Misra UK, Chaudhary SK, Das M, Mishra A, Ranjan A, Kumar M. Outcome of Guillain–Barré syndrome following intravenous immunoglobulin compared to natural course. Eur J Neurol. 2022;29:3071–80.PubMedCrossRef Kalita J, Misra UK, Chaudhary SK, Das M, Mishra A, Ranjan A, Kumar M. Outcome of Guillain–Barré syndrome following intravenous immunoglobulin compared to natural course. Eur J Neurol. 2022;29:3071–80.PubMedCrossRef
43.
go back to reference Kohle F, Dalakas MC, Lehmann HC. Repurposing MS immunotherapies for CIDP and other autoimmune neuropathies: unfulfilled promise or efficient strategy? Ther Adv Neurol Disord. 2023;16:17562864221137128.PubMedPubMedCentralCrossRef Kohle F, Dalakas MC, Lehmann HC. Repurposing MS immunotherapies for CIDP and other autoimmune neuropathies: unfulfilled promise or efficient strategy? Ther Adv Neurol Disord. 2023;16:17562864221137128.PubMedPubMedCentralCrossRef
44.
go back to reference Haque SA, Hasaka TP, Brooks AD, Lobanov PV, Baas PW. Monastrol, a prototype anti-cancer drug that inhibits a mitotic kinesin, induces rapid bursts of axonal outgrowth from cultured postmitotic neurons. Cell Motil Cytoskeleton. 2004;58:10–6.PubMedCrossRef Haque SA, Hasaka TP, Brooks AD, Lobanov PV, Baas PW. Monastrol, a prototype anti-cancer drug that inhibits a mitotic kinesin, induces rapid bursts of axonal outgrowth from cultured postmitotic neurons. Cell Motil Cytoskeleton. 2004;58:10–6.PubMedCrossRef
45.
go back to reference Ogren A, Parmar S, Mukherjee S, Gonzalez SJ, Plooster M, McClellan M, Mannava AG, Davidson E, Davis TN, Gardner MK. Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability. Proc Natl Acad Sci USA. 2022;119:e2108046119.PubMedPubMedCentralCrossRef Ogren A, Parmar S, Mukherjee S, Gonzalez SJ, Plooster M, McClellan M, Mannava AG, Davidson E, Davis TN, Gardner MK. Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability. Proc Natl Acad Sci USA. 2022;119:e2108046119.PubMedPubMedCentralCrossRef
46.
go back to reference Hunter AW, Wordeman L. How motor proteins influence microtubule polymerization dynamics. J Cell Sci. 2000;113(Pt 24):4379–89.PubMedCrossRef Hunter AW, Wordeman L. How motor proteins influence microtubule polymerization dynamics. J Cell Sci. 2000;113(Pt 24):4379–89.PubMedCrossRef
47.
go back to reference Fehrenbacher JC. Chemotherapy-induced peripheral neuropathy. Prog Mol Biol Transl Sci. 2015;131:471–508.PubMedCrossRef Fehrenbacher JC. Chemotherapy-induced peripheral neuropathy. Prog Mol Biol Transl Sci. 2015;131:471–508.PubMedCrossRef
48.
go back to reference Kahn OI, Sharma V, González-Billault C, Baas PW. Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization. Mol Biol Cell. 2015;26:66–77.PubMedPubMedCentralCrossRef Kahn OI, Sharma V, González-Billault C, Baas PW. Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization. Mol Biol Cell. 2015;26:66–77.PubMedPubMedCentralCrossRef
49.
go back to reference Yokota K, Kubota K, Kobayakawa K, Saito T, Hara M, Kijima K, Maeda T, Katoh H, Ohkawa Y, Nakashima Y, Okada S. Pathological changes of distal motor neurons after complete spinal cord injury. Mol Brain. 2019;12:4.PubMedPubMedCentralCrossRef Yokota K, Kubota K, Kobayakawa K, Saito T, Hara M, Kijima K, Maeda T, Katoh H, Ohkawa Y, Nakashima Y, Okada S. Pathological changes of distal motor neurons after complete spinal cord injury. Mol Brain. 2019;12:4.PubMedPubMedCentralCrossRef
50.
go back to reference Van De Meent H, Hosman AJ, Hendriks J, Zwarts M, Schubert M. Severe degeneration of peripheral motor axons after spinal cord injury: a European multicenter study in 345 patients. Neurorehabil Neural Repair. 2010;24:657–65.PubMedCrossRef Van De Meent H, Hosman AJ, Hendriks J, Zwarts M, Schubert M. Severe degeneration of peripheral motor axons after spinal cord injury: a European multicenter study in 345 patients. Neurorehabil Neural Repair. 2010;24:657–65.PubMedCrossRef
51.
go back to reference Conti G, Rostami A, Scarpini E, Baron P, Galimberti D, Bresolin N, Contri M, Palumbo C, De Pol A. Inducible nitric oxide synthase (iNOS) in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. Exp Neurol. 2004;187:350–8.PubMedCrossRef Conti G, Rostami A, Scarpini E, Baron P, Galimberti D, Bresolin N, Contri M, Palumbo C, De Pol A. Inducible nitric oxide synthase (iNOS) in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. Exp Neurol. 2004;187:350–8.PubMedCrossRef
52.
go back to reference Hahn AF, Feasby TE, Wilkie L, Lovgren D. P2-peptide induced experimental allergic neuritis: a model to study axonal degeneration. Acta Neuropathol. 1991;82:60–5.PubMedCrossRef Hahn AF, Feasby TE, Wilkie L, Lovgren D. P2-peptide induced experimental allergic neuritis: a model to study axonal degeneration. Acta Neuropathol. 1991;82:60–5.PubMedCrossRef
53.
