Skip to main content
Top

Open Access 06-11-2024 | Glioblastoma | Review

Cell death in glioblastoma and the central nervous system

Authors: Kyle Malone, Eric LaCasse, Shawn T. Beug

Published in: Cellular Oncology

Login to get access

Abstract

Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Literature
1.
go back to reference H.R. Horvitz, Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis elegans1. Cancer Res. 59, 1701s–1706s (1999)PubMed H.R. Horvitz, Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis elegans1. Cancer Res. 59, 1701s–1706s (1999)PubMed
2.
go back to reference L. Galluzzi et al., Molecular mechanisms of cell death: recommendations of the nomenclature Committee on Cell Death 2018. Cell. Death Differ. 25, 486–541 (2018)PubMedCentralCrossRefPubMed L. Galluzzi et al., Molecular mechanisms of cell death: recommendations of the nomenclature Committee on Cell Death 2018. Cell. Death Differ. 25, 486–541 (2018)PubMedCentralCrossRefPubMed
4.
go back to reference J.F. Kerr, A.H. Wyllie, A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 26, 239–257 (1972)PubMedCentralCrossRefPubMed J.F. Kerr, A.H. Wyllie, A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 26, 239–257 (1972)PubMedCentralCrossRefPubMed
7.
go back to reference E. Ladomersky et al., The coincidence between increasing Age, Immunosuppression, and the incidence of patients with Glioblastoma. Front. Pharmacol. 10, 200 (2019)PubMedCentralCrossRefPubMed E. Ladomersky et al., The coincidence between increasing Age, Immunosuppression, and the incidence of patients with Glioblastoma. Front. Pharmacol. 10, 200 (2019)PubMedCentralCrossRefPubMed
8.
go back to reference E. Choi et al., Cancer mortality-to-incidence ratio as an indicator of cancer management outcomes in Organization for Economic Cooperation and Development countries. Epidemiol. Health 39, e2017006 (2017) E. Choi et al., Cancer mortality-to-incidence ratio as an indicator of cancer management outcomes in Organization for Economic Cooperation and Development countries. Epidemiol. Health 39, e2017006 (2017)
9.
go back to reference L. Ries et al., SEER Cancer Statistics Review, 1975–2003. Public Health Fac. Publications (2006) L. Ries et al., SEER Cancer Statistics Review, 1975–2003. Public Health Fac. Publications (2006)
11.
go back to reference Q.T. Ostrom et al., CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 16(Suppl 4), iv1–63 (2014)PubMedCentralCrossRefPubMed Q.T. Ostrom et al., CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 16(Suppl 4), iv1–63 (2014)PubMedCentralCrossRefPubMed
12.
go back to reference Q.T. Ostrom et al., CBTRUS Statistical Report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 17(4), iv1–iv62 (2015)PubMedCentralCrossRefPubMed Q.T. Ostrom et al., CBTRUS Statistical Report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 17(4), iv1–iv62 (2015)PubMedCentralCrossRefPubMed
15.
16.
go back to reference R. McLendon et al., Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455, 1061–1068 (2008)CrossRef R. McLendon et al., Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455, 1061–1068 (2008)CrossRef
20.
go back to reference M. Esmaeili, A.L. Stensjøen, E.M. Berntsen, O. Solheim, I. Reinertsen, The direction of Tumour Growth in Glioblastoma patients. Sci. Rep. 8, (2018) M. Esmaeili, A.L. Stensjøen, E.M. Berntsen, O. Solheim, I. Reinertsen, The direction of Tumour Growth in Glioblastoma patients. Sci. Rep. 8, (2018)
21.
go back to reference J.J. Parker et al., Intratumoral heterogeneity of endogenous tumor cell invasive behavior in human glioblastoma. Sci. Rep. 8, 1–10 (2018)CrossRef J.J. Parker et al., Intratumoral heterogeneity of endogenous tumor cell invasive behavior in human glioblastoma. Sci. Rep. 8, 1–10 (2018)CrossRef
22.
go back to reference F.B. Furnari et al., Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007)CrossRefPubMed F.B. Furnari et al., Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007)CrossRefPubMed
24.
go back to reference F. Ah-Pine et al., On the origin and development of glioblastoma: multifaceted role of perivascular mesenchymal stromal cells. Acta Neuropathol. Commun. 11, 104 (2023)PubMedCentralCrossRefPubMed F. Ah-Pine et al., On the origin and development of glioblastoma: multifaceted role of perivascular mesenchymal stromal cells. Acta Neuropathol. Commun. 11, 104 (2023)PubMedCentralCrossRefPubMed
25.
go back to reference G. Mb, S. Bw, K. Gw, Microglia in brain tumors. Glia 40, 252–259 (2002) G. Mb, S. Bw, K. Gw, Microglia in brain tumors. Glia 40, 252–259 (2002)
26.
go back to reference C. Caux, R.N. Ramos, G.C. Prendergast, N. Bendriss-Vermare, C. Ménétrier-Caux, A milestone review on how macrophages affect Tumor Growth. Cancer Res. 76, 6439–6442 (2016)CrossRefPubMed C. Caux, R.N. Ramos, G.C. Prendergast, N. Bendriss-Vermare, C. Ménétrier-Caux, A milestone review on how macrophages affect Tumor Growth. Cancer Res. 76, 6439–6442 (2016)CrossRefPubMed
27.
go back to reference K. Malone et al., Astrocytes and the tumor microenvironment inflammatory state dictate the killing of glioblastoma cells by Smac mimetic compounds. Cell. Death Dis. 15, 1–13 (2024)CrossRef K. Malone et al., Astrocytes and the tumor microenvironment inflammatory state dictate the killing of glioblastoma cells by Smac mimetic compounds. Cell. Death Dis. 15, 1–13 (2024)CrossRef
28.
go back to reference D. Westphal, G. Dewson, P.E. Czabotar, R.M. Kluck, Molecular biology of Bax and bak activation and action. Biochim. et Biophys. Acta (BBA) - Mol. Cell. Res. 1813, 521–531 (2011)CrossRef D. Westphal, G. Dewson, P.E. Czabotar, R.M. Kluck, Molecular biology of Bax and bak activation and action. Biochim. et Biophys. Acta (BBA) - Mol. Cell. Res. 1813, 521–531 (2011)CrossRef
30.
go back to reference D. Decaudin, I. Marzo, C. Brenner, G. Kroemer, Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy (review). Int. J. Oncol. 12, 141–152 (1998)PubMed D. Decaudin, I. Marzo, C. Brenner, G. Kroemer, Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy (review). Int. J. Oncol. 12, 141–152 (1998)PubMed
33.
go back to reference L.K. Chang, G.V. Putcha, M. Deshmukh, E.M. Johnson, Mitochondrial involvement in the point of no return in neuronal apoptosis. Biochimie. 84, 223–231 (2002)CrossRefPubMed L.K. Chang, G.V. Putcha, M. Deshmukh, E.M. Johnson, Mitochondrial involvement in the point of no return in neuronal apoptosis. Biochimie. 84, 223–231 (2002)CrossRefPubMed
34.
go back to reference H.-E. Kim, F. Du, M. Fang, X. Wang, Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. PNAS 102, 17545–17550 (2005) H.-E. Kim, F. Du, M. Fang, X. Wang, Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. PNAS 102, 17545–17550 (2005)
35.
go back to reference S.M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri, E.S. Alnemri, Autoactivation of procaspase-9 by apaf-1-mediated oligomerization. Mol. Cell. 1, 949–957 (1998)CrossRefPubMed S.M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri, E.S. Alnemri, Autoactivation of procaspase-9 by apaf-1-mediated oligomerization. Mol. Cell. 1, 949–957 (1998)CrossRefPubMed
36.
go back to reference D. Acehan et al., Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell. 9, 423–432 (2002)CrossRefPubMed D. Acehan et al., Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell. 9, 423–432 (2002)CrossRefPubMed
37.
go back to reference K. Cain et al., Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J. Biol. Chem. 275, 6067–6070 (2000)CrossRefPubMed K. Cain et al., Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J. Biol. Chem. 275, 6067–6070 (2000)CrossRefPubMed
38.
go back to reference P. Li et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91, 479–489 (1997)CrossRefPubMed P. Li et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91, 479–489 (1997)CrossRefPubMed
44.
go back to reference P.E. Czabotar et al., Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell. 152, 519–531 (2013)CrossRefPubMed P.E. Czabotar et al., Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell. 152, 519–531 (2013)CrossRefPubMed
46.
go back to reference A. Letai et al., Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2, 183–192 (2002)CrossRefPubMed A. Letai et al., Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2, 183–192 (2002)CrossRefPubMed
47.
