Skip to main content
Top
Published in:

01-11-2024 | Glioblastoma | Review Article

Regulation of autophagy by non-coding RNAs in human glioblastoma

Authors: Mehran Molavand, Niloufar Ebrahimnezhade, Arash Kiani, Bahman Yousefi, Ahmad Nazari, Maryam Majidinia

Published in: Medical Oncology | Issue 11/2024

Login to get access

Abstract

Glioblastoma, a lethal form of brain cancer, poses substantial challenges in treatment due to its aggressive nature and resistance to standard therapies like radiation and chemotherapy. Autophagy has a crucial role in glioblastoma progression by supporting cellular homeostasis and promoting survival under stressful conditions. Non-coding RNAs (ncRNAs) play diverse biological roles including, gene regulation, chromatin remodeling, and the maintenance of cellular homeostasis. Emerging evidence reveals the intricate regulatory mechanisms of autophagy orchestrated by non-coding RNAs (ncRNAs) in glioblastoma. The diverse roles of these ncRNAs in regulating crucial autophagy-related pathways, including AMPK/mTOR signaling, the PI3K/AKT pathway, Beclin1, and other autophagy-triggering system regulation, sheds light on ncRNAs biological mechanisms in the proliferation, invasion, and therapy response of glioblastoma cells. Furthermore, the clinical implications of targeting ncRNA-regulated autophagy as a promising therapeutic strategy for glioblastoma treatment are in the spotlight of ongoing studies. In this review, we delve into our current understanding of how ncRNAs regulate autophagy in glioblastoma, with a specific focus on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), and their intricate interplay with therapy response.
Literature
1.
go back to reference Wirsching H-G, Weller M. Glioblastoma. In: Moliterno Gunel J, Piepmeier JM, Baehring JM, editors. Malignant Brain Tumors : State-of-the-Art Treatment. Cham: Springer International Publishing; 2017. p. 265–88.CrossRef Wirsching H-G, Weller M. Glioblastoma. In: Moliterno Gunel J, Piepmeier JM, Baehring JM, editors. Malignant Brain Tumors : State-of-the-Art Treatment. Cham: Springer International Publishing; 2017. p. 265–88.CrossRef
2.
go back to reference Zong H, Parada LF, Baker SJ. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol. 2015;7:a020610.CrossRefPubMedPubMedCentral Zong H, Parada LF, Baker SJ. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol. 2015;7:a020610.CrossRefPubMedPubMedCentral
3.
go back to reference Zeng A, Wei Z, Rabinovsky R, Jun HJ, El Fatimy R, Deforzh E, et al. Glioblastoma-derived extracellular vesicles facilitate transformation of astrocytes via reprogramming oncogenic metabolism. iScience. 2020;23(8):101420.CrossRefPubMedPubMedCentral Zeng A, Wei Z, Rabinovsky R, Jun HJ, El Fatimy R, Deforzh E, et al. Glioblastoma-derived extracellular vesicles facilitate transformation of astrocytes via reprogramming oncogenic metabolism. iScience. 2020;23(8):101420.CrossRefPubMedPubMedCentral
4.
go back to reference Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA: Cancer J for Clin. 2020;70(4):299–312. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA: Cancer J for Clin. 2020;70(4):299–312.
5.
go back to reference Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma Multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18(1):3–9.PubMedPubMedCentral Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma Multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18(1):3–9.PubMedPubMedCentral
6.
go back to reference Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol. 2017;28(7):1457–72.CrossRefPubMedPubMedCentral Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol. 2017;28(7):1457–72.CrossRefPubMedPubMedCentral
8.
go back to reference Gilard V, Tebani A, Dabaj I, Laquerrière A, Fontanilles M, Derrey S, et al. Diagnosis and management of glioblastoma: a comprehensive perspective. J Pers Med. 2021;11(4):258.CrossRefPubMedPubMedCentral Gilard V, Tebani A, Dabaj I, Laquerrière A, Fontanilles M, Derrey S, et al. Diagnosis and management of glioblastoma: a comprehensive perspective. J Pers Med. 2021;11(4):258.CrossRefPubMedPubMedCentral
9.
go back to reference Bai R, Zhu J, Bai Z, Mao Q, Zhang Y, Hui Z, et al. Second generation β-elemene nitric oxide derivatives with reasonable linkers: potential hybrids against malignant brain glioma. J Enzyme Inhib Med Chem. 2022;37(1):379–85.CrossRefPubMedPubMedCentral Bai R, Zhu J, Bai Z, Mao Q, Zhang Y, Hui Z, et al. Second generation β-elemene nitric oxide derivatives with reasonable linkers: potential hybrids against malignant brain glioma. J Enzyme Inhib Med Chem. 2022;37(1):379–85.CrossRefPubMedPubMedCentral
12.
go back to reference Zhou Y, Li Q, Pan R, Wang Q, Zhu X, Yuan C, et al. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy. 2022;77(2):469–82.CrossRefPubMed Zhou Y, Li Q, Pan R, Wang Q, Zhu X, Yuan C, et al. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy. 2022;77(2):469–82.CrossRefPubMed
13.
go back to reference Hombach S, Kretz M. Non-coding RNAs: Classification, Biology and Functioning. In: Slaby O, Calin GA, editors. Non-coding RNAs in Colorectal Cancer. Cham: Springer International Publishing; 2016. p. 3–17.CrossRef Hombach S, Kretz M. Non-coding RNAs: Classification, Biology and Functioning. In: Slaby O, Calin GA, editors. Non-coding RNAs in Colorectal Cancer. Cham: Springer International Publishing; 2016. p. 3–17.CrossRef
14.
go back to reference Sun W, Shi Y, Wang Z, Zhang J, Cai H, Zhang J, Huang D. Interaction of long-chain non-coding RNAs and important signaling pathways on human cancers. Int J Oncol. 2018;53(6):2343–55.PubMed Sun W, Shi Y, Wang Z, Zhang J, Cai H, Zhang J, Huang D. Interaction of long-chain non-coding RNAs and important signaling pathways on human cancers. Int J Oncol. 2018;53(6):2343–55.PubMed
15.
go back to reference Laurent GS, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet. 2015;31(5):239–51.CrossRef Laurent GS, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet. 2015;31(5):239–51.CrossRef
16.
go back to reference Wang D, Farhana A. Biochemistry, RNA Structure. 2020. Wang D, Farhana A. Biochemistry, RNA Structure. 2020.
17.
go back to reference Brosnan CA, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol. 2009;21(3):416–25.CrossRefPubMed Brosnan CA, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol. 2009;21(3):416–25.CrossRefPubMed
18.
go back to reference Chen Y, Tan S, Liu M, Li J. LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis. Scand Cardiovasc J. 2018;52(6):335–9.CrossRefPubMed Chen Y, Tan S, Liu M, Li J. LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis. Scand Cardiovasc J. 2018;52(6):335–9.CrossRefPubMed
21.
go back to reference Yan X, Zhou R, Ma Z. Autophagy—cell survival and death. In: Qin Z-H, editor. Autophagy: Biology and Diseases: Basic Science. Singapore: Springer Singapore; 2019. p. 667–96.CrossRef Yan X, Zhou R, Ma Z. Autophagy—cell survival and death. In: Qin Z-H, editor. Autophagy: Biology and Diseases: Basic Science. Singapore: Springer Singapore; 2019. p. 667–96.CrossRef
22.
go back to reference Das G, Shravage BV, Baehrecke EH. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol. 2012;4(6):a008813.CrossRefPubMedPubMedCentral Das G, Shravage BV, Baehrecke EH. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol. 2012;4(6):a008813.CrossRefPubMedPubMedCentral
26.
go back to reference Torrisi F, Alberghina C, D’Aprile S, Pavone AM, Longhitano L, Giallongo S, et al. The hallmarks of glioblastoma: heterogeneity, intercellular crosstalk and molecular signature of invasiveness and progression. Biomedicines. 2022;10(4):806.CrossRefPubMedPubMedCentral Torrisi F, Alberghina C, D’Aprile S, Pavone AM, Longhitano L, Giallongo S, et al. The hallmarks of glioblastoma: heterogeneity, intercellular crosstalk and molecular signature of invasiveness and progression. Biomedicines. 2022;10(4):806.CrossRefPubMedPubMedCentral
27.
go back to reference Li X, Wu C, Chen N, Gu H, Yen A, Cao L, et al. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. 2016;7(22):33440–50.CrossRefPubMedPubMedCentral Li X, Wu C, Chen N, Gu H, Yen A, Cao L, et al. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. 2016;7(22):33440–50.CrossRefPubMedPubMedCentral
28.
go back to reference Khabibov M, Garifullin A, Boumber Y, Khaddour K, Fernandez M, Khamitov F, et al. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int J Oncol. 2022;60(6):1.CrossRef Khabibov M, Garifullin A, Boumber Y, Khaddour K, Fernandez M, Khamitov F, et al. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int J Oncol. 2022;60(6):1.CrossRef
29.
go back to reference Esemen Y, Awan M, Parwez R, Baig A, Rahman S, Masala I, et al. Molecular pathogenesis of glioblastoma in adults and future perspectives: a systematic review. Int J Mol Sci. 2022;23(5):2607.CrossRefPubMedPubMedCentral Esemen Y, Awan M, Parwez R, Baig A, Rahman S, Masala I, et al. Molecular pathogenesis of glioblastoma in adults and future perspectives: a systematic review. Int J Mol Sci. 2022;23(5):2607.CrossRefPubMedPubMedCentral
30.
go back to reference Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T, Ghavami S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int J Mol Sci. 2022;23(3):1353.CrossRefPubMedPubMedCentral Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T, Ghavami S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int J Mol Sci. 2022;23(3):1353.CrossRefPubMedPubMedCentral
31.
go back to reference Hashemi M, Etemad S, Rezaei S, Ziaolhagh S, Rajabi R, Rahmanian P, et al. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother. 2023;158:114204.CrossRefPubMed Hashemi M, Etemad S, Rezaei S, Ziaolhagh S, Rajabi R, Rahmanian P, et al. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother. 2023;158:114204.CrossRefPubMed
32.
go back to reference Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther. 2023;8(1):455.CrossRefPubMedPubMedCentral Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther. 2023;8(1):455.CrossRefPubMedPubMedCentral
33.
go back to reference Wu W, Li H, Wang Z, Dai Z, Liang X, Luo P, et al. The tertiary lymphoid structure-related signature identified PTGDS in regulating PD-L1 and promoting the proliferation and migration of glioblastoma. Heliyon. 2024;10(1):e23915.CrossRefPubMed Wu W, Li H, Wang Z, Dai Z, Liang X, Luo P, et al. The tertiary lymphoid structure-related signature identified PTGDS in regulating PD-L1 and promoting the proliferation and migration of glioblastoma. Heliyon. 2024;10(1):e23915.CrossRefPubMed
34.
go back to reference Mao H, Lebrun DG, Yang J, Zhu VF, Li M. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest. 2012;30(1):48–56.CrossRefPubMedPubMedCentral Mao H, Lebrun DG, Yang J, Zhu VF, Li M. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest. 2012;30(1):48–56.CrossRefPubMedPubMedCentral
35.
go back to reference Xu C, Wu X, Zhu J. VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. Sci World J. 2013;2013:417413.CrossRef Xu C, Wu X, Zhu J. VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. Sci World J. 2013;2013:417413.CrossRef
36.
go back to reference Rajaratnam V, Islam MM, Yang M, Slaby R, Ramirez HM, Mirza SP. Glioblastoma: pathogenesis and current status of chemotherapy and other novel treatments. Cancers (Basel). 2020;12(4):937.CrossRefPubMedPubMedCentral Rajaratnam V, Islam MM, Yang M, Slaby R, Ramirez HM, Mirza SP. Glioblastoma: pathogenesis and current status of chemotherapy and other novel treatments. Cancers (Basel). 2020;12(4):937.CrossRefPubMedPubMedCentral
37.
go back to reference Liu Y, Lang F, Chou FJ, Zaghloul KA, Yang C. Isocitrate Dehydrogenase mutations in glioma: genetics, biochemistry, and clinical indications. Biomedicines. 2020;8(9):294.CrossRefPubMedPubMedCentral Liu Y, Lang F, Chou FJ, Zaghloul KA, Yang C. Isocitrate Dehydrogenase mutations in glioma: genetics, biochemistry, and clinical indications. Biomedicines. 2020;8(9):294.CrossRefPubMedPubMedCentral
38.