go back to reference Höke A. Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol. 2006;2:448–54.PubMedCrossRef Höke A. Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol. 2006;2:448–54.PubMedCrossRef
54.
go back to reference Muir D. The potentiation of peripheral nerve sheaths in regeneration and repair. Exp Neurol. 2010;223:102–11.PubMedCrossRef Muir D. The potentiation of peripheral nerve sheaths in regeneration and repair. Exp Neurol. 2010;223:102–11.PubMedCrossRef
55.
go back to reference Mausberg AK, Szepanowski F, Odoardi F, Flügel A, Kleinschnitz C, Stettner M, Kieseier BC. Trapped in the epineurium: early entry into the endoneurium is restricted to neuritogenic T cells in experimental autoimmune neuritis. J Neuroinflammation. 2018;15:217.PubMedPubMedCentralCrossRef Mausberg AK, Szepanowski F, Odoardi F, Flügel A, Kleinschnitz C, Stettner M, Kieseier BC. Trapped in the epineurium: early entry into the endoneurium is restricted to neuritogenic T cells in experimental autoimmune neuritis. J Neuroinflammation. 2018;15:217.PubMedPubMedCentralCrossRef
56.
go back to reference Heininger K, Schäfer B, Hartung H-P, Fierz W, Linington C, Toyka KV. The role of macrophages in experimental autoimmune neuritis induced by a P2-Specific T-Cell line. Ann Neurol. 1988;23:326–31.PubMedCrossRef Heininger K, Schäfer B, Hartung H-P, Fierz W, Linington C, Toyka KV. The role of macrophages in experimental autoimmune neuritis induced by a P2-Specific T-Cell line. Ann Neurol. 1988;23:326–31.PubMedCrossRef
57.
go back to reference Tomikawa E, Mutsuga M, Hara K, Kaneko C, Togashi Y, Miyamoto Y. Time course of axon and myelin degeneration in peripheral nerves in experimental autoimmune neuritis rats. Toxicol Pathol. 2019;47:542–52.PubMedCrossRef Tomikawa E, Mutsuga M, Hara K, Kaneko C, Togashi Y, Miyamoto Y. Time course of axon and myelin degeneration in peripheral nerves in experimental autoimmune neuritis rats. Toxicol Pathol. 2019;47:542–52.PubMedCrossRef
58.
go back to reference Asthana P, Zhang G, Sheikh KA, Him Eddie Ma C. Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury. Brain Behav Immun. 2021;91:48–64.PubMedCrossRef Asthana P, Zhang G, Sheikh KA, Him Eddie Ma C. Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury. Brain Behav Immun. 2021;91:48–64.PubMedCrossRef
59.
go back to reference Zhang G, Lehmann HC, Bogdanova N, Gao T, Zhang J, Sheikh KA. Erythropoietin enhances nerve repair in anti-ganglioside antibody-mediated models of immune neuropathy. PLoS ONE. 2011;6: e27067.PubMedPubMedCentralCrossRef Zhang G, Lehmann HC, Bogdanova N, Gao T, Zhang J, Sheikh KA. Erythropoietin enhances nerve repair in anti-ganglioside antibody-mediated models of immune neuropathy. PLoS ONE. 2011;6: e27067.PubMedPubMedCentralCrossRef
60.
go back to reference Klimas R, Sgodzai M, Motte J, Mohamad N, Renk P, Blusch A, Grüter T, Pedreiturria X, Gobrecht P, Fischer D, et al. Dose-dependent immunomodulatory effects of bortezomib in experimental autoimmune neuritis. Brain Commun. 2021;3:facb238.CrossRef Klimas R, Sgodzai M, Motte J, Mohamad N, Renk P, Blusch A, Grüter T, Pedreiturria X, Gobrecht P, Fischer D, et al. Dose-dependent immunomodulatory effects of bortezomib in experimental autoimmune neuritis. Brain Commun. 2021;3:facb238.CrossRef
61.
go back to reference Berciano J. Axonal degeneration in Guillain–Barré syndrome: a reappraisal. J Neurol. 2021;268:3728–43.PubMedCrossRef Berciano J. Axonal degeneration in Guillain–Barré syndrome: a reappraisal. J Neurol. 2021;268:3728–43.PubMedCrossRef
62.
go back to reference Yoon SY, Choi JE, Huh JW, Hwang O, Lee HS, Hong HN, Kim D. Monastrol, a selective inhibitor of the mitotic kinesin Eg5, induces a distinctive growth profile of dendrites and axons in primary cortical neuron cultures. Cell Motil Cytoskeleton. 2005;60:181–90.PubMedCrossRef Yoon SY, Choi JE, Huh JW, Hwang O, Lee HS, Hong HN, Kim D. Monastrol, a selective inhibitor of the mitotic kinesin Eg5, induces a distinctive growth profile of dendrites and axons in primary cortical neuron cultures. Cell Motil Cytoskeleton. 2005;60:181–90.PubMedCrossRef
64.
go back to reference Avraham O, Deng P-Y, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, Cavalli V. Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun. 2020;11:4891.PubMedPubMedCentralCrossRef Avraham O, Deng P-Y, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, Cavalli V. Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun. 2020;11:4891.PubMedPubMedCentralCrossRef
Metadata
Title
Kinesin-5 inhibition improves neural regeneration in experimental autoimmune neuritis
Authors
Felix Kohle
Robin Ackfeld
Franziska Hommen
Ines Klein
Martin K. R. Svačina
Christian Schneider
Gereon R. Fink
Mohammed Barham
David Vilchez
Helmar C. Lehmann
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02822-w

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue