Skip to main content
Top

18-12-2024 | Glioma | Neuro

Amide proton transfer weighted MRI measurements yield consistent and repeatable results in patients with gliomas: a prospective test-retest study

Authors: Irada Pflüger, Aditya Rastogi, Stefano Casagranda, Christos Papageorgakis, Rouven Behnisch, Patrick Liebig, Marcel Prager, Franziska Maria Ippen, Daniel Paech, Wolfgang Wick, Martin Bendszus, Gianluca Brugnara, Philipp Vollmuth

Published in: European Radiology

Login to get access

Abstract

Objectives

Chemical exchange saturation transfer (CEST) imaging has emerged as a promising imaging biomarker, but its reliability for clinical practice remains uncertain. This study aimed to investigate the robustness of CEST parameters in healthy volunteers and patients with brain tumours.

Methods

A total of n = 52 healthy volunteers and n = 52 patients with histologically confirmed glioma underwent two consecutive 3-T MRI scans separated by a 1-min break. The CEST measurements were reconstructed using two models: with and without fluid suppression and included the evaluation of both amide (amidePTw) and amine (aminePTw) offsets. Mean intensity values in healthy volunteers were compared from volumetric segmentations (VOI) of grey matter, white matter, and the whole brain. Mean intensity values in brain tumour patients were assessed from VOI of the contrast-enhancing, non-enhancing and whole tumour, as well as from the normal-appearing white matter. Test-retest reliability was assessed using ICC and Bland-Altman plots.

Results

The amidePTw/aminePTw signal intensity distribution was significantly affected by fluid suppression (p < 0.001 for each VOI). Test-retest reliability in healthy volunteers showed fair to excellent agreement (ICC = 0.53–0.74), with the highest signal intensity values observed by amidePTw (ICC = 0.73–0.74). In patients, an excellent agreement of both amidePTw and aminePTw measurements was observed across different tumour regions (ICC = 0.76–0.89), with the highest ICC for contrast-enhancing tumour measurements. Bland-Altman analysis indicated negligible systematic bias and no proportional bias in measurement errors.

Conclusion

Measurements from amide/aminePTw imaging obtained from an adequately powered test-retest study yield consistent and reproducible results in glioma patients, as a prerequisite for robust imaging biomarker discovery in neuro-oncology.