go back to reference Hawkins CC, Jones AB, Gordon ER, Williford SE, Harsh Y, Ziebro JK, et al. Targeting acid ceramidase inhibits glioblastoma cell migration through decreased AKT signaling. Cells. 2022;11(12):1873.CrossRefPubMedPubMedCentral Hawkins CC, Jones AB, Gordon ER, Williford SE, Harsh Y, Ziebro JK, et al. Targeting acid ceramidase inhibits glioblastoma cell migration through decreased AKT signaling. Cells. 2022;11(12):1873.CrossRefPubMedPubMedCentral
39.
go back to reference Lai M, Realini N, La Ferla M, Passalacqua I, Matteoli G, Ganesan A, et al. Complete acid ceramidase ablation prevents cancer-initiating cell formation in melanoma cells. Sci Rep. 2017;7(1):7411.CrossRefPubMedPubMedCentral Lai M, Realini N, La Ferla M, Passalacqua I, Matteoli G, Ganesan A, et al. Complete acid ceramidase ablation prevents cancer-initiating cell formation in melanoma cells. Sci Rep. 2017;7(1):7411.CrossRefPubMedPubMedCentral
40.
go back to reference Chantsalnyam T, Lim DY, Tayara H, Chong KT. ncRDeep: non-coding RNA classification with convolutional neural network. Comput Biol Chem. 2020;88:107364.CrossRefPubMed Chantsalnyam T, Lim DY, Tayara H, Chong KT. ncRDeep: non-coding RNA classification with convolutional neural network. Comput Biol Chem. 2020;88:107364.CrossRefPubMed
41.
go back to reference Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol. 2016;937:3–17.CrossRefPubMed Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol. 2016;937:3–17.CrossRefPubMed
42.
go back to reference Ahmadi D, Zarei M, Rahimi M, Khazaie M, Asemi Z, Mir SM, et al. Preparation and in-vitro evaluation of pH-responsive cationic cyclodextrin coated magnetic nanoparticles for delivery of methotrexate to the Saos-2 bone cancer cells. J Drug Deliv Sci Technol. 2020;57:101584.CrossRef Ahmadi D, Zarei M, Rahimi M, Khazaie M, Asemi Z, Mir SM, et al. Preparation and in-vitro evaluation of pH-responsive cationic cyclodextrin coated magnetic nanoparticles for delivery of methotrexate to the Saos-2 bone cancer cells. J Drug Deliv Sci Technol. 2020;57:101584.CrossRef
43.
go back to reference Shi X, Valizadeh A, Mir SM, Asemi Z, Karimian A, Majidina M, et al. miRNA-29a reverses P-glycoprotein-mediated drug resistance and inhibits proliferation via up-regulation of PTEN in colon cancer cells. Eur J Pharmacol. 2020;880:173138.CrossRefPubMed Shi X, Valizadeh A, Mir SM, Asemi Z, Karimian A, Majidina M, et al. miRNA-29a reverses P-glycoprotein-mediated drug resistance and inhibits proliferation via up-regulation of PTEN in colon cancer cells. Eur J Pharmacol. 2020;880:173138.CrossRefPubMed
44.
go back to reference Park YB, Kim JM. Identification of long non-coding RNA-mRNA interactions and genome-wide lncRNA annotation in animal transcriptome profiling. J Anim Sci Technol. 2023;65(2):293–310.PubMedPubMedCentral Park YB, Kim JM. Identification of long non-coding RNA-mRNA interactions and genome-wide lncRNA annotation in animal transcriptome profiling. J Anim Sci Technol. 2023;65(2):293–310.PubMedPubMedCentral
49.
go back to reference Deniz E, Erman B. Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genomics. 2017;17(2–3):135–43.CrossRefPubMed Deniz E, Erman B. Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genomics. 2017;17(2–3):135–43.CrossRefPubMed
51.
go back to reference Chang QQ, Chen CY, Chen Z, Chang S. LncRNA PVT1 promotes proliferation and invasion through enhancing Smad3 expression by sponging miR-140-5p in cervical cancer. Radiol Oncol. 2019;53(4):443–52.CrossRefPubMedPubMedCentral Chang QQ, Chen CY, Chen Z, Chang S. LncRNA PVT1 promotes proliferation and invasion through enhancing Smad3 expression by sponging miR-140-5p in cervical cancer. Radiol Oncol. 2019;53(4):443–52.CrossRefPubMedPubMedCentral
52.
go back to reference Hingorani MM. Polymerase. In: Maloy S, Hughes K, editors. Brenner’s Encyclopedia of Genetics. 2nd ed. San Diego: Academic Press; 2013. p. 389–91.CrossRef Hingorani MM. Polymerase. In: Maloy S, Hughes K, editors. Brenner’s Encyclopedia of Genetics. 2nd ed. San Diego: Academic Press; 2013. p. 389–91.CrossRef
53.
go back to reference Carter R, Drouin G. Structural differentiation of the three eukaryotic RNA polymerases. Genomics. 2009;94(6):388–96.CrossRefPubMed Carter R, Drouin G. Structural differentiation of the three eukaryotic RNA polymerases. Genomics. 2009;94(6):388–96.CrossRefPubMed
54.
go back to reference Bhat SA, Ahmad SM, Mumtaz PT, Malik AA, Dar MA, Urwat U, et al. Long non-coding RNAs: Mechanism of action and functional utility. Noncoding RNA Res. 2016;1(1):43–50.CrossRefPubMedPubMedCentral Bhat SA, Ahmad SM, Mumtaz PT, Malik AA, Dar MA, Urwat U, et al. Long non-coding RNAs: Mechanism of action and functional utility. Noncoding RNA Res. 2016;1(1):43–50.CrossRefPubMedPubMedCentral
55.
go back to reference Bhogireddy S, Mangrauthia SK, Kumar R, Pandey AK, Singh S, Jain A, et al. Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Funct Integr Genomics. 2021;21(3–4):313–30.CrossRefPubMedPubMedCentral Bhogireddy S, Mangrauthia SK, Kumar R, Pandey AK, Singh S, Jain A, et al. Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Funct Integr Genomics. 2021;21(3–4):313–30.CrossRefPubMedPubMedCentral
56.
57.
go back to reference Palsule G, Gopalan V, Simcox A. Biogenesis of RNase P RNA from an intron requires co-assembly with cognate protein subunits. Nucleic Acids Res. 2019;47(16):8746–54.CrossRefPubMedPubMedCentral Palsule G, Gopalan V, Simcox A. Biogenesis of RNase P RNA from an intron requires co-assembly with cognate protein subunits. Nucleic Acids Res. 2019;47(16):8746–54.CrossRefPubMedPubMedCentral
58.
go back to reference Huang Z-h, Du Y-p, Wen J-t, Lu B-f, Zhao Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discovery. 2022;8(1):259.CrossRefPubMedPubMedCentral Huang Z-h, Du Y-p, Wen J-t, Lu B-f, Zhao Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discovery. 2022;8(1):259.CrossRefPubMedPubMedCentral
60.
go back to reference Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.CrossRefPubMed Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.CrossRefPubMed
61.
go back to reference Su M, Wang H, Wang W, Wang Y, Ouyang L, Pan C, et al. LncRNAs in DNA damage response and repair in cancer cells. Acta Biochim Biophys Sin. 2018;50(5):433–9.CrossRefPubMed Su M, Wang H, Wang W, Wang Y, Ouyang L, Pan C, et al. LncRNAs in DNA damage response and repair in cancer cells. Acta Biochim Biophys Sin. 2018;50(5):433–9.CrossRefPubMed
62.
go back to reference Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-coding RNAs as mediators of epigenetic changes in malignancies. Cancers (Basel). 2020;12(12):3657.CrossRefPubMedPubMedCentral Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-coding RNAs as mediators of epigenetic changes in malignancies. Cancers (Basel). 2020;12(12):3657.CrossRefPubMedPubMedCentral
63.
go back to reference Xu P, Li C, Yuan J, Bao Z, Liu W. Predict lncRNA-drug associations based on graph neural network. Front Gen. 2024;15:1388015.CrossRef Xu P, Li C, Yuan J, Bao Z, Liu W. Predict lncRNA-drug associations based on graph neural network. Front Gen. 2024;15:1388015.CrossRef
64.
go back to reference Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22(1):22–33.CrossRefPubMed Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22(1):22–33.CrossRefPubMed
65.
go back to reference Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20.CrossRefPubMedPubMedCentral Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18(1):20.CrossRefPubMedPubMedCentral
66.
go back to reference Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, et al. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci. 2024;81(1):214.CrossRefPubMed Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, et al. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci. 2024;81(1):214.CrossRefPubMed
67.
go back to reference Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet. 2002;36:233–78.CrossRefPubMed Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet. 2002;36:233–78.CrossRefPubMed
68.
69.
go back to reference Bocchetti M, Scrima M, Melisi F, Luce A, Sperlongano R, Caraglia M, et al. LncRNAs and Immunity: coding the immune system with noncoding oligonucleotides. Int J Mol Sci. 2021;22(4):1741.CrossRefPubMedPubMedCentral Bocchetti M, Scrima M, Melisi F, Luce A, Sperlongano R, Caraglia M, et al. LncRNAs and Immunity: coding the immune system with noncoding oligonucleotides. Int J Mol Sci. 2021;22(4):1741.CrossRefPubMedPubMedCentral
70.
go back to reference Chen L, He Y, Zhu J, Zhao S, Qi S, Chen X, et al. The roles and mechanism of m(6)A RNA methylation regulators in cancer immunity. Biomed Pharmacother. 2023;163:114839.CrossRefPubMed Chen L, He Y, Zhu J, Zhao S, Qi S, Chen X, et al. The roles and mechanism of m(6)A RNA methylation regulators in cancer immunity. Biomed Pharmacother. 2023;163:114839.CrossRefPubMed
71.
go back to reference Wirawan E, Berghe TV, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse. Cell Res. 2012;22(1):43–61.CrossRefPubMed Wirawan E, Berghe TV, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse. Cell Res. 2012;22(1):43–61.CrossRefPubMed
72.
go back to reference Eskelinen E-L. Autophagy: supporting cellular and organismal homeostasis by self-eating. Int J Biochem Cell Biol. 2019;111:1–10.CrossRefPubMed Eskelinen E-L. Autophagy: supporting cellular and organismal homeostasis by self-eating. Int J Biochem Cell Biol. 2019;111:1–10.CrossRefPubMed
73.
go back to reference Li W-w, Li J, Bao J-k. Microautophagy: lesser-known self-eating. Cellular Mol Life Sci. 2012;69(7):1125–36.CrossRef Li W-w, Li J, Bao J-k. Microautophagy: lesser-known self-eating. Cellular Mol Life Sci. 2012;69(7):1125–36.CrossRef
74.
go back to reference Tatsumi T, Tsukamoto S. 2022 Chapter 9 - Role of autophagy in embryogenesis. In: Rothermel BA, Diwan A, editors. Autophagy in Health and Disease (Second Edition): Academic Press. p. 113–23 Tatsumi T, Tsukamoto S. 2022 Chapter 9 - Role of autophagy in embryogenesis. In: Rothermel BA, Diwan A, editors. Autophagy in Health and Disease (Second Edition): Academic Press. p. 113–23
75.
go back to reference Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, et al. Targeting autophagy in disease: established and new strategies. Autophagy. 2022;18(3):473–95.CrossRefPubMed Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, et al. Targeting autophagy in disease: established and new strategies. Autophagy. 2022;18(3):473–95.CrossRefPubMed
76.
go back to reference Gómez-Virgilio L, Silva-Lucero MD, Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez AM, et al. Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators. Cells. 2022;11(15):2262.CrossRefPubMedPubMedCentral Gómez-Virgilio L, Silva-Lucero MD, Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez AM, et al. Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators. Cells. 2022;11(15):2262.CrossRefPubMedPubMedCentral
78.
go back to reference Mulcahy Levy JM, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ. 2020;27(3):843–57.CrossRefPubMed Mulcahy Levy JM, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ. 2020;27(3):843–57.CrossRefPubMed
79.
go back to reference Yang X, Yu D-D, Yan F, Jing Y-Y, Han Z-P, Sun K, et al. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer. Cell Biosci. 2015;5(1):14.CrossRefPubMedPubMedCentral Yang X, Yu D-D, Yan F, Jing Y-Y, Han Z-P, Sun K, et al. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer. Cell Biosci. 2015;5(1):14.CrossRefPubMedPubMedCentral
80.
go back to reference Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A. 2011;108(12):4788–93.CrossRefPubMedPubMedCentral Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A. 2011;108(12):4788–93.CrossRefPubMedPubMedCentral
81.
go back to reference Zheng Q, Duan L, Zhang Y, Li J, Zhang S, Wang H. A dynamically evolving war between autophagy and pathogenic microorganisms. J Zhejiang Univ Sci B. 2022;23(1):19–41.CrossRefPubMedPubMedCentral Zheng Q, Duan L, Zhang Y, Li J, Zhang S, Wang H. A dynamically evolving war between autophagy and pathogenic microorganisms. J Zhejiang Univ Sci B. 2022;23(1):19–41.CrossRefPubMedPubMedCentral
84.
go back to reference Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, et al. DNA damage response and repair in ovarian cancer: potential targets for therapeutic strategies. DNA Repair. 2019;80:59–84.CrossRefPubMed Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, et al. DNA damage response and repair in ovarian cancer: potential targets for therapeutic strategies. DNA Repair. 2019;80:59–84.CrossRefPubMed
87.