50.
go back to reference M.P. Boldin et al., A Novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270, 7795–7798 (1995)CrossRefPubMed M.P. Boldin et al., A Novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270, 7795–7798 (1995)CrossRefPubMed
51.
go back to reference F.C. Kischkel et al., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995)PubMedCentralCrossRefPubMed F.C. Kischkel et al., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995)PubMedCentralCrossRefPubMed
52.
go back to reference F.C. Kischkel et al., Death receptor recruitment of endogenous Caspase-10 and apoptosis initiation in the absence of Caspase-8. J. Biol. Chem. 276, 46639–46646 (2001)CrossRefPubMed F.C. Kischkel et al., Death receptor recruitment of endogenous Caspase-10 and apoptosis initiation in the absence of Caspase-8. J. Biol. Chem. 276, 46639–46646 (2001)CrossRefPubMed
53.
go back to reference S. Wang, W.S. El-Deiry, TRAIL and apoptosis induction by TNF-family death receptors. Oncogene. 22, 8628–8633 (2003)CrossRefPubMed S. Wang, W.S. El-Deiry, TRAIL and apoptosis induction by TNF-family death receptors. Oncogene. 22, 8628–8633 (2003)CrossRefPubMed
54.
go back to reference H. Li, H. Zhu, C.J. Xu, J. Yuan, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94, 491–501 (1998)CrossRefPubMed H. Li, H. Zhu, C.J. Xu, J. Yuan, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94, 491–501 (1998)CrossRefPubMed
55.
go back to reference M.K. Preedy, M.R.H. White, V. Tergaonkar, Cellular heterogeneity in TNF/TNFR1 signalling: live cell imaging of cell fate decisions in single cells. Cell. Death Dis. 15, 1–12 (2024)CrossRef M.K. Preedy, M.R.H. White, V. Tergaonkar, Cellular heterogeneity in TNF/TNFR1 signalling: live cell imaging of cell fate decisions in single cells. Cell. Death Dis. 15, 1–12 (2024)CrossRef
56.
go back to reference B. Tian, D.E. Nowak, A.R. Brasier, A TNF-induced gene expression program under oscillatory NF-κB control. BMC Genom. 6, 137 (2005)CrossRef B. Tian, D.E. Nowak, A.R. Brasier, A TNF-induced gene expression program under oscillatory NF-κB control. BMC Genom. 6, 137 (2005)CrossRef
57.
go back to reference F. Van Herreweghe, N. Festjens, W. Declercq, P. Vandenabeele, Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell. Mol. Life Sci. 67, 1567–1579 (2010)PubMedCentralCrossRefPubMed F. Van Herreweghe, N. Festjens, W. Declercq, P. Vandenabeele, Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell. Mol. Life Sci. 67, 1567–1579 (2010)PubMedCentralCrossRefPubMed
58.
go back to reference R. Feltham, J.E. Vince, K.E. Lawlor, Caspase-8: not so silently deadly. Clin. Transl Immunol. 6, e124 (2017)CrossRef R. Feltham, J.E. Vince, K.E. Lawlor, Caspase-8: not so silently deadly. Clin. Transl Immunol. 6, e124 (2017)CrossRef
61.
go back to reference M. Lork, K. Verhelst, R. Beyaert, CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell. Death Differ. 24, 1172–1183 (2017)PubMedCentralCrossRefPubMed M. Lork, K. Verhelst, R. Beyaert, CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell. Death Differ. 24, 1172–1183 (2017)PubMedCentralCrossRefPubMed
62.
