Skip to main content
Top

16-05-2024 | Glucocorticoid | Original Article

Fufang Zhenshu Tiaozhi capsule enhances bone formation and safeguards against glucocorticoid-induced osteoporosis through innovative Mekk2-mediated β-catenin deubiquitination

Authors: Guoju Hong, Lin Tang, Tianyu Zhou, Youhong Xie, Jiangyan Wang, Dongdong Ge, Qunwei Dong, Ping Sun

Published in: Journal of Bone and Mineral Metabolism

Login to get access

Abstract

Introduction

Bone homeostasis depends on the regulation of β-catenin in osteoblasts. Glucocorticoids (GCs) are known to diminish β-catenin activity via Wnt pathway signaling, leading to osteoporosis. Conversely, activating β-catenin in osteoblasts through mitogen-activated protein kinase kinase kinase 2 (Mekk2) offers an innovative approach to combat GC-induced osteoporosis (GIOP). Fufang Zhenshu Tiaozhi (FTZ) capsules have shown effectiveness in treating GIOP, but the mechanisms behind this are still unclear.

Materials and methods

In this study, Mekk2 knockout mice (Mekk2−/−) was generated by CRISPR/Cas9. These mice were then subjected to Alcian Blue-Alizarin Red staining and immunofluorescence to assess their bone and cartilage development. To establish models of GIOP, both Mekk2−/− and wild-type (WT) mice were treated with dexamethasone (DXMS) and subsequently given FTZ capsules. We analyzed the resulting phenotypic changes in these mice using Micro-CT scans and histomorphological studies. Primary osteoblasts, isolated from both Mekk2−/− and WT mice, underwent qRT-PCR to measure key osteogenesis markers, including Runx2, Sp7, Bgalp, Col1a1 and Alp. Cells were then exposed to treatments with either FTZ or Wnt3a and the phosphorylation levels of β-catenin and Mekk2, along with the protein expression of Runx2, were evaluated using Western blotting and immunoprecipitation. Additionally, C3H10T1/2 cells transfected with TOPflash-luciferase and Renilla luciferase reporters were treated with FTZ and Wnt3a to measure β-catenin activity.

Results

In our study, administering FTZ in vivo effectively prevented bone loss typically induced by GCs. However, it's important to note that this protective effect was substantially reduced in mice lacking Mekk2. Additionally, FTZ showed a significant ability to enhance osteogenic differentiation in primary osteoblasts, doing so by altering the expression of Mekk2. Intriguingly, the impact of FTZ on Mekk2 appears to function through a pathway separate from the traditional Wnt signaling route. Furthermore, our findings indicate that FTZ also promotes the deubiquitination of β-catenin, contributing further to its positive effects on bone health.

Conclusions

This study suggests that FTZ plays a significant role in protecting bone mass in cases of GIOP. The mechanism through which FTZ confers this benefit involves the activation of Mekk2/β-catenin signaling pathways, which represents a promising alternative strategy to counteract the deleterious effects of GIOP by augmenting osteoblastogenesis.
Appendix
Available only for authorised users
Literature
28.
go back to reference Messina OD, Vidal M, Torres JAM et al (2022) Evidence based Latin American guidelines of clinical practice on prevention, diagnosis, management and treatment of glucocorticoid induced osteoporosis. A 2022 update : This manuscript has been produced under the auspices of the committee of national societies (CNS) and the committee of scientific advisors (CSA) of the international osteoporosis foundation (IOF). Aging Clin Exp Res 34:2591–2602. https://doi.org/10.1007/s40520-022-02261-2CrossRefPubMed Messina OD, Vidal M, Torres JAM et al (2022) Evidence based Latin American guidelines of clinical practice on prevention, diagnosis, management and treatment of glucocorticoid induced osteoporosis. A 2022 update : This manuscript has been produced under the auspices of the committee of national societies (CNS) and the committee of scientific advisors (CSA) of the international osteoporosis foundation (IOF). Aging Clin Exp Res 34:2591–2602. https://​doi.​org/​10.​1007/​s40520-022-02261-2CrossRefPubMed
Metadata
Title
Fufang Zhenshu Tiaozhi capsule enhances bone formation and safeguards against glucocorticoid-induced osteoporosis through innovative Mekk2-mediated β-catenin deubiquitination
Authors
Guoju Hong
Lin Tang
Tianyu Zhou
Youhong Xie
Jiangyan Wang
Dongdong Ge
Qunwei Dong
Ping Sun
Publication date
16-05-2024
Publisher
Springer Nature Singapore
Published in
Journal of Bone and Mineral Metabolism
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-024-01516-4

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more