89.
go back to reference Ichimiya T, Yamakawa T, Hirano T, Yokoyama Y, Hayashi Y, Hirayama D, et al. Autophagy and autophagy-related diseases: a review. Int J Mol Sci. 2020;21(23):8974.CrossRefPubMedPubMedCentral Ichimiya T, Yamakawa T, Hirano T, Yokoyama Y, Hayashi Y, Hirayama D, et al. Autophagy and autophagy-related diseases: a review. Int J Mol Sci. 2020;21(23):8974.CrossRefPubMedPubMedCentral
90.
go back to reference Ren S, Ding C, Sun Y. Morphology remodeling and selective autophagy of intracellular organelles during viral infections. Int J Mol Sci. 2020;21(10):3689.CrossRefPubMedPubMedCentral Ren S, Ding C, Sun Y. Morphology remodeling and selective autophagy of intracellular organelles during viral infections. Int J Mol Sci. 2020;21(10):3689.CrossRefPubMedPubMedCentral
91.
go back to reference Ghosh R, Pattison JS. Macroautophagy and chaperone-mediated autophagy in heart failure: the known and the unknown. Oxid Med Cell Longev. 2018;2018:8602041.CrossRefPubMedPubMedCentral Ghosh R, Pattison JS. Macroautophagy and chaperone-mediated autophagy in heart failure: the known and the unknown. Oxid Med Cell Longev. 2018;2018:8602041.CrossRefPubMedPubMedCentral
93.
94.
go back to reference Wong ASL, Cheung ZH, Ip NY. 2011 Molecular machinery of macroautophagy and its deregulation in diseases. Biochimica et Biophys Acta (BBA)— Mol Basis Dis. 2011;1812:1490–7.CrossRef Wong ASL, Cheung ZH, Ip NY. 2011 Molecular machinery of macroautophagy and its deregulation in diseases. Biochimica et Biophys Acta (BBA)— Mol Basis Dis. 2011;1812:1490–7.CrossRef
97.
98.
go back to reference Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy. 2011;7(7):673–82.CrossRefPubMed Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy. 2011;7(7):673–82.CrossRefPubMed
99.
go back to reference Ding X, Zhang X, Paez-Valencia J, McLoughlin F, Reyes FC, Morohashi K, et al. Microautophagy mediates vacuolar delivery of storage proteins in maize aleurone cells. Front Plant Sci. 2022;13:833612.CrossRefPubMedPubMedCentral Ding X, Zhang X, Paez-Valencia J, McLoughlin F, Reyes FC, Morohashi K, et al. Microautophagy mediates vacuolar delivery of storage proteins in maize aleurone cells. Front Plant Sci. 2022;13:833612.CrossRefPubMedPubMedCentral
100.
go back to reference Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 2012;69(7):1125–36.CrossRefPubMed Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 2012;69(7):1125–36.CrossRefPubMed
101.
go back to reference Stefaniak S, Wojtyla Ł, Pietrowska-Borek M, Borek S. Completing autophagy: Formation and degradation of the autophagic body and metabolite salvage in plants. Int J Mol Sci. 2020;21(6):2205.CrossRefPubMedPubMedCentral Stefaniak S, Wojtyla Ł, Pietrowska-Borek M, Borek S. Completing autophagy: Formation and degradation of the autophagic body and metabolite salvage in plants. Int J Mol Sci. 2020;21(6):2205.CrossRefPubMedPubMedCentral
102.
go back to reference Schuck S. Microautophagy–distinct molecular mechanisms handle cargoes of many sizes. J Cell Sci. 2020;133(17):jcs246322.CrossRefPubMed Schuck S. Microautophagy–distinct molecular mechanisms handle cargoes of many sizes. J Cell Sci. 2020;133(17):jcs246322.CrossRefPubMed
103.
go back to reference Li W, Nie T, Xu H, Yang J, Yang Q, Mao Z. Chaperone-mediated autophagy: advances from bench to bedside. Neurobiol Dis. 2019;122:41–8.CrossRefPubMed Li W, Nie T, Xu H, Yang J, Yang Q, Mao Z. Chaperone-mediated autophagy: advances from bench to bedside. Neurobiol Dis. 2019;122:41–8.CrossRefPubMed
104.
go back to reference Lescat L, Herpin A, Mourot B, Véron V, Guiguen Y, Bobe J, Seiliez I. CMA restricted to mammals and birds: myth or reality? Autophagy. 2018;14(7):1267–70.CrossRefPubMedPubMedCentral Lescat L, Herpin A, Mourot B, Véron V, Guiguen Y, Bobe J, Seiliez I. CMA restricted to mammals and birds: myth or reality? Autophagy. 2018;14(7):1267–70.CrossRefPubMedPubMedCentral
105.
go back to reference Cuervo AM, Dice JF. Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci. 2000;113(24):4441–50.CrossRefPubMed Cuervo AM, Dice JF. Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci. 2000;113(24):4441–50.CrossRefPubMed
106.
go back to reference Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008;28(18):5747–63.CrossRefPubMedPubMedCentral Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008;28(18):5747–63.CrossRefPubMedPubMedCentral
107.
go back to reference Khan I, Baig MH, Mahfooz S, Rahim M, Karacam B, Elbasan EB, et al. Deciphering the role of autophagy in treatment of resistance mechanisms in glioblastoma. Int J Mol Sci. 2021;22(3):1318.CrossRefPubMedPubMedCentral Khan I, Baig MH, Mahfooz S, Rahim M, Karacam B, Elbasan EB, et al. Deciphering the role of autophagy in treatment of resistance mechanisms in glioblastoma. Int J Mol Sci. 2021;22(3):1318.CrossRefPubMedPubMedCentral
108.
go back to reference Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D. The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front Oncol. 2020;10:578418.CrossRefPubMedPubMedCentral Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D. The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front Oncol. 2020;10:578418.CrossRefPubMedPubMedCentral
109.
go back to reference Luo G, Zhou Z, Huang C, Zhang P, Sun N, Chen W, et al. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps. Heliyon. 2023;9(7):e17909.CrossRefPubMedPubMedCentral Luo G, Zhou Z, Huang C, Zhang P, Sun N, Chen W, et al. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps. Heliyon. 2023;9(7):e17909.CrossRefPubMedPubMedCentral
110.
go back to reference Noonan J, Zarrer J, Murphy BM. Targeting autophagy in glioblastoma. Crit Rev Oncog. 2016;21(3–4):241–52.CrossRefPubMed Noonan J, Zarrer J, Murphy BM. Targeting autophagy in glioblastoma. Crit Rev Oncog. 2016;21(3–4):241–52.CrossRefPubMed
111.
go back to reference Noonan J, Zarrer J, Murphy BM. Targeting autophagy in glioblastoma. Crit Rev Oncog. 2016;21(3–4):241–52.CrossRefPubMed Noonan J, Zarrer J, Murphy BM. Targeting autophagy in glioblastoma. Crit Rev Oncog. 2016;21(3–4):241–52.CrossRefPubMed
112.
go back to reference Cj P, Hv E, Vijayakurup V, G RM, Nair S, Gopala S. High LC3/beclin expression correlates with poor survival in glioma: a definitive role for autophagy as evidenced by in vitro autophagic flux. Pathol Oncol Res. 2019;25(1):137–48.CrossRefPubMed Cj P, Hv E, Vijayakurup V, G RM, Nair S, Gopala S. High LC3/beclin expression correlates with poor survival in glioma: a definitive role for autophagy as evidenced by in vitro autophagic flux. Pathol Oncol Res. 2019;25(1):137–48.CrossRefPubMed
113.
go back to reference Huang X, Bai H-M, Chen L, Li B, Lu Y-C. Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J Clin Neurosci. 2010;17(12):1515–9.CrossRefPubMed Huang X, Bai H-M, Chen L, Li B, Lu Y-C. Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J Clin Neurosci. 2010;17(12):1515–9.CrossRefPubMed
114.
go back to reference Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–903.CrossRefPubMedPubMedCentral Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–903.CrossRefPubMedPubMedCentral
115.
go back to reference Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, et al. Autophagic-Related proteins in brain gliomas: role, mechanisms, and targeting agents. Cancers (Basel). 2023;15(9):2622.CrossRefPubMedPubMedCentral Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, et al. Autophagic-Related proteins in brain gliomas: role, mechanisms, and targeting agents. Cancers (Basel). 2023;15(9):2622.CrossRefPubMedPubMedCentral
116.
go back to reference Khan I, Baig MH, Mahfooz S, Rahim M, Karacam B, Elbasan EB, et al. Deciphering the Role of Autophagy in Treatment of Resistance Mechanisms in Glioblastoma. Int J Mol Sci. 2021;22(3):1318.CrossRefPubMedPubMedCentral Khan I, Baig MH, Mahfooz S, Rahim M, Karacam B, Elbasan EB, et al. Deciphering the Role of Autophagy in Treatment of Resistance Mechanisms in Glioblastoma. Int J Mol Sci. 2021;22(3):1318.CrossRefPubMedPubMedCentral
117.
go back to reference Divé I, Klann K, Michaelis JB, Heinzen D, Steinbach JP, Münch C, Ronellenfitsch MW. Inhibition of mTOR signaling protects human glioma cells from hypoxia-induced cell death in an autophagy-independent manner. Cell Death Discovery. 2022;8(1):409.CrossRefPubMedPubMedCentral Divé I, Klann K, Michaelis JB, Heinzen D, Steinbach JP, Münch C, Ronellenfitsch MW. Inhibition of mTOR signaling protects human glioma cells from hypoxia-induced cell death in an autophagy-independent manner. Cell Death Discovery. 2022;8(1):409.CrossRefPubMedPubMedCentral
118.
go back to reference Anandharaj A, Cinghu S, Park WY. Rapamycin-mediated mTOR inhibition attenuates survivin and sensitizes glioblastoma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai). 2011;43(4):292–300.CrossRefPubMed Anandharaj A, Cinghu S, Park WY. Rapamycin-mediated mTOR inhibition attenuates survivin and sensitizes glioblastoma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai). 2011;43(4):292–300.CrossRefPubMed
119.
go back to reference Wen Z-p, Zeng W-j, Chen Y-h, Li H, Wang J-y, Cheng Q, et al. Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. J Exp Clin Cancer Res. 2019;38(1):298.CrossRefPubMedPubMedCentral Wen Z-p, Zeng W-j, Chen Y-h, Li H, Wang J-y, Cheng Q, et al. Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. J Exp Clin Cancer Res. 2019;38(1):298.CrossRefPubMedPubMedCentral
120.
go back to reference Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, et al. Autophagy as a potential therapy for malignant glioma. Pharmaceuticals. 2020;13(7):156.CrossRefPubMedPubMedCentral Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, et al. Autophagy as a potential therapy for malignant glioma. Pharmaceuticals. 2020;13(7):156.CrossRefPubMedPubMedCentral
122.
go back to reference Shi X, Yokom AL, Wang C, Young LN, Youle RJ, Hurley JH. ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer. J Cell Biol. 2020;219(7):e201911047.CrossRefPubMedPubMedCentral Shi X, Yokom AL, Wang C, Young LN, Youle RJ, Hurley JH. ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer. J Cell Biol. 2020;219(7):e201911047.CrossRefPubMedPubMedCentral
123.
go back to reference Choi S, Houdek X, Anderson RA. Phosphoinositide 3-kinase pathways and autophagy require phosphatidylinositol phosphate kinases. Adv Biol Regul. 2018;68:31–8.CrossRefPubMedPubMedCentral Choi S, Houdek X, Anderson RA. Phosphoinositide 3-kinase pathways and autophagy require phosphatidylinositol phosphate kinases. Adv Biol Regul. 2018;68:31–8.CrossRefPubMedPubMedCentral
125.
go back to reference Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, Debnath J. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell. 2010;142(4):590–600.CrossRefPubMedPubMedCentral Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, Debnath J. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell. 2010;142(4):590–600.CrossRefPubMedPubMedCentral
128.
go back to reference Ghaffarian Zirak R, Tajik H, Asadi J, Hashemian P, Javid H. The role of micro RNAs in regulating PI3K/AKT signaling pathways in glioblastoma. Iran J Pathol. 2022;17(2):122–36.CrossRefPubMedPubMedCentral Ghaffarian Zirak R, Tajik H, Asadi J, Hashemian P, Javid H. The role of micro RNAs in regulating PI3K/AKT signaling pathways in glioblastoma. Iran J Pathol. 2022;17(2):122–36.CrossRefPubMedPubMedCentral
129.