go back to reference Y.K. Dhuriya, D. Sharma, Necroptosis: a regulated inflammatory mode of cell death. J. Neuroinflamm. 15, 199 (2018)CrossRef Y.K. Dhuriya, D. Sharma, Necroptosis: a regulated inflammatory mode of cell death. J. Neuroinflamm. 15, 199 (2018)CrossRef
63.
go back to reference Y. Dondelinger et al., RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell. Death Differ. 20, 1381–1392 (2013)PubMedCentralCrossRefPubMed Y. Dondelinger et al., RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell. Death Differ. 20, 1381–1392 (2013)PubMedCentralCrossRefPubMed
64.
go back to reference M.E. Choi, D.R. Price, S.W. Ryter, A.M.K. Choi, Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight 4 (2019) M.E. Choi, D.R. Price, S.W. Ryter, A.M.K. Choi, Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight 4 (2019)
65.
go back to reference M. Pasparakis, P. Vandenabeele, Necroptosis and its role in inflammation. Nature. 517, 311–320 (2015)CrossRefPubMed M. Pasparakis, P. Vandenabeele, Necroptosis and its role in inflammation. Nature. 517, 311–320 (2015)CrossRefPubMed
67.
68.
go back to reference A.R. Safa, Roles of c-FLIP in apoptosis, Necroptosis, and Autophagy. J. Carcinog. Mutagen. Suppl 6, (2013) A.R. Safa, Roles of c-FLIP in apoptosis, Necroptosis, and Autophagy. J. Carcinog. Mutagen. Suppl 6, (2013)
69.
go back to reference D. Walter et al., Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes. Hepatology. 48, 1942–1953 (2008)CrossRefPubMed D. Walter et al., Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes. Hepatology. 48, 1942–1953 (2008)CrossRefPubMed
72.
go back to reference J.W. Ramos et al., Death Effector Domain protein PEA-15 potentiates ras activation of Extracellular Signal receptor-activated kinase by an adhesion-independent mechanism. Mol. Biol. Cell. 11, 2863–2872 (2000)PubMedCentralCrossRefPubMed J.W. Ramos et al., Death Effector Domain protein PEA-15 potentiates ras activation of Extracellular Signal receptor-activated kinase by an adhesion-independent mechanism. Mol. Biol. Cell. 11, 2863–2872 (2000)PubMedCentralCrossRefPubMed
73.
go back to reference A. Sharif et al., The expression of PEA-15 (phosphoprotein enriched in astrocytes of 15 kDa) defines subpopulations of astrocytes and neurons throughout the adult mouse brain. Neuroscience. 126, 263–275 (2004)CrossRefPubMed A. Sharif et al., The expression of PEA-15 (phosphoprotein enriched in astrocytes of 15 kDa) defines subpopulations of astrocytes and neurons throughout the adult mouse brain. Neuroscience. 126, 263–275 (2004)CrossRefPubMed
75.
go back to reference A. Trencia et al., Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol. Cell. Biol. 23, 4511–4521 (2003)PubMedCentralCrossRefPubMed A. Trencia et al., Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol. Cell. Biol. 23, 4511–4521 (2003)PubMedCentralCrossRefPubMed
76.
go back to reference H.A. Araujo, N. Danziger, J. Cordier, J. Glowinski, H. Chneiweiss, Characterization of PEA-15, a major substrate for protein kinase C in astrocytes. J. Biol. Chem. 268, 5911–5920 (1993) H.A. Araujo, N. Danziger, J. Cordier, J. Glowinski, H. Chneiweiss, Characterization of PEA-15, a major substrate for protein kinase C in astrocytes. J. Biol. Chem. 268, 5911–5920 (1993)
77.
go back to reference S.L. Crespo-Flores, A. Cabezas, S. Hassan, Y. Wei, PEA-15 C-Terminal Tail Allosterically Modulates Death-Effector Domain Conformation and Facilitates Protein-Protein Interactions. Int. J. Mol. Sci. 20, 3335 (2019) S.L. Crespo-Flores, A. Cabezas, S. Hassan, Y. Wei, PEA-15 C-Terminal Tail Allosterically Modulates Death-Effector Domain Conformation and Facilitates Protein-Protein Interactions. Int. J. Mol. Sci. 20, 3335 (2019)
78.