Key Points

Question The clinical reliability of chemical exchange saturation transfer imaging remains uncertain, necessitating further investigation to establish its robustness as a biomarker in neuro-oncology.
Findings This study demonstrates that amide/amine proton transfer imaging provides repeatable, high-agreement measurements in glioma patients, particularly in contrast-enhancing tumour regions.
Clinical relevance This test-retest study demonstrates that chemical exchange saturation transfer imaging using two models and assessing amide and amine offsets yield consistent and repeatable results in glioma patients, as a prerequisite for robust imaging biomarker discovery for neuro-oncology studies and clinical practice.
Appendix
Available only for authorised users
Literature
2.
go back to reference Weller M, van den Bent M, Tonn JC et al (2017) European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18:e315–e329PubMedCrossRef Weller M, van den Bent M, Tonn JC et al (2017) European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18:e315–e329PubMedCrossRef
3.
go back to reference Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M (2012) MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging 36:1060–1071PubMedCrossRef Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M (2012) MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging 36:1060–1071PubMedCrossRef
4.
go back to reference Runge VM, Clanton JA, Price AC et al (1985) The use of Gd DTPA as a perfusion agent and marker of blood-brain barrier disruption. Magn Reson Imaging 3:43–55PubMedCrossRef Runge VM, Clanton JA, Price AC et al (1985) The use of Gd DTPA as a perfusion agent and marker of blood-brain barrier disruption. Magn Reson Imaging 3:43–55PubMedCrossRef
5.
go back to reference van Zijl PC, Zhou J, Mori N, Payen JF, Wilson D, Mori S (2003) Mechanism of magnetization transfer during on-resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 49:440–449PubMedCrossRef van Zijl PC, Zhou J, Mori N, Payen JF, Wilson D, Mori S (2003) Mechanism of magnetization transfer during on-resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 49:440–449PubMedCrossRef
7.
go back to reference Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC (2003) Amide proton transfer (APT) contrast for imaging of brain tumours. Magn Reson Med 50:1120–1126PubMedCrossRef Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC (2003) Amide proton transfer (APT) contrast for imaging of brain tumours. Magn Reson Med 50:1120–1126PubMedCrossRef
9.
go back to reference Wen Z, Hu S, Huang F et al (2010) MR imaging of high-grade brain tumours using endogenous protein and peptide-based contrast. Neuroimage 51:616–622PubMedCrossRef Wen Z, Hu S, Huang F et al (2010) MR imaging of high-grade brain tumours using endogenous protein and peptide-based contrast. Neuroimage 51:616–622PubMedCrossRef
10.
go back to reference Paech D, Zaiss M, Meissner JE et al (2014) Nuclear Overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS One 9:e104181PubMedPubMedCentralCrossRef Paech D, Zaiss M, Meissner JE et al (2014) Nuclear Overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS One 9:e104181PubMedPubMedCentralCrossRef
11.
go back to reference Zaiss M, Windschuh J, Paech D et al (2015) Relaxation-compensated CEST-MRI of the human brain at 7T: unbiased insight into NOE and amide signal changes in human glioblastoma. Neuroimage 112:180–188PubMedCrossRef Zaiss M, Windschuh J, Paech D et al (2015) Relaxation-compensated CEST-MRI of the human brain at 7T: unbiased insight into NOE and amide signal changes in human glioblastoma. Neuroimage 112:180–188PubMedCrossRef
12.
go back to reference Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16:441–448PubMedCrossRef Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16:441–448PubMedCrossRef
13.
go back to reference Harris RJ, Cloughesy TF, Liau LM et al (2015) pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro Oncol 17:1514–1524PubMedPubMedCentralCrossRef Harris RJ, Cloughesy TF, Liau LM et al (2015) pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro Oncol 17:1514–1524PubMedPubMedCentralCrossRef
14.