go back to reference Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest. 2010;90(2):144–55.CrossRefPubMed Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest. 2010;90(2):144–55.CrossRefPubMed
130.
go back to reference Li J, An G, Zhang M, Ma Q. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells. Biochem Biophys Res Commun. 2016;477(4):743–8.CrossRefPubMed Li J, An G, Zhang M, Ma Q. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells. Biochem Biophys Res Commun. 2016;477(4):743–8.CrossRefPubMed
131.
go back to reference Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.CrossRefPubMed Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.CrossRefPubMed
132.
go back to reference Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res. 2010;1352:255–64.CrossRefPubMed Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res. 2010;1352:255–64.CrossRefPubMed
133.
go back to reference Zhang Z, Zhou Q, Miao Y, Tian H, Li Y, Feng X, Song X. RETRACTED ARTICLE: MiR-429 induces apoptosis of glioblastoma cell through Bcl-2. Tumor Biology. 2016;37:15607–13.CrossRef Zhang Z, Zhou Q, Miao Y, Tian H, Li Y, Feng X, Song X. RETRACTED ARTICLE: MiR-429 induces apoptosis of glioblastoma cell through Bcl-2. Tumor Biology. 2016;37:15607–13.CrossRef
134.
go back to reference Villanova L, Careccia S, De Maria R, Fiori ME. Micro-economics of apoptosis in cancer: ncRNAs modulation of BCL-2 family members. Int J Mol Sci. 2018;19(4):958.CrossRefPubMedPubMedCentral Villanova L, Careccia S, De Maria R, Fiori ME. Micro-economics of apoptosis in cancer: ncRNAs modulation of BCL-2 family members. Int J Mol Sci. 2018;19(4):958.CrossRefPubMedPubMedCentral
135.
go back to reference Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ. 2018;25(1):21–6.CrossRefPubMed Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ. 2018;25(1):21–6.CrossRefPubMed
136.
go back to reference Chen SR, Cai WP, Dai XJ, Guo AS, Chen HP, Lin GS, Lin RS. Research on miR-126 in glioma targeted regulation of PTEN/PI3K/Akt and MDM2-p53 pathways. Eur Rev Med Pharmacol Sci. 2019;23(8):3461–70.PubMed Chen SR, Cai WP, Dai XJ, Guo AS, Chen HP, Lin GS, Lin RS. Research on miR-126 in glioma targeted regulation of PTEN/PI3K/Akt and MDM2-p53 pathways. Eur Rev Med Pharmacol Sci. 2019;23(8):3461–70.PubMed
137.
go back to reference Fu Z, Luo W, Wang J, Peng T, Sun G, Shi J, et al. Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma. Biochem Biophys Res Commun. 2017;492(3):480–6.CrossRefPubMed Fu Z, Luo W, Wang J, Peng T, Sun G, Shi J, et al. Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma. Biochem Biophys Res Commun. 2017;492(3):480–6.CrossRefPubMed
138.
go back to reference Tan JY, Jia LQ, Shi WH, He Q, Zhu L, Yu B. Rab5a-mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells. Mol Med Rep. 2016;14(5):4445–53.CrossRefPubMedPubMedCentral Tan JY, Jia LQ, Shi WH, He Q, Zhu L, Yu B. Rab5a-mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells. Mol Med Rep. 2016;14(5):4445–53.CrossRefPubMedPubMedCentral
139.
go back to reference Tamargo-Gómez I, Martínez-García GG, Suárez MF, Rey V, Fueyo A, Codina-Martínez H, et al. ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ. 2021;28(9):2651–72.CrossRefPubMedPubMedCentral Tamargo-Gómez I, Martínez-García GG, Suárez MF, Rey V, Fueyo A, Codina-Martínez H, et al. ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ. 2021;28(9):2651–72.CrossRefPubMedPubMedCentral
141.
go back to reference Huang S, Qi P, Zhang T, Li F, He X. The HIF-1α/miR-224-3p/ATG5 axis affects cell mobility and chemosensitivity by regulating hypoxia-induced protective autophagy in glioblastoma and astrocytoma. Oncol Rep. 2019;41(3):1759–68.PubMed Huang S, Qi P, Zhang T, Li F, He X. The HIF-1α/miR-224-3p/ATG5 axis affects cell mobility and chemosensitivity by regulating hypoxia-induced protective autophagy in glioblastoma and astrocytoma. Oncol Rep. 2019;41(3):1759–68.PubMed
142.
go back to reference Guo X, Xue H, Guo X, Gao X, Xu S, Yan S, et al. MiR224-3p inhibits hypoxia-induced autophagy by targeting autophagy-related genes in human glioblastoma cells. Oncotarget. 2015;6(39):41620–37.CrossRefPubMedPubMedCentral Guo X, Xue H, Guo X, Gao X, Xu S, Yan S, et al. MiR224-3p inhibits hypoxia-induced autophagy by targeting autophagy-related genes in human glioblastoma cells. Oncotarget. 2015;6(39):41620–37.CrossRefPubMedPubMedCentral
143.
go back to reference Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12(7):1129–52.CrossRefPubMedPubMedCentral Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12(7):1129–52.CrossRefPubMedPubMedCentral
144.
go back to reference Huang T, Wan X, Alvarez AA, James CD, Song X, Yang Y, et al. MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy. Autophagy. 2019;15(6):1100–11.CrossRefPubMedPubMedCentral Huang T, Wan X, Alvarez AA, James CD, Song X, Yang Y, et al. MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy. Autophagy. 2019;15(6):1100–11.CrossRefPubMedPubMedCentral
145.
go back to reference Chen P-H, Cheng C-H, Shih C-M, Ho K-H, Lin C-W, Lee C-C, et al. The inhibition of microRNA-128 on IGF-1-activating mTOR signaling involves in temozolomide-induced glioma cell apoptotic death. PLoS ONE. 2016;11(11):e0167096.CrossRefPubMedPubMedCentral Chen P-H, Cheng C-H, Shih C-M, Ho K-H, Lin C-W, Lee C-C, et al. The inhibition of microRNA-128 on IGF-1-activating mTOR signaling involves in temozolomide-induced glioma cell apoptotic death. PLoS ONE. 2016;11(11):e0167096.CrossRefPubMedPubMedCentral
146.
go back to reference Li H, Chen L, Li J-j, Zhou Q, Huang A, Liu W-w, et al. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol. 2018;11(1):70.CrossRefPubMedPubMedCentral Li H, Chen L, Li J-j, Zhou Q, Huang A, Liu W-w, et al. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol. 2018;11(1):70.CrossRefPubMedPubMedCentral
147.
go back to reference Kim EH, Jo Y, Sai S, Park M-J, Kim J-Y, Kim JS, et al. Tumor-treating fields induce autophagy by blocking the Akt2/miR29b axis in glioblastoma cells. Oncogene. 2019;38(39):6630–46.CrossRefPubMed Kim EH, Jo Y, Sai S, Park M-J, Kim J-Y, Kim JS, et al. Tumor-treating fields induce autophagy by blocking the Akt2/miR29b axis in glioblastoma cells. Oncogene. 2019;38(39):6630–46.CrossRefPubMed
148.
go back to reference Lu Y, Xiao L, Liu Y, Wang H, Li H, Zhou Q, et al. MIR517C inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation. Autophagy. 2015;11(12):2213–32.CrossRefPubMedPubMedCentral Lu Y, Xiao L, Liu Y, Wang H, Li H, Zhou Q, et al. MIR517C inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation. Autophagy. 2015;11(12):2213–32.CrossRefPubMedPubMedCentral
149.
go back to reference Liu Y, Yang L, Liao F, Wang W, Wang Z-F. MiR-450a-5p strengthens the drug sensitivity of gefitinib in glioma chemotherapy via regulating autophagy by targeting EGFR. Oncogene. 2020;39(39):6190–202.CrossRefPubMedPubMedCentral Liu Y, Yang L, Liao F, Wang W, Wang Z-F. MiR-450a-5p strengthens the drug sensitivity of gefitinib in glioma chemotherapy via regulating autophagy by targeting EGFR. Oncogene. 2020;39(39):6190–202.CrossRefPubMedPubMedCentral
150.
go back to reference Chen X, Zhang Y, Shi Y, Lian H, Tu H, Han S, et al. MiR-129 triggers autophagic flux by regulating a novel Notch-1/ E2F7/Beclin-1 axis to impair the viability of human malignant glioma cells. Oncotarget. 2016;7(8):9222–35.CrossRefPubMedPubMedCentral Chen X, Zhang Y, Shi Y, Lian H, Tu H, Han S, et al. MiR-129 triggers autophagic flux by regulating a novel Notch-1/ E2F7/Beclin-1 axis to impair the viability of human malignant glioma cells. Oncotarget. 2016;7(8):9222–35.CrossRefPubMedPubMedCentral
151.
go back to reference Shao N, Xue L, Wang R, Luo K, Zhi F, Lan Q. miR-454-3p Is an Exosomal Biomarker and Functions as a Tumor Suppressor in Glioma. Mol Cancer Ther. 2019;18(2):459–69.CrossRefPubMed Shao N, Xue L, Wang R, Luo K, Zhi F, Lan Q. miR-454-3p Is an Exosomal Biomarker and Functions as a Tumor Suppressor in Glioma. Mol Cancer Ther. 2019;18(2):459–69.CrossRefPubMed
152.
go back to reference Xu J, Huang H, Peng R, Ding X, Jiang B, Yuan X, Xi J. MicroRNA-30a increases the chemosensitivity of U251 glioblastoma cells to temozolomide by directly targeting beclin 1 and inhibiting autophagy. Exp Ther Med. 2018;15(6):4798–804.PubMedPubMedCentral Xu J, Huang H, Peng R, Ding X, Jiang B, Yuan X, Xi J. MicroRNA-30a increases the chemosensitivity of U251 glioblastoma cells to temozolomide by directly targeting beclin 1 and inhibiting autophagy. Exp Ther Med. 2018;15(6):4798–804.PubMedPubMedCentral
153.
go back to reference Hou W, Song L, Zhao Y, Liu Q, Zhang S. Inhibition of Beclin-1-Mediated Autophagy by MicroRNA-17-5p Enhanced the Radiosensitivity of Glioma Cells. Oncol Res. 2017;25(1):43–53.CrossRefPubMedPubMedCentral Hou W, Song L, Zhao Y, Liu Q, Zhang S. Inhibition of Beclin-1-Mediated Autophagy by MicroRNA-17-5p Enhanced the Radiosensitivity of Glioma Cells. Oncol Res. 2017;25(1):43–53.CrossRefPubMedPubMedCentral
154.
go back to reference Sun AG, Meng FG, Wang MG. CISD2 promotes the proliferation of glioma cells via suppressing beclin-1-mediated autophagy and is targeted by microRNA-449a. Mol Med Rep. 2017;16(6):7939–48.CrossRefPubMedPubMedCentral Sun AG, Meng FG, Wang MG. CISD2 promotes the proliferation of glioma cells via suppressing beclin-1-mediated autophagy and is targeted by microRNA-449a. Mol Med Rep. 2017;16(6):7939–48.CrossRefPubMedPubMedCentral
155.
go back to reference Zeng Y, Huo G, Mo Y, Wang W, Chen H. MIR137 regulates starvation-induced autophagy by targeting ATG7. J Mol Neurosci. 2015;56:815–21.CrossRefPubMed Zeng Y, Huo G, Mo Y, Wang W, Chen H. MIR137 regulates starvation-induced autophagy by targeting ATG7. J Mol Neurosci. 2015;56:815–21.CrossRefPubMed
156.
go back to reference Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 2016;5(8):1917–46.CrossRefPubMedPubMedCentral Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 2016;5(8):1917–46.CrossRefPubMedPubMedCentral
158.
go back to reference Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing MiRNA-LncRNA Interactions. Methods Mol Biol. 2016;1402:271–86.CrossRefPubMed Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing MiRNA-LncRNA Interactions. Methods Mol Biol. 2016;1402:271–86.CrossRefPubMed
159.