go back to reference J.H. Song, A. Bellail, M.C.L. Tse, V.W. Yong, C. Hao, Human astrocytes are resistant to Fas Ligand and tumor necrosis factor-related apoptosis-inducing ligand-Induced apoptosis. J. Neurosci. 26, 3299–3308 (2006)PubMedCentralCrossRefPubMed J.H. Song, A. Bellail, M.C.L. Tse, V.W. Yong, C. Hao, Human astrocytes are resistant to Fas Ligand and tumor necrosis factor-related apoptosis-inducing ligand-Induced apoptosis. J. Neurosci. 26, 3299–3308 (2006)PubMedCentralCrossRefPubMed
79.
go back to reference J.-H. Sung et al., Identification of proteins regulated by estradiol in focal cerebral ischemic injury—A proteomics approach. Neurosci. Lett. 477, 66–71 (2010)CrossRefPubMed J.-H. Sung et al., Identification of proteins regulated by estradiol in focal cerebral ischemic injury—A proteomics approach. Neurosci. Lett. 477, 66–71 (2010)CrossRefPubMed
80.
go back to reference Y.E. Whang, X.-J. Yuan, Y. Liu, S. Majumder, T.D. Lewis, Regulation of sensitivity to TRAIL by the PTEN tumor suppressor. Vitam. Horm. 67, 409–426 (2004)CrossRefPubMed Y.E. Whang, X.-J. Yuan, Y. Liu, S. Majumder, T.D. Lewis, Regulation of sensitivity to TRAIL by the PTEN tumor suppressor. Vitam. Horm. 67, 409–426 (2004)CrossRefPubMed
81.
go back to reference M. Mourtada-Maarabouni, G.T. Williams, Protein phosphatase 4 regulates apoptosis, proliferation and mutation rate of human cells. Biochim. Biophys. Acta. 1783, 1490–1502 (2008)CrossRefPubMed M. Mourtada-Maarabouni, G.T. Williams, Protein phosphatase 4 regulates apoptosis, proliferation and mutation rate of human cells. Biochim. Biophys. Acta. 1783, 1490–1502 (2008)CrossRefPubMed
82.
go back to reference H. Renganathan, H. Vaidyanathan, A. Knapinska, J.W. Ramos, Phosphorylation of PEA-15 switches its binding specificity from ERK/MAPK to FADD. Biochem. J. 390, 729–735 (2005)PubMedCentralCrossRefPubMed H. Renganathan, H. Vaidyanathan, A. Knapinska, J.W. Ramos, Phosphorylation of PEA-15 switches its binding specificity from ERK/MAPK to FADD. Biochem. J. 390, 729–735 (2005)PubMedCentralCrossRefPubMed
83.
go back to reference F.J. Sulzmaier, J. Opoku-Ansah, J.W. Ramos, Phosphorylation is the switch that turns PEA-15 from tumor suppressor to tumor promoter. Small GTPases. 3, 173–177 (2012)PubMedCentralCrossRefPubMed F.J. Sulzmaier, J. Opoku-Ansah, J.W. Ramos, Phosphorylation is the switch that turns PEA-15 from tumor suppressor to tumor promoter. Small GTPases. 3, 173–177 (2012)PubMedCentralCrossRefPubMed
84.
go back to reference A. Glading, J.A. Koziol, J. Krueger, M.H. Ginsberg, PEA-15 inhibits Tumor Cell Invasion by binding to Extracellular Signal-regulated kinase 1/2. Cancer Res. 67, 1536–1544 (2007)CrossRefPubMed A. Glading, J.A. Koziol, J. Krueger, M.H. Ginsberg, PEA-15 inhibits Tumor Cell Invasion by binding to Extracellular Signal-regulated kinase 1/2. Cancer Res. 67, 1536–1544 (2007)CrossRefPubMed
85.