go back to reference Paech D, Windschuh J, Oberhollenzer J et al (2018) Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T. Neuro Oncol 20:1661–1671PubMedPubMedCentralCrossRef Paech D, Windschuh J, Oberhollenzer J et al (2018) Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T. Neuro Oncol 20:1661–1671PubMedPubMedCentralCrossRef
15.
go back to reference Bai Y, Lin Y, Zhang W et al (2017) Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget 8:5834–5842PubMedCrossRef Bai Y, Lin Y, Zhang W et al (2017) Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget 8:5834–5842PubMedCrossRef
16.
go back to reference Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134PubMedCrossRef Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134PubMedCrossRef
17.
go back to reference Dou W, Lin CE, Ding H et al (2019) Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies. Quant Imaging Med Surg 9:1747–1766PubMedPubMedCentralCrossRef Dou W, Lin CE, Ding H et al (2019) Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies. Quant Imaging Med Surg 9:1747–1766PubMedPubMedCentralCrossRef
18.
go back to reference von Knebel Doeberitz N, Kroh F, Breitling J et al (2023) CEST imaging of the APT and ssMT predict the overall survival of patients with glioma at the first follow-up after completion of radiotherapy at 3T. Radiother Oncol 184:109694 von Knebel Doeberitz N, Kroh F, Breitling J et al (2023) CEST imaging of the APT and ssMT predict the overall survival of patients with glioma at the first follow-up after completion of radiotherapy at 3T. Radiother Oncol 184:109694
19.
go back to reference Kroh F, von Knebel Doeberitz N, Breitling J et al (2023) Semi-solid MT and APTw CEST-MRI predict clinical outcome of patients with glioma early after radiotherapy. Magn Reson Med 90:1569–1581PubMedCrossRef Kroh F, von Knebel Doeberitz N, Breitling J et al (2023) Semi-solid MT and APTw CEST-MRI predict clinical outcome of patients with glioma early after radiotherapy. Magn Reson Med 90:1569–1581PubMedCrossRef
20.
go back to reference Heo H-Y, Lee D-H, Zhang Y et al (2017) Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging. Magn Reson Med 77:1853–1865PubMedCrossRef Heo H-Y, Lee D-H, Zhang Y et al (2017) Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging. Magn Reson Med 77:1853–1865PubMedCrossRef
21.
go back to reference Pankowska A, Kochalska K, Łazorczyk A et al (2019) Chemical exchange saturation transfer (CEST) as a new method of signal obtainment in magnetic resonance molecular imaging in clinical and research practice. Pol J Radiol 84:e147–e152PubMedPubMedCentralCrossRef Pankowska A, Kochalska K, Łazorczyk A et al (2019) Chemical exchange saturation transfer (CEST) as a new method of signal obtainment in magnetic resonance molecular imaging in clinical and research practice. Pol J Radiol 84:e147–e152PubMedPubMedCentralCrossRef
22.
go back to reference Singh A, Cai K, Haris M, Hariharan H, Reddy R (2013) On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 69:818–824PubMedCrossRef Singh A, Cai K, Haris M, Hariharan H, Reddy R (2013) On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 69:818–824PubMedCrossRef
23.
go back to reference Sun PZ, Farrar CT, Sorensen AG (2007) Correction for artifacts induced by B0 and B1 field inhomogeneities in pH-sensitive chemical exchange saturation transfer (CEST) imaging. Magn Reson Med 58:1207–1215PubMedCrossRef Sun PZ, Farrar CT, Sorensen AG (2007) Correction for artifacts induced by B0 and B1 field inhomogeneities in pH-sensitive chemical exchange saturation transfer (CEST) imaging. Magn Reson Med 58:1207–1215PubMedCrossRef
24.
go back to reference Simegn GL, Alhamud A, van der Kouwe AJW, Meintjes E, Robertson F (2019) Repeatability and reproducibility of prospective motion- and shim corrected 2D glycoCEST MRI. Quant Imaging Med Surg 9:1674–1685PubMedPubMedCentralCrossRef Simegn GL, Alhamud A, van der Kouwe AJW, Meintjes E, Robertson F (2019) Repeatability and reproducibility of prospective motion- and shim corrected 2D glycoCEST MRI. Quant Imaging Med Surg 9:1674–1685PubMedPubMedCentralCrossRef
25.
go back to reference Wamelink I, Kuijer JPA, Padrela BE et al (2023) Reproducibility of 3 T APT-CEST in healthy volunteers and patients with brain glioma. J Magn Reson Imaging 57:206–215PubMedCrossRef Wamelink I, Kuijer JPA, Padrela BE et al (2023) Reproducibility of 3 T APT-CEST in healthy volunteers and patients with brain glioma. J Magn Reson Imaging 57:206–215PubMedCrossRef