160.
go back to reference Yang L, Wang H, Shen Q, Feng L, Jin H. Long non-coding RNAs involved in autophagy regulation. Cell Death Dis. 2017;8(10):3073.CrossRef Yang L, Wang H, Shen Q, Feng L, Jin H. Long non-coding RNAs involved in autophagy regulation. Cell Death Dis. 2017;8(10):3073.CrossRef
161.
go back to reference Chen X, Li Y, Zuo C, Zhang K, Lei X, Wang J, et al. Long Non−Coding RNA H19 regulates glioma cell growth and metastasis via miR-200a-mediated CDK6 and ZEB1 expression. Front Oncol. 2021;11:757650.CrossRefPubMedPubMedCentral Chen X, Li Y, Zuo C, Zhang K, Lei X, Wang J, et al. Long Non−Coding RNA H19 regulates glioma cell growth and metastasis via miR-200a-mediated CDK6 and ZEB1 expression. Front Oncol. 2021;11:757650.CrossRefPubMedPubMedCentral
162.
go back to reference Valle-Garcia D, Pérez de la Cruz V, Flores I, Salazar A, Pineda B, Meza-Sosa KF. Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma. Int J Mol Sci. 2024;25(5):2464.CrossRefPubMedPubMedCentral Valle-Garcia D, Pérez de la Cruz V, Flores I, Salazar A, Pineda B, Meza-Sosa KF. Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma. Int J Mol Sci. 2024;25(5):2464.CrossRefPubMedPubMedCentral
163.
go back to reference Wang G, Lin X, Han H, Zhang H, Li X, Feng M, Jiang C. lncRNA H19 promotes glioblastoma multiforme development by activating autophagy by sponging miR-491-5p. Bioengineered. 2022;13(5):11440–55.CrossRefPubMedPubMedCentral Wang G, Lin X, Han H, Zhang H, Li X, Feng M, Jiang C. lncRNA H19 promotes glioblastoma multiforme development by activating autophagy by sponging miR-491-5p. Bioengineered. 2022;13(5):11440–55.CrossRefPubMedPubMedCentral
164.
go back to reference Ma B, Yuan Z, Zhang L, Lv P, Yang T, Gao J, et al. 2017 Long non-coding RNA AC023115.3 suppresses chemoresistance of glioblastoma by reducing autophagy. Biochimica et Biophys Acta (BBA) Mol Cell Res. 1864;1393:404. Ma B, Yuan Z, Zhang L, Lv P, Yang T, Gao J, et al. 2017 Long non-coding RNA AC023115.3 suppresses chemoresistance of glioblastoma by reducing autophagy. Biochimica et Biophys Acta (BBA) Mol Cell Res. 1864;1393:404.
165.
go back to reference Ma R, Zhang BW, Zhang ZB, Deng QJ. LncRNA MALAT1 knockdown inhibits cell migration and invasion by suppressing autophagy through miR-384/GOLM1 axis in glioma. Eur Rev Med Pharmacol Sci. 2020;24(5):2601–15.PubMed Ma R, Zhang BW, Zhang ZB, Deng QJ. LncRNA MALAT1 knockdown inhibits cell migration and invasion by suppressing autophagy through miR-384/GOLM1 axis in glioma. Eur Rev Med Pharmacol Sci. 2020;24(5):2601–15.PubMed
166.
go back to reference Liu C, Fu H, Liu X, Lei Q, Zhang Y, She X, et al. LINC00470 coordinates the epigenetic regulation of ELFN2 to Distract GBM cell autophagy. Mol Ther. 2018;26(9):2267–81.CrossRefPubMedPubMedCentral Liu C, Fu H, Liu X, Lei Q, Zhang Y, She X, et al. LINC00470 coordinates the epigenetic regulation of ELFN2 to Distract GBM cell autophagy. Mol Ther. 2018;26(9):2267–81.CrossRefPubMedPubMedCentral
167.
go back to reference Jiang C, Shen F, Du J, Fang X, Li X, Su J, et al. Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed Pharmacother. 2018;97:844–50.CrossRefPubMed Jiang C, Shen F, Du J, Fang X, Li X, Su J, et al. Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed Pharmacother. 2018;97:844–50.CrossRefPubMed
168.
go back to reference Xu Z, Chen Q, Zeng X, Li M, Liao J. lnc-NLC1-C inhibits migration, invasion and autophagy of glioma cells by targeting miR-383 and regulating PRDX-3 expression. Oncol Lett. 2021;22(3):640.CrossRefPubMedPubMedCentral Xu Z, Chen Q, Zeng X, Li M, Liao J. lnc-NLC1-C inhibits migration, invasion and autophagy of glioma cells by targeting miR-383 and regulating PRDX-3 expression. Oncol Lett. 2021;22(3):640.CrossRefPubMedPubMedCentral
169.
go back to reference Zhao W, Lin X, Han H, Zhang H, Li X, Jiang C, Feng M. Long noncoding RNA H19 contributes to the proliferation and autophagy of glioma cells through mTOR/ULK1 pathway. NeuroReport. 2021;32(5):352–8.CrossRefPubMed Zhao W, Lin X, Han H, Zhang H, Li X, Jiang C, Feng M. Long noncoding RNA H19 contributes to the proliferation and autophagy of glioma cells through mTOR/ULK1 pathway. NeuroReport. 2021;32(5):352–8.CrossRefPubMed
170.
go back to reference Zhao Z, Liu M, Long W, Yuan J, Li H, Zhang C, et al. Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma. Cancer Cell Int. 2021;21(1):456.CrossRefPubMedPubMedCentral Zhao Z, Liu M, Long W, Yuan J, Li H, Zhang C, et al. Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma. Cancer Cell Int. 2021;21(1):456.CrossRefPubMedPubMedCentral
171.
go back to reference Zhao Z, Liu M, Long W, Yuan J, Li H, Zhang C, et al. Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma. Cancer Cell Int. 2021;21(1):456.CrossRefPubMedPubMedCentral Zhao Z, Liu M, Long W, Yuan J, Li H, Zhang C, et al. Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma. Cancer Cell Int. 2021;21(1):456.CrossRefPubMedPubMedCentral
172.
go back to reference Lv QL, Wang LC, Li DC, Lin QX, Shen XL, Liu HY, et al. Knockdown lncRNA DLEU1 inhibits gliomas progression and promotes temozolomide chemosensitivity by regulating autophagy. Front Pharmacol. 2020;11:560543.CrossRefPubMedPubMedCentral Lv QL, Wang LC, Li DC, Lin QX, Shen XL, Liu HY, et al. Knockdown lncRNA DLEU1 inhibits gliomas progression and promotes temozolomide chemosensitivity by regulating autophagy. Front Pharmacol. 2020;11:560543.CrossRefPubMedPubMedCentral
173.
go back to reference Lv Q-L, Wang L-C, Li D-C, Lin Q-X, Shen X-L, Liu H-Y, et al. Knockdown lncRNA DLEU1 Inhibits Gliomas progression and promotes temozolomide chemosensitivity by regulating autophagy. Front Pharmacol. 2020;11:56054382.CrossRef Lv Q-L, Wang L-C, Li D-C, Lin Q-X, Shen X-L, Liu H-Y, et al. Knockdown lncRNA DLEU1 Inhibits Gliomas progression and promotes temozolomide chemosensitivity by regulating autophagy. Front Pharmacol. 2020;11:56054382.CrossRef
174.
go back to reference Long Noncoding RNA. TP53TG1 contributes to radioresistance of glioma cells Via miR-524-5p/RAB5A Axis. Cancer Biother Radiopharm. 2021;36(7):600–12. Long Noncoding RNA. TP53TG1 contributes to radioresistance of glioma cells Via miR-524-5p/RAB5A Axis. Cancer Biother Radiopharm. 2021;36(7):600–12.
175.
go back to reference Jia L, Song Y, Mu L, Li Q, Tang J, Yang Z, Meng W. Long noncoding RNA TPT1-AS1 downregulates the microRNA-770-5p expression to inhibit glioma cell autophagy and promote proliferation through STMN1 upregulation. J Cell Physiol. 2020;235(4):3679–89.CrossRefPubMed Jia L, Song Y, Mu L, Li Q, Tang J, Yang Z, Meng W. Long noncoding RNA TPT1-AS1 downregulates the microRNA-770-5p expression to inhibit glioma cell autophagy and promote proliferation through STMN1 upregulation. J Cell Physiol. 2020;235(4):3679–89.CrossRefPubMed
176.
go back to reference Wang CZ, Yan GX, Dong DS, Xin H, Liu ZY. LncRNA-ATB promotes autophagy by activating Yes-associated protein and inducing autophagy-related protein 5 expression in hepatocellular carcinoma. World J Gastroenterol. 2019;25(35):5310–22.CrossRefPubMedPubMedCentral Wang CZ, Yan GX, Dong DS, Xin H, Liu ZY. LncRNA-ATB promotes autophagy by activating Yes-associated protein and inducing autophagy-related protein 5 expression in hepatocellular carcinoma. World J Gastroenterol. 2019;25(35):5310–22.CrossRefPubMedPubMedCentral
177.
179.
go back to reference Ma Y, Wang P, Xue Y, Qu C, Zheng J, Liu X, et al. PVT1 affects growth of glioma microvascular endothelial cells by negatively regulating miR-186. Tumor Biology. 2017;39(3):1010428317694326.CrossRefPubMed Ma Y, Wang P, Xue Y, Qu C, Zheng J, Liu X, et al. PVT1 affects growth of glioma microvascular endothelial cells by negatively regulating miR-186. Tumor Biology. 2017;39(3):1010428317694326.CrossRefPubMed
180.
go back to reference Shen Y, Liu Y, Sun T, Yang W. LincRNA-p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF-1/Akt/mTOR/P70S6K pathway. Exp Cell Res. 2017;358(2):188–98.CrossRefPubMed Shen Y, Liu Y, Sun T, Yang W. LincRNA-p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF-1/Akt/mTOR/P70S6K pathway. Exp Cell Res. 2017;358(2):188–98.CrossRefPubMed
181.
go back to reference Huo J-F, Chen X-B. Long noncoding RNA growth arrest-specific 5 facilitates glioma cell sensitivity to cisplatin by suppressing excessive autophagy in an mTOR-dependent manner. J Cell Biochem. 2019;120(4):6127–36.CrossRefPubMed Huo J-F, Chen X-B. Long noncoding RNA growth arrest-specific 5 facilitates glioma cell sensitivity to cisplatin by suppressing excessive autophagy in an mTOR-dependent manner. J Cell Biochem. 2019;120(4):6127–36.CrossRefPubMed
182.
go back to reference Xue J, Zhong S, Sun B-m, Sun Q-F, Hu L-Y, Pan S-J. Lnc-THOR silencing inhibits human glioma cell survival by activating MAGEA6-AMPK signaling. Cell Death Dis. 2019;10(11):866.CrossRefPubMedPubMedCentral Xue J, Zhong S, Sun B-m, Sun Q-F, Hu L-Y, Pan S-J. Lnc-THOR silencing inhibits human glioma cell survival by activating MAGEA6-AMPK signaling. Cell Death Dis. 2019;10(11):866.CrossRefPubMedPubMedCentral
183.
go back to reference He D, Xin T, Pang B, Sun J, Liu ZH, Qin Z, et al. A novel lncRNA MDHDH suppresses glioblastoma multiforme by acting as a scaffold for MDH2 and PSMA1 to regulate NAD+ metabolism and autophagy. J Exp Clin Cancer Res. 2022;41(1):349.CrossRefPubMedPubMedCentral He D, Xin T, Pang B, Sun J, Liu ZH, Qin Z, et al. A novel lncRNA MDHDH suppresses glioblastoma multiforme by acting as a scaffold for MDH2 and PSMA1 to regulate NAD+ metabolism and autophagy. J Exp Clin Cancer Res. 2022;41(1):349.CrossRefPubMedPubMedCentral
184.
go back to reference Yuan S, Yan Q, Zhao Z-y, Zhang J-l, Zhang H, Yin H, Yuan Z. STAT3-mediated upregulation of LINC00520 contributed to temozolomide chemoresistance in glioblastoma by interacting with RNA-binding protein LIN28B. Cancer Cell Int. 2022;22(1):248.CrossRefPubMedPubMedCentral Yuan S, Yan Q, Zhao Z-y, Zhang J-l, Zhang H, Yin H, Yuan Z. STAT3-mediated upregulation of LINC00520 contributed to temozolomide chemoresistance in glioblastoma by interacting with RNA-binding protein LIN28B. Cancer Cell Int. 2022;22(1):248.CrossRefPubMedPubMedCentral
185.
go back to reference Zheng J, Wang B, Zheng R, Zhang J, Huang C, Zheng R, et al. Linc-RA1 inhibits autophagy and promotes radioresistance by preventing H2Bub1/USP44 combination in glioma cells. Cell Death Dis. 2020;11(9):758.CrossRefPubMedPubMedCentral Zheng J, Wang B, Zheng R, Zhang J, Huang C, Zheng R, et al. Linc-RA1 inhibits autophagy and promotes radioresistance by preventing H2Bub1/USP44 combination in glioma cells. Cell Death Dis. 2020;11(9):758.CrossRefPubMedPubMedCentral
186.