26.
go back to reference Togao O, Hiwatashi A, Keupp J et al (2015) Scan–rescan reproducibility of parallel transmission based amide proton transfer imaging of brain tumours. J Magn Reson Imaging 42:1346–1353PubMedCrossRef Togao O, Hiwatashi A, Keupp J et al (2015) Scan–rescan reproducibility of parallel transmission based amide proton transfer imaging of brain tumours. J Magn Reson Imaging 42:1346–1353PubMedCrossRef
27.
go back to reference Lee JB, Park JE, Jung SC et al (2020) Repeatability of amide proton transfer–weighted signals in the brain according to clinical condition and anatomical location. Eur Radiol 30:346–356PubMedCrossRef Lee JB, Park JE, Jung SC et al (2020) Repeatability of amide proton transfer–weighted signals in the brain according to clinical condition and anatomical location. Eur Radiol 30:346–356PubMedCrossRef
28.
go back to reference Wu Y, Wood TC, Derks SHAE et al (2023) Reproducibility of APT-weighted CEST-MRI at 3T in healthy brain and tumour across sessions and scanners. Sci Rep 13:18115PubMedPubMedCentralCrossRef Wu Y, Wood TC, Derks SHAE et al (2023) Reproducibility of APT-weighted CEST-MRI at 3T in healthy brain and tumour across sessions and scanners. Sci Rep 13:18115PubMedPubMedCentralCrossRef
29.
go back to reference Schure JR, Casagranda S, Sedykh M et al (2024) Fluid suppression in amide proton transfer-weighted (APTw) CEST imaging: new theoretical insights and clinical benefits. Magn Reson Med 91:1354–1367PubMedCrossRef Schure JR, Casagranda S, Sedykh M et al (2024) Fluid suppression in amide proton transfer-weighted (APTw) CEST imaging: new theoretical insights and clinical benefits. Magn Reson Med 91:1354–1367PubMedCrossRef
30.
go back to reference Mancini L, Casagranda S, Gautier G et al (2022) CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing. Eur J Nucl Med Mol Imaging 49:2377–2391PubMedPubMedCentralCrossRef Mancini L, Casagranda S, Gautier G et al (2022) CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing. Eur J Nucl Med Mol Imaging 49:2377–2391PubMedPubMedCentralCrossRef
31.
go back to reference Shoukri MM, Asyali MH, Donner A (2004) Sample size requirements for the design of reliability study: review and new results. Stat Methods Med Res 13:251–271CrossRef Shoukri MM, Asyali MH, Donner A (2004) Sample size requirements for the design of reliability study: review and new results. Stat Methods Med Res 13:251–271CrossRef
32.
go back to reference Sedykh M, Liebig P, Herz K et al (2023) Snapshot CEST++: Advancing rapid whole-brain APTw-CEST MRI at 3 T. NMR Biomed 36:e4955 Sedykh M, Liebig P, Herz K et al (2023) Snapshot CEST++: Advancing rapid whole-brain APTw-CEST MRI at 3 T. NMR Biomed 36:e4955
33.
go back to reference Dagher J, Reese T, Bilgin A (2014) High-resolution, large dynamic range field map estimation. Magn Reson Med 71:105–117PubMedCrossRef Dagher J, Reese T, Bilgin A (2014) High-resolution, large dynamic range field map estimation. Magn Reson Med 71:105–117PubMedCrossRef
34.
go back to reference Zaiss M, Xu J, Goerke S et al (2014) Inverse Z‐spectrum analysis for spillover‐, MT‐, and T1‐corrected steady‐state pulsed CEST‐MRI–application to pH‐weighted MRI of acute stroke. NMR Biomed 27:240–252PubMedPubMedCentralCrossRef Zaiss M, Xu J, Goerke S et al (2014) Inverse Z‐spectrum analysis for spillover‐, MT‐, and T1‐corrected steady‐state pulsed CEST‐MRI–application to pH‐weighted MRI of acute stroke. NMR Biomed 27:240–252PubMedPubMedCentralCrossRef
35.
go back to reference Zhou J, Zaiss M, Knutsson L et al (2022) Review and consensus recommendations on clinical APT‐weighted imaging approaches at 3T: application to brain tumours. Magn Reson Med 88:546–574PubMedPubMedCentralCrossRef Zhou J, Zaiss M, Knutsson L et al (2022) Review and consensus recommendations on clinical APT‐weighted imaging approaches at 3T: application to brain tumours. Magn Reson Med 88:546–574PubMedPubMedCentralCrossRef
36.