go back to reference Cai H, Yu Y, Ni X, Li C, Hu Y, Wang J, et al. LncRNA LINC00998 inhibits the malignant glioma phenotype via the CBX3-mediated c-Met/Akt/mTOR axis. Cell Death Dis. 2020;11(12):1032.CrossRefPubMedPubMedCentral Cai H, Yu Y, Ni X, Li C, Hu Y, Wang J, et al. LncRNA LINC00998 inhibits the malignant glioma phenotype via the CBX3-mediated c-Met/Akt/mTOR axis. Cell Death Dis. 2020;11(12):1032.CrossRefPubMedPubMedCentral
187.
go back to reference Fu T, Yang Y, Mu Z, Sun R, Li X, Dong J. Silencing lncRNA LINC01410 suppresses cell viability yet promotes apoptosis and sensitivity to temozolomide in glioblastoma cells by inactivating PTEN/AKT pathway via targeting miR-370-3p. Immunopharmacol Immunotoxicol. 2021;43(6):680–92.CrossRefPubMed Fu T, Yang Y, Mu Z, Sun R, Li X, Dong J. Silencing lncRNA LINC01410 suppresses cell viability yet promotes apoptosis and sensitivity to temozolomide in glioblastoma cells by inactivating PTEN/AKT pathway via targeting miR-370-3p. Immunopharmacol Immunotoxicol. 2021;43(6):680–92.CrossRefPubMed
189.
go back to reference Hwang HJ, Ha H, Lee BS, Kim BH, Song HK, Kim YK. LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy. Nat Commun. 2022;13(1):1436.CrossRefPubMedPubMedCentral Hwang HJ, Ha H, Lee BS, Kim BH, Song HK, Kim YK. LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy. Nat Commun. 2022;13(1):1436.CrossRefPubMedPubMedCentral
190.
go back to reference Zhang W, Shi Z, Chen S, Shen S, Tu S, Yang J, et al. Circular RNA hsa_circ_0075323 promotes glioblastoma cells proliferation and invasion via regulation of autophagy. Cell Div. 2023;18(1):1.CrossRefPubMedPubMedCentral Zhang W, Shi Z, Chen S, Shen S, Tu S, Yang J, et al. Circular RNA hsa_circ_0075323 promotes glioblastoma cells proliferation and invasion via regulation of autophagy. Cell Div. 2023;18(1):1.CrossRefPubMedPubMedCentral
191.
go back to reference Yuan F, Zhang S, Sun Q, Ye L, Xu Y, Xu Z, et al. Hsa_circ_0072309 enhances autophagy and TMZ sensitivity in glioblastoma. CNS Neurosci Ther. 2022;28(6):897–912.CrossRefPubMedPubMedCentral Yuan F, Zhang S, Sun Q, Ye L, Xu Y, Xu Z, et al. Hsa_circ_0072309 enhances autophagy and TMZ sensitivity in glioblastoma. CNS Neurosci Ther. 2022;28(6):897–912.CrossRefPubMedPubMedCentral
192.
go back to reference Chi G, Xu D, Zhang B, Yang F. Matrine induces apoptosis and autophagy of glioma cell line U251 by regulation of circRNA-104075/BCL-9. Chem Biol Interact. 2019;308:198–205.CrossRefPubMed Chi G, Xu D, Zhang B, Yang F. Matrine induces apoptosis and autophagy of glioma cell line U251 by regulation of circRNA-104075/BCL-9. Chem Biol Interact. 2019;308:198–205.CrossRefPubMed
193.
go back to reference Xu Y, Yang Z, Yuan H, Li Z, Li Y, Liu Q, Chen J. PCDH10 inhibits cell proliferation of multiple myeloma via the negative regulation of the Wnt/β-catenin/BCL-9 signaling pathway. Oncol Rep. 2015;34(2):747–54.CrossRefPubMed Xu Y, Yang Z, Yuan H, Li Z, Li Y, Liu Q, Chen J. PCDH10 inhibits cell proliferation of multiple myeloma via the negative regulation of the Wnt/β-catenin/BCL-9 signaling pathway. Oncol Rep. 2015;34(2):747–54.CrossRefPubMed
194.
go back to reference Wang X, Li XD, Fu Z, Zhou Y, Huang X, Jiang X. Long non-coding RNA LINC00473/miR-195-5p promotes glioma progression via YAP1-TEAD1-Hippo signaling. Int J Oncol. 2020;56(2):508–21.PubMed Wang X, Li XD, Fu Z, Zhou Y, Huang X, Jiang X. Long non-coding RNA LINC00473/miR-195-5p promotes glioma progression via YAP1-TEAD1-Hippo signaling. Int J Oncol. 2020;56(2):508–21.PubMed
195.
go back to reference Zhang K, Wang Q, Zhao D, Liu Z. Circular RNA circMMP1 contributes to the progression of glioma through Regulating TGIF2 expression by sponging miR-195-5p. Biochem Genet. 2022;60(2):770–89.CrossRefPubMed Zhang K, Wang Q, Zhao D, Liu Z. Circular RNA circMMP1 contributes to the progression of glioma through Regulating TGIF2 expression by sponging miR-195-5p. Biochem Genet. 2022;60(2):770–89.CrossRefPubMed
196.
go back to reference Cao C, Zhang J, Zhang Z, Feng Y, Wang Z. Knockdown circular RNA circGFRA1 inhibits glioma cell proliferation and migration by upregulating microRNA-99a. NeuroReport. 2021;32(9):748–56.CrossRefPubMed Cao C, Zhang J, Zhang Z, Feng Y, Wang Z. Knockdown circular RNA circGFRA1 inhibits glioma cell proliferation and migration by upregulating microRNA-99a. NeuroReport. 2021;32(9):748–56.CrossRefPubMed
197.
go back to reference Zhang M, Guo Y, Wu J, Chen F, Dai Z, Fan S, et al. Roles of microRNA-99 family in human glioma. Onco Targets Ther. 2016;9:3613–9.PubMedPubMedCentral Zhang M, Guo Y, Wu J, Chen F, Dai Z, Fan S, et al. Roles of microRNA-99 family in human glioma. Onco Targets Ther. 2016;9:3613–9.PubMedPubMedCentral
198.
go back to reference Huang HG, Luo X, Wu S, Jian B. MiR-99a inhibits cell proliferation and tumorigenesis through targeting mTOR in human anaplastic thyroid cancer. Asian Pac J Cancer Prev. 2015;16(12):4937–44.CrossRefPubMed Huang HG, Luo X, Wu S, Jian B. MiR-99a inhibits cell proliferation and tumorigenesis through targeting mTOR in human anaplastic thyroid cancer. Asian Pac J Cancer Prev. 2015;16(12):4937–44.CrossRefPubMed
200.
go back to reference Lv X, Wang M, Qiang J, Guo S. Circular RNA circ-PITX1 promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-379-5p/MAP3K2 axis. Eur J Pharmacol. 2019;863:172643.CrossRefPubMed Lv X, Wang M, Qiang J, Guo S. Circular RNA circ-PITX1 promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-379-5p/MAP3K2 axis. Eur J Pharmacol. 2019;863:172643.CrossRefPubMed
201.
go back to reference Shi F, Shi Z, Zhao Y, Tian J. CircRNA hsa-circ-0014359 promotes glioma progression by regulating miR-153/PI3K signaling. Biochem Biophys Res Commun. 2019;510(4):614–20.CrossRefPubMed Shi F, Shi Z, Zhao Y, Tian J. CircRNA hsa-circ-0014359 promotes glioma progression by regulating miR-153/PI3K signaling. Biochem Biophys Res Commun. 2019;510(4):614–20.CrossRefPubMed
202.
go back to reference Zhang S, Liao K, Miao Z, Wang Q, Miao Y, Guo Z, et al. CircFOXO3 promotes glioblastoma progression by acting as a competing endogenous RNA for NFAT5. Neuro Oncol. 2019;21(10):1284–96.CrossRefPubMedPubMedCentral Zhang S, Liao K, Miao Z, Wang Q, Miao Y, Guo Z, et al. CircFOXO3 promotes glioblastoma progression by acting as a competing endogenous RNA for NFAT5. Neuro Oncol. 2019;21(10):1284–96.CrossRefPubMedPubMedCentral
203.
go back to reference Xu H, Zhang Y, Qi L, Ding L, Jiang H, Yu H. NFIX circular RNA promotes glioma progression by regulating miR-34a-5p via Notch signaling pathway. Front Mol Neurosci. 2018;11:225.CrossRefPubMedPubMedCentral Xu H, Zhang Y, Qi L, Ding L, Jiang H, Yu H. NFIX circular RNA promotes glioma progression by regulating miR-34a-5p via Notch signaling pathway. Front Mol Neurosci. 2018;11:225.CrossRefPubMedPubMedCentral
204.
go back to reference Zhou J, Wang H, Hong F, Hu S, Su X, Chen J, Chu J. CircularRNA circPARP4 promotes glioblastoma progression through sponging miR-125a-5p and regulating FUT4. Am J Cancer Res. 2021;11(1):138–56.PubMedPubMedCentral Zhou J, Wang H, Hong F, Hu S, Su X, Chen J, Chu J. CircularRNA circPARP4 promotes glioblastoma progression through sponging miR-125a-5p and regulating FUT4. Am J Cancer Res. 2021;11(1):138–56.PubMedPubMedCentral
205.
go back to reference Du S, Li H, Lu F, Zhang S, Tang J. Circular RNA ZNF609 promotes the malignant progression of glioma by regulating miR-1224-3p/PLK1 signaling. J Cancer. 2021;12(11):3354–66.CrossRefPubMedPubMedCentral Du S, Li H, Lu F, Zhang S, Tang J. Circular RNA ZNF609 promotes the malignant progression of glioma by regulating miR-1224-3p/PLK1 signaling. J Cancer. 2021;12(11):3354–66.CrossRefPubMedPubMedCentral
206.
go back to reference Zheng K, Xie H, Wu W, Wen X, Zeng Z, Shi Y. CircRNA PIP5K1A promotes the progression of glioma through upregulation of the TCF12/PI3K/AKT pathway by sponging miR-515-5p. Cancer Cell Int. 2021;21(1):27.CrossRefPubMedPubMedCentral Zheng K, Xie H, Wu W, Wen X, Zeng Z, Shi Y. CircRNA PIP5K1A promotes the progression of glioma through upregulation of the TCF12/PI3K/AKT pathway by sponging miR-515-5p. Cancer Cell Int. 2021;21(1):27.CrossRefPubMedPubMedCentral
207.
go back to reference Fernandes C, Costa A, Osório L, Lago RC, Linhares P, Carvalho B, Caeiro C. Current standards of care in glioblastoma therapy. Exon Publications. 2017:197–241. Fernandes C, Costa A, Osório L, Lago RC, Linhares P, Carvalho B, Caeiro C. Current standards of care in glioblastoma therapy. Exon Publications. 2017:197–241.
209.
go back to reference Farrokhi M, Taheri F, Farrokhi M, Heydari Z, Darbani R, Salbi M, et al. Advancements and innovations in cancer management: a comprehensive perspective. Kindle. 2024;4(1):1–161. Farrokhi M, Taheri F, Farrokhi M, Heydari Z, Darbani R, Salbi M, et al. Advancements and innovations in cancer management: a comprehensive perspective. Kindle. 2024;4(1):1–161.
210.
go back to reference Lu VM, Jue TR, McDonald KL, Rovin RA. The survival effect of repeat surgery at glioblastoma recurrence and its trend: a systematic review and meta-analysis. World Neurosurgery. 2018;115:453-9.e3.CrossRefPubMed Lu VM, Jue TR, McDonald KL, Rovin RA. The survival effect of repeat surgery at glioblastoma recurrence and its trend: a systematic review and meta-analysis. World Neurosurgery. 2018;115:453-9.e3.CrossRefPubMed
211.
go back to reference Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Disease. 2013;4(10):e838.CrossRefPubMedPubMedCentral Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Disease. 2013;4(10):e838.CrossRefPubMedPubMedCentral
212.
go back to reference Xia Q, Xu M, Zhang P, Liu L, Meng X, Dong L. Therapeutic potential of autophagy in glioblastoma treatment with phosphoinositide 3-kinase/protein kinase b/mammalian target of rapamycin signaling pathway inhibitors. Front Oncol. 2020;10:572904.CrossRefPubMedPubMedCentral Xia Q, Xu M, Zhang P, Liu L, Meng X, Dong L. Therapeutic potential of autophagy in glioblastoma treatment with phosphoinositide 3-kinase/protein kinase b/mammalian target of rapamycin signaling pathway inhibitors. Front Oncol. 2020;10:572904.CrossRefPubMedPubMedCentral
213.
go back to reference Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The role of microRNAs in multidrug resistance of glioblastoma. Cancers Basel. 2022;14:3217.CrossRefPubMedPubMedCentral Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The role of microRNAs in multidrug resistance of glioblastoma. Cancers Basel. 2022;14:3217.CrossRefPubMedPubMedCentral
214.
go back to reference Ujifuku K, Mitsutake N, Takakura S, Matsuse M, Saenko V, Suzuki K, et al. miR-195, miR-455-3p and miR-10a∗ are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett. 2010;296(2):241–8.CrossRefPubMed Ujifuku K, Mitsutake N, Takakura S, Matsuse M, Saenko V, Suzuki K, et al. miR-195, miR-455-3p and miR-10a∗ are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett. 2010;296(2):241–8.CrossRefPubMed
215.
go back to reference Gwak H-S, Kim TH, Jo GH, Kim Y-J, Kwak H-J, Kim JH, et al. Silencing of MicroRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS ONE. 2012;7(10):e47449.CrossRefPubMedPubMedCentral Gwak H-S, Kim TH, Jo GH, Kim Y-J, Kwak H-J, Kim JH, et al. Silencing of MicroRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS ONE. 2012;7(10):e47449.CrossRefPubMedPubMedCentral
216.
go back to reference Comincini S, Allavena G, Palumbo S, Morini M, Durando F, Angeletti F, et al. microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther. 2013;14(7):574–86.CrossRefPubMedPubMedCentral Comincini S, Allavena G, Palumbo S, Morini M, Durando F, Angeletti F, et al. microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther. 2013;14(7):574–86.CrossRefPubMedPubMedCentral
217.
go back to reference Huang T, Wan X, Alvarez AA, James CD, Song X, Yang Y, et al. MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy. Autophagy. 2019;15(6):1100–11.CrossRefPubMedPubMedCentral Huang T, Wan X, Alvarez AA, James CD, Song X, Yang Y, et al. MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy. Autophagy. 2019;15(6):1100–11.CrossRefPubMedPubMedCentral
218.
go back to reference Li H, Chen L, Li JJ, Zhou Q, Huang A, Liu WW, et al. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol. 2018;11(1):70.CrossRefPubMedPubMedCentral Li H, Chen L, Li JJ, Zhou Q, Huang A, Liu WW, et al. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol. 2018;11(1):70.CrossRefPubMedPubMedCentral
219.
go back to reference Xu J-X, Yang Y, Zhang X, Luan X-P. Micro-RNA29b enhances the sensitivity of glioblastoma multiforme cells to temozolomide by promoting autophagy. Anat Rec. 2021;304(2):342–52.CrossRef Xu J-X, Yang Y, Zhang X, Luan X-P. Micro-RNA29b enhances the sensitivity of glioblastoma multiforme cells to temozolomide by promoting autophagy. Anat Rec. 2021;304(2):342–52.CrossRef
220.
go back to reference Shin J, Shim HG, Hwang T, Kim H, Kang S-H, Dho Y-S, et al. Restoration of miR-29b exerts anti-cancer effects on glioblastoma. Cancer Cell Int. 2017;17(1):104.CrossRefPubMedPubMedCentral Shin J, Shim HG, Hwang T, Kim H, Kang S-H, Dho Y-S, et al. Restoration of miR-29b exerts anti-cancer effects on glioblastoma. Cancer Cell Int. 2017;17(1):104.CrossRefPubMedPubMedCentral
221.
go back to reference Wang Y, Wang L, Yu X, Duan J. Overexpression of miR-450 affects the biological behavior of HepG2 cells by targeting DNMT3a. OncoTargets and Therapy. 2019;12:5069–76.CrossRefPubMedPubMedCentral Wang Y, Wang L, Yu X, Duan J. Overexpression of miR-450 affects the biological behavior of HepG2 cells by targeting DNMT3a. OncoTargets and Therapy. 2019;12:5069–76.CrossRefPubMedPubMedCentral
222.
go back to reference Ginini L, Billan S, Fridman E, Gil Z. Insight into extracellular vesicle-cell communication: from cell recognition to intracellular fate. Cells. 2022;11(9):1375.CrossRefPubMedPubMedCentral Ginini L, Billan S, Fridman E, Gil Z. Insight into extracellular vesicle-cell communication: from cell recognition to intracellular fate. Cells. 2022;11(9):1375.CrossRefPubMedPubMedCentral
223.
go back to reference Record M, Carayon K, Poirot M, Silvente-Poirot S. 2014 Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochimica et Biophysica Acta (BBA) Mol Cell Biol of Lipids. 1841;1:108–20. Record M, Carayon K, Poirot M, Silvente-Poirot S. 2014 Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochimica et Biophysica Acta (BBA) Mol Cell Biol of Lipids. 1841;1:108–20.
224.
go back to reference Song YX, Li X, Nie SD, Hu ZX, Zhou D, Sun DY, et al. Extracellular vesicles released by glioma cells are decorated by Annexin A2 allowing for cellular uptake via heparan sulfate. Cancer Gene Ther. 2023;30(8):1156–66.CrossRefPubMed Song YX, Li X, Nie SD, Hu ZX, Zhou D, Sun DY, et al. Extracellular vesicles released by glioma cells are decorated by Annexin A2 allowing for cellular uptake via heparan sulfate. Cancer Gene Ther. 2023;30(8):1156–66.CrossRefPubMed
225.
go back to reference Yokoi A, Ochiya T. Exosomes and extracellular vesicles: Rethinking the essential values in cancer biology. Semin Cancer Biol. 2021;74:79–91.CrossRefPubMed Yokoi A, Ochiya T. Exosomes and extracellular vesicles: Rethinking the essential values in cancer biology. Semin Cancer Biol. 2021;74:79–91.CrossRefPubMed
226.
go back to reference Aqil F, Gupta RC. Exosomes in Cancer Therapy. Cancers (Basel). 2022;14(3). Aqil F, Gupta RC. Exosomes in Cancer Therapy. Cancers (Basel). 2022;14(3).
227.
go back to reference Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun Z, et al. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther. 2023;8(1):124.CrossRefPubMedPubMedCentral Zhang M, Hu S, Liu L, Dang P, Liu Y, Sun Z, et al. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct Target Ther. 2023;8(1):124.CrossRefPubMedPubMedCentral
228.
go back to reference Li C, Qin S, Wen Y, Zhao W, Huang Y, Liu J. Overcoming the blood-brain barrier: exosomes as theranostic nanocarriers for precision neuroimaging. J Control Release. 2022;349:902–16.CrossRefPubMed Li C, Qin S, Wen Y, Zhao W, Huang Y, Liu J. Overcoming the blood-brain barrier: exosomes as theranostic nanocarriers for precision neuroimaging. J Control Release. 2022;349:902–16.CrossRefPubMed
229.
go back to reference Yue X, Lan F, Xia T. Hypoxic glioma cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7. Mol Ther. 2019;27(11):1939–49.CrossRefPubMedPubMedCentral Yue X, Lan F, Xia T. Hypoxic glioma cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7. Mol Ther. 2019;27(11):1939–49.CrossRefPubMedPubMedCentral
230.
go back to reference Granda-Díaz R, Manterola L, Hermida-Prado F, Rodríguez R, Santos L, García-de-la-Fuente V, et al. Targeting oncogenic functions of miR-301a in head and neck squamous cell carcinoma by PI3K/PTEN and MEK/ERK pathways. Biomed Pharmacother. 2023;161:114512.CrossRefPubMed Granda-Díaz R, Manterola L, Hermida-Prado F, Rodríguez R, Santos L, García-de-la-Fuente V, et al. Targeting oncogenic functions of miR-301a in head and neck squamous cell carcinoma by PI3K/PTEN and MEK/ERK pathways. Biomed Pharmacother. 2023;161:114512.CrossRefPubMed
231.
go back to reference Wu P, Guo J, Yang H, Yuan D, Wang C, Wang Z. Exosomes derived from hypoxic glioma cells reduce the sensitivity of glioma cells to temozolomide through carrying miR-106a-5p. Drug Design Dev Therapy. 2022;31:3589–98.CrossRef Wu P, Guo J, Yang H, Yuan D, Wang C, Wang Z. Exosomes derived from hypoxic glioma cells reduce the sensitivity of glioma cells to temozolomide through carrying miR-106a-5p. Drug Design Dev Therapy. 2022;31:3589–98.CrossRef
232.
go back to reference Ma J, Wang W, Azhati B, Wang Y, Tusong H. miR-106a-5p functions as a tumor suppressor by targeting VEGFA in renal cell carcinoma. Dis Markers. 2020;2020:8837941.CrossRefPubMedPubMedCentral Ma J, Wang W, Azhati B, Wang Y, Tusong H. miR-106a-5p functions as a tumor suppressor by targeting VEGFA in renal cell carcinoma. Dis Markers. 2020;2020:8837941.CrossRefPubMedPubMedCentral
233.
go back to reference Yin J, Zeng A, Zhang Z, Shi Z, Yan W, You Y. Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMedicine. 2019;42:238–51.CrossRefPubMedPubMedCentral Yin J, Zeng A, Zhang Z, Shi Z, Yan W, You Y. Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMedicine. 2019;42:238–51.CrossRefPubMedPubMedCentral
234.
go back to reference Shi X, Zhan L, Xiao C, Lei Z, Yang H, Wang L, et al. miR-1238 inhibits cell proliferation by targeting LHX2 in non-small cell lung cancer. Oncotarget. 2015;6(22):19043.CrossRefPubMedPubMedCentral Shi X, Zhan L, Xiao C, Lei Z, Yang H, Wang L, et al. miR-1238 inhibits cell proliferation by targeting LHX2 in non-small cell lung cancer. Oncotarget. 2015;6(22):19043.CrossRefPubMedPubMedCentral
235.
go back to reference Qiao W, Guo B, Zhou H, Xu W, Chen Y, Liang Y, Dong B. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem Biophys Res Commun. 2017;486(1):43–8.CrossRefPubMed Qiao W, Guo B, Zhou H, Xu W, Chen Y, Liang Y, Dong B. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem Biophys Res Commun. 2017;486(1):43–8.CrossRefPubMed
236.
go back to reference Sharif S, Ghahremani M, Soleimani M. Delivery of exogenous miR-124 to glioblastoma multiform cells by Wharton’s jelly mesenchymal stem cells decreases cell proliferation and migration, and confers chemosensitivity. Stem cell reviews and reports. 2018;14:236–46.CrossRefPubMed Sharif S, Ghahremani M, Soleimani M. Delivery of exogenous miR-124 to glioblastoma multiform cells by Wharton’s jelly mesenchymal stem cells decreases cell proliferation and migration, and confers chemosensitivity. Stem cell reviews and reports. 2018;14:236–46.CrossRefPubMed
238.
go back to reference Zeng A, Wei Z, Yan W, Yin J, Huang X, Zhou X, et al. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett. 2018;436:10–21.CrossRefPubMed Zeng A, Wei Z, Yan W, Yin J, Huang X, Zhou X, et al. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett. 2018;436:10–21.CrossRefPubMed
239.
go back to reference Chiyomaru T, Yamamura S, Zaman MS, Majid S, Deng G, Shahryari V, et al. Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151. PLoS ONE. 2012;7:e43812.CrossRefPubMedPubMedCentral Chiyomaru T, Yamamura S, Zaman MS, Majid S, Deng G, Shahryari V, et al. Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151. PLoS ONE. 2012;7:e43812.CrossRefPubMedPubMedCentral
240.
go back to reference Wang J, Li T, Wang B. Exosomal transfer of miR-25-3p promotes the proliferation and temozolomide resistance of glioblastoma cells by targeting FBXW7. Int J Oncol. 2021;59(2):64.CrossRefPubMedPubMedCentral Wang J, Li T, Wang B. Exosomal transfer of miR-25-3p promotes the proliferation and temozolomide resistance of glioblastoma cells by targeting FBXW7. Int J Oncol. 2021;59(2):64.CrossRefPubMedPubMedCentral
241.
go back to reference Zi Y, Zhang Y, Wu Y, Zhang L, Yang R, Huang Y. Downregulation of microRNA-25-3p inhibits the proliferation and promotes the apoptosis of multiple myeloma cells via targeting the PTEN/PI3K/AKT signaling pathway. Int J Mol Med. 2021;47(3):1. Zi Y, Zhang Y, Wu Y, Zhang L, Yang R, Huang Y. Downregulation of microRNA-25-3p inhibits the proliferation and promotes the apoptosis of multiple myeloma cells via targeting the PTEN/PI3K/AKT signaling pathway. Int J Mol Med. 2021;47(3):1.