go back to reference Casagranda S, Papageorgakis C, Romdhane F et al (2023) Principal component selections and filtering by spatial information criteria for multi-acquisition CEST MRI denoising. In: Proceedings of the ISMRM 31st Annual Meeting 2023, Toronto, Canada Casagranda S, Papageorgakis C, Romdhane F et al (2023) Principal component selections and filtering by spatial information criteria for multi-acquisition CEST MRI denoising. In: Proceedings of the ISMRM 31st Annual Meeting 2023, Toronto, Canada
37.
go back to reference Buckheit, Jonathan et al. About wavelab. Handbook of WaveLab Version 1995; 850:1–37 Buckheit, Jonathan et al. About wavelab. Handbook of WaveLab Version 1995; 850:1–37
38.
go back to reference Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2009) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205PubMedCrossRef Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2009) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205PubMedCrossRef
39.
go back to reference Isensee F, Schell M, Pflueger I et al (2019) Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp 40:4952–4964PubMedPubMedCentralCrossRef Isensee F, Schell M, Pflueger I et al (2019) Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp 40:4952–4964PubMedPubMedCentralCrossRef
40.
41.
go back to reference Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740PubMedCrossRef Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740PubMedCrossRef
42.
44.
go back to reference Zhou J, Zhu H, Lim M et al (2013) Three‐dimensional amide proton transfer MR imaging of gliomas: initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–1128PubMedCrossRef Zhou J, Zhu H, Lim M et al (2013) Three‐dimensional amide proton transfer MR imaging of gliomas: initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–1128PubMedCrossRef
45.
go back to reference Zhou J, Yan K, Zhu H (2012) A simple model for understanding the origin of the amide proton transfer MRI signal in tissue. Appl Magn Reson 42:393–402PubMedPubMedCentralCrossRef Zhou J, Yan K, Zhu H (2012) A simple model for understanding the origin of the amide proton transfer MRI signal in tissue. Appl Magn Reson 42:393–402PubMedPubMedCentralCrossRef
47.
go back to reference Jones CK, Schlosser MJ, van Zijl PC, Pomper MG, Golay X, Zhou J (2006) Amide proton transfer imaging of human brain tumours at 3T. Magn Reson Med 56:585–592PubMedCrossRef Jones CK, Schlosser MJ, van Zijl PC, Pomper MG, Golay X, Zhou J (2006) Amide proton transfer imaging of human brain tumours at 3T. Magn Reson Med 56:585–592PubMedCrossRef
48.
go back to reference Leone R, Meredig H, Foltyn-Dumitru M et al (2023) Assessing the added value of apparent diffusion coefficient, cerebral blood volume, and radiomic magnetic resonance features for differentiation of pseudoprogression versus true tumour progression in patients with glioblastoma. Neurooncol Adv 5:vdad016PubMedPubMedCentral Leone R, Meredig H, Foltyn-Dumitru M et al (2023) Assessing the added value of apparent diffusion coefficient, cerebral blood volume, and radiomic magnetic resonance features for differentiation of pseudoprogression versus true tumour progression in patients with glioblastoma. Neurooncol Adv 5:vdad016PubMedPubMedCentral
49.
go back to reference Mueller S, Stirnberg R, Akbey S et al (2020) Whole brain snapshot CEST at 3T using 3D‐EPI: aiming for speed, volume, and homogeneity. Magn Reson Med 84:2469–2483PubMedCrossRef Mueller S, Stirnberg R, Akbey S et al (2020) Whole brain snapshot CEST at 3T using 3D‐EPI: aiming for speed, volume, and homogeneity. Magn Reson Med 84:2469–2483PubMedCrossRef
50.
go back to reference Windschuh J, Zaiss M, Meissner JE et al (2015) Correction of B1‐inhomogeneities for relaxation‐compensated CEST imaging at 7 T. NMR Biomed 28:529–537PubMedCrossRef Windschuh J, Zaiss M, Meissner JE et al (2015) Correction of B1‐inhomogeneities for relaxation‐compensated CEST imaging at 7 T. NMR Biomed 28:529–537PubMedCrossRef
Metadata
Title
Amide proton transfer weighted MRI measurements yield consistent and repeatable results in patients with gliomas: a prospective test-retest study
Authors
Irada Pflüger
Aditya Rastogi
Stefano Casagranda
Christos Papageorgakis
Rouven Behnisch
Patrick Liebig
Marcel Prager
Franziska Maria Ippen
Daniel Paech
Wolfgang Wick
Martin Bendszus
Gianluca Brugnara
Philipp Vollmuth
Publication date
18-12-2024
Publisher
Springer Berlin Heidelberg
Published in
European Radiology
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-024-11197-2