242.
go back to reference Yang J-K, Yang J-P, Tong J, Jing S-Y, Fan B, Wang F, et al. Exosomal miR-221 targets DNM3 to induce tumor progression and temozolomide resistance in glioma. J Neurooncol. 2017;131(2):255–65.CrossRefPubMed Yang J-K, Yang J-P, Tong J, Jing S-Y, Fan B, Wang F, et al. Exosomal miR-221 targets DNM3 to induce tumor progression and temozolomide resistance in glioma. J Neurooncol. 2017;131(2):255–65.CrossRefPubMed
243.
go back to reference Sarkar S, Dubaybo H, Ali S, Goncalves P, Kollepara SL, Sethi S, et al. Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27kip1, p57kip2, and PUMA. Am J Cancer Res. 2013;3(5):465.PubMedPubMedCentral Sarkar S, Dubaybo H, Ali S, Goncalves P, Kollepara SL, Sethi S, et al. Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27kip1, p57kip2, and PUMA. Am J Cancer Res. 2013;3(5):465.PubMedPubMedCentral
244.
go back to reference Munoz JL, Rodriguez-Cruz V, Ramkissoon SH, Ligon KL, Greco SJ, Rameshwar P. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget. 2015;6(2):1190–201.CrossRefPubMedPubMedCentral Munoz JL, Rodriguez-Cruz V, Ramkissoon SH, Ligon KL, Greco SJ, Rameshwar P. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget. 2015;6(2):1190–201.CrossRefPubMedPubMedCentral
246.
go back to reference Bahrami A, Jafari A, Ferns GA. The dual role of microRNA-9 in gastrointestinal cancers: oncomiR or tumor suppressor? Biomed Pharmacother. 2022;145:112394.CrossRefPubMed Bahrami A, Jafari A, Ferns GA. The dual role of microRNA-9 in gastrointestinal cancers: oncomiR or tumor suppressor? Biomed Pharmacother. 2022;145:112394.CrossRefPubMed
247.
go back to reference Lei W, Yan C, Ya J, Yong D, Yujun B, Kai L. MiR-199a-3p affects the multi-chemoresistance of osteosarcoma through targeting AK4. BMC Cancer. 2018;18(1):631.CrossRefPubMedPubMedCentral Lei W, Yan C, Ya J, Yong D, Yujun B, Kai L. MiR-199a-3p affects the multi-chemoresistance of osteosarcoma through targeting AK4. BMC Cancer. 2018;18(1):631.CrossRefPubMedPubMedCentral
248.
go back to reference Song G, Zeng H, Li J, Xiao L, He Y, Tang Y, Li Y. miR-199a regulates the tumor suppressor mitogen-activated protein kinase kinase kinase 11 in gastric cancer. Biol Pharm Bull. 2010;33(11):1822–7.CrossRefPubMed Song G, Zeng H, Li J, Xiao L, He Y, Tang Y, Li Y. miR-199a regulates the tumor suppressor mitogen-activated protein kinase kinase kinase 11 in gastric cancer. Biol Pharm Bull. 2010;33(11):1822–7.CrossRefPubMed
249.
go back to reference Liu J, Liu B, Guo Y, Chen Z, Sun W, Gao W, et al. MiR-199a-3p acts as a tumor suppressor in clear cell renal cell carcinoma. Pathol Res Practice. 2018;214(6):806–13.CrossRef Liu J, Liu B, Guo Y, Chen Z, Sun W, Gao W, et al. MiR-199a-3p acts as a tumor suppressor in clear cell renal cell carcinoma. Pathol Res Practice. 2018;214(6):806–13.CrossRef
250.
go back to reference Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res. 2019;38(1):166.CrossRefPubMedPubMedCentral Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res. 2019;38(1):166.CrossRefPubMedPubMedCentral
251.
go back to reference Rezaei O, Tamizkar KH, Sharifi G, Taheri M, Ghafouri-Fard S. Emerging role of long non-coding RNAs in the pathobiology of glioblastoma. Front Oncol. 2021;10:625884.CrossRefPubMedPubMedCentral Rezaei O, Tamizkar KH, Sharifi G, Taheri M, Ghafouri-Fard S. Emerging role of long non-coding RNAs in the pathobiology of glioblastoma. Front Oncol. 2021;10:625884.CrossRefPubMedPubMedCentral
252.
go back to reference Expression of Concern Issued: Exosome-Mediated Transfer of Long Noncoding RNA HOTAIR Regulates Temozolomide Resistance by miR-519a-3p/RRM1 Axis in Glioblastoma. Cancer Biotherapy and Radiopharmaceuticals.0(0):null. Expression of Concern Issued: Exosome-Mediated Transfer of Long Noncoding RNA HOTAIR Regulates Temozolomide Resistance by miR-519a-3p/RRM1 Axis in Glioblastoma. Cancer Biotherapy and Radiopharmaceuticals.0(0):null.
253.
go back to reference Chen L, Qian X, Wang Z, Zhou X. The HOTAIR lncRNA: a remarkable oncogenic promoter in human cancer metastasis. Oncol Lett. 2021;21(4):1–8.CrossRef Chen L, Qian X, Wang Z, Zhou X. The HOTAIR lncRNA: a remarkable oncogenic promoter in human cancer metastasis. Oncol Lett. 2021;21(4):1–8.CrossRef
254.
go back to reference Wang X, Cao Q, Shi Y, Wu X, Mi Y, Liu K, et al. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRα pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance. Int J Biol Sci. 2021;17(4):1061–78.CrossRefPubMedPubMedCentral Wang X, Cao Q, Shi Y, Wu X, Mi Y, Liu K, et al. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRα pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance. Int J Biol Sci. 2021;17(4):1061–78.CrossRefPubMedPubMedCentral
255.
go back to reference Wang X, Cao Q, Shi Y, Wu X, Mi Y, Liu K, et al. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRα pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: functional validation and clinical theranostic significance. Int J Biol Sci. 2021;17(4):1061.CrossRefPubMedPubMedCentral Wang X, Cao Q, Shi Y, Wu X, Mi Y, Liu K, et al. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/PDGFRα pathway as a key regulatory mechanism in Glioblastoma progression and radioresistance: functional validation and clinical theranostic significance. Int J Biol Sci. 2021;17(4):1061.CrossRefPubMedPubMedCentral
256.
go back to reference Exosome-Mediated Transfer of circ-GLIS3 Enhances Temozolomide Resistance in Glioma Cells Through the miR-548m/MED31 Axis. Cancer Biotherapy and Radiopharmaceuticals.38(1): 62–73. Exosome-Mediated Transfer of circ-GLIS3 Enhances Temozolomide Resistance in Glioma Cells Through the miR-548m/MED31 Axis. Cancer Biotherapy and Radiopharmaceuticals.38(1): 62–73.
257.
go back to reference 2023 Weidle UH, Birzele F. Circular RNA in Non-small Cell Lung Carcinoma: Identification of Targets and New Treatment Modalities. Cancer Genomics & Proteomics. 20(6suppl):646–68. 2023 Weidle UH, Birzele F. Circular RNA in Non-small Cell Lung Carcinoma: Identification of Targets and New Treatment Modalities. Cancer Genomics & Proteomics. 20(6suppl):646–68.
258.
go back to reference 2021Exosomal circ-HIPK3 Facilitates Tumor Progression and Temozolomide Resistance by Regulating miR-421/ZIC5 Axis in Glioma. Cancer Biotherapy and Radiopharmaceuticals.36(7): 537–48. 2021Exosomal circ-HIPK3 Facilitates Tumor Progression and Temozolomide Resistance by Regulating miR-421/ZIC5 Axis in Glioma. Cancer Biotherapy and Radiopharmaceuticals.36(7): 537–48.
259.
go back to reference Xie Y, Yuan X, Zhou W, Kosiba AA, Shi H, Gu J, Qin Z. The circular RNA HIPK3 (circHIPK3) and its regulation in cancer progression. Life Sci. 2020;254:117252.CrossRefPubMed Xie Y, Yuan X, Zhou W, Kosiba AA, Shi H, Gu J, Qin Z. The circular RNA HIPK3 (circHIPK3) and its regulation in cancer progression. Life Sci. 2020;254:117252.CrossRefPubMed
260.
go back to reference Geng X, Zhang Y, Lin X, Zeng Z, Hu J, Hao L, et al. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma. Cell Death Dis. 2022;13(7):596.CrossRefPubMedPubMedCentral Geng X, Zhang Y, Lin X, Zeng Z, Hu J, Hao L, et al. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma. Cell Death Dis. 2022;13(7):596.CrossRefPubMedPubMedCentral
261.
go back to reference Mafi A, Hedayati N, Kahkesh S, Khoshayand S, Alimohammadi M, Farahani N, Hushmandi K. 2024 The landscape of circRNAs in gliomas temozolomide resistance: Insights into molecular pathways. Non-coding RNA Res. Mafi A, Hedayati N, Kahkesh S, Khoshayand S, Alimohammadi M, Farahani N, Hushmandi K. 2024 The landscape of circRNAs in gliomas temozolomide resistance: Insights into molecular pathways. Non-coding RNA Res.
262.
go back to reference Wang R, Jia R, Dong J, Li N, Liang H. Exosomal circular RNA NT5E driven by heterogeneous nuclear ribonucleoprotein A1 induces temozolomide resistance by targeting microRNA-153 in glioma cells. Oncologie. 2024;26(1):131–40.CrossRef Wang R, Jia R, Dong J, Li N, Liang H. Exosomal circular RNA NT5E driven by heterogeneous nuclear ribonucleoprotein A1 induces temozolomide resistance by targeting microRNA-153 in glioma cells. Oncologie. 2024;26(1):131–40.CrossRef
263.
go back to reference Yang J, Liu X, Dai G, Qu L, Tan B, Zhu B, et al. CircNT5E promotes the proliferation and migration of bladder cancer via sponging miR-502-5p. J Cancer. 2021;12(8):2430.CrossRefPubMedPubMedCentral Yang J, Liu X, Dai G, Qu L, Tan B, Zhu B, et al. CircNT5E promotes the proliferation and migration of bladder cancer via sponging miR-502-5p. J Cancer. 2021;12(8):2430.CrossRefPubMedPubMedCentral
264.
go back to reference Ding C, Yi X, Chen X, Wu Z, You H, Chen X, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 2021;40(1):164.CrossRefPubMedPubMedCentral Ding C, Yi X, Chen X, Wu Z, You H, Chen X, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 2021;40(1):164.CrossRefPubMedPubMedCentral
265.
go back to reference Ding C, Yi X, Chen X, Wu Z, You H, Chen X, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 2021;40:164.CrossRefPubMedPubMedCentral Ding C, Yi X, Chen X, Wu Z, You H, Chen X, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 2021;40:164.CrossRefPubMedPubMedCentral
266.
go back to reference Liu X, Guo Q, Gao G, Cao Z, Guan Z, Jia B, et al. Exosome-transmitted circCABIN1 promotes temozolomide resistance in glioblastoma via sustaining ErbB downstream signaling. J Nanobiotechnol. 2023;21(1):45.CrossRef Liu X, Guo Q, Gao G, Cao Z, Guan Z, Jia B, et al. Exosome-transmitted circCABIN1 promotes temozolomide resistance in glioblastoma via sustaining ErbB downstream signaling. J Nanobiotechnol. 2023;21(1):45.CrossRef
267.
go back to reference Li X, Wang N, Leng H, Yuan H, Xu L. Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis. 2022;37(8):2979–93.CrossRefPubMed Li X, Wang N, Leng H, Yuan H, Xu L. Hsa_circ_0043949 reinforces temozolomide resistance via upregulating oncogene ITGA1 axis in glioblastoma. Metab Brain Dis. 2022;37(8):2979–93.CrossRefPubMed
268.
go back to reference Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J, et al. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1–2 signaling. Neuro Oncol. 2020;23(4):611–24.CrossRefPubMedCentral Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J, et al. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1–2 signaling. Neuro Oncol. 2020;23(4):611–24.CrossRefPubMedCentral
269.
go back to reference Feng L, Zhao M, Wu A. CircASAP1 promotes the development of cervical cancer through sponging miR-338-3p to upregulate RPP25. Anticancer Drugs. 2022;33(1):e155–65.CrossRefPubMed Feng L, Zhao M, Wu A. CircASAP1 promotes the development of cervical cancer through sponging miR-338-3p to upregulate RPP25. Anticancer Drugs. 2022;33(1):e155–65.CrossRefPubMed
Metadata
Title
Regulation of autophagy by non-coding RNAs in human glioblastoma
Authors
Mehran Molavand
Niloufar Ebrahimnezhade
Arash Kiani
Bahman Yousefi
Ahmad Nazari
Maryam Majidinia
Publication date
01-11-2024
Publisher
Springer US
Published in
Medical Oncology / Issue 11/2024
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-024-02513-3

Other articles of this Issue 11/2024

Medical Oncology 11/2024 Go to the issue

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Live: Wednesday 29th January, 18:00-19:30 CET

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more