go back to reference F.H. Greig, G.F. Nixon, Phosphoprotein enriched in astrocytes (PEA)-15: a potential therapeutic target in multiple disease states. Pharmacol. Ther. 143, 265–274 (2014)PubMedCentralCrossRefPubMed F.H. Greig, G.F. Nixon, Phosphoprotein enriched in astrocytes (PEA)-15: a potential therapeutic target in multiple disease states. Pharmacol. Ther. 143, 265–274 (2014)PubMedCentralCrossRefPubMed
86.
go back to reference C. Zabel et al., Comparative proteomics in neurodegenerative and non-neurodegenerative diseases suggest nodal point proteins in regulatory networking. J. Proteome Res. 5, 1948–1958 (2006)CrossRefPubMed C. Zabel et al., Comparative proteomics in neurodegenerative and non-neurodegenerative diseases suggest nodal point proteins in regulatory networking. J. Proteome Res. 5, 1948–1958 (2006)CrossRefPubMed
87.
go back to reference P.-O. Koh, Ferulic acid prevents the cerebral ischemic injury-induced decreases of astrocytic phosphoprotein PEA-15 and its two phosphorylated forms. Neurosci. Lett. 511, 101–105 (2012)CrossRefPubMed P.-O. Koh, Ferulic acid prevents the cerebral ischemic injury-induced decreases of astrocytic phosphoprotein PEA-15 and its two phosphorylated forms. Neurosci. Lett. 511, 101–105 (2012)CrossRefPubMed
88.
go back to reference S.I. Wang et al., Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res. 57, 4183–4186 (1997)PubMed S.I. Wang et al., Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res. 57, 4183–4186 (1997)PubMed
89.
go back to reference J.A. Benitez et al., PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nat. Commun. 8, 15223 (2017)PubMedCentralCrossRefPubMed J.A. Benitez et al., PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nat. Commun. 8, 15223 (2017)PubMedCentralCrossRefPubMed
90.
go back to reference Y. Pommier, O. Sordet, S. Antony, R.L. Hayward, K.W. Kohn, Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 23, 2934–2949 (2004)CrossRefPubMed Y. Pommier, O. Sordet, S. Antony, R.L. Hayward, K.W. Kohn, Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 23, 2934–2949 (2004)CrossRefPubMed
91.
go back to reference V.K. Hill, J.-S. Kim, C.D. James, T. Waldman, Correction of PTEN mutations in glioblastoma cell lines via AAV-mediated gene editing. PLoS One 12, e0176683 (2017) V.K. Hill, J.-S. Kim, C.D. James, T. Waldman, Correction of PTEN mutations in glioblastoma cell lines via AAV-mediated gene editing. PLoS One 12, e0176683 (2017)
92.
go back to reference S.R. Datta et al., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 91, 231–241 (1997)CrossRefPubMed S.R. Datta et al., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 91, 231–241 (1997)CrossRefPubMed
93.
go back to reference L.T. Lau, A.C. Yu, Astrocytes produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. J. Neurotrauma. 18, 351–359 (2001)CrossRefPubMed L.T. Lau, A.C. Yu, Astrocytes produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. J. Neurotrauma. 18, 351–359 (2001)CrossRefPubMed
94.
go back to reference O. Okolie et al., Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol. 18, 1622–1633 (2016)PubMedCentralCrossRefPubMed O. Okolie et al., Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol. 18, 1622–1633 (2016)PubMedCentralCrossRefPubMed
95.
go back to reference P. Civita, D.M. Leite, G.J. Pilkington, Pre-clinical drug testing in 2D and 3D human in vitro models of glioblastoma incorporating non-neoplastic astrocytes: tunneling Nano tubules and mitochondrial transfer modulates cell behavior and therapeutic response. Int. J. Mol. Sci. 20, 6017 (2019)PubMedCentralCrossRefPubMed P. Civita, D.M. Leite, G.J. Pilkington, Pre-clinical drug testing in 2D and 3D human in vitro models of glioblastoma incorporating non-neoplastic astrocytes: tunneling Nano tubules and mitochondrial transfer modulates cell behavior and therapeutic response. Int. J. Mol. Sci. 20, 6017 (2019)PubMedCentralCrossRefPubMed
96.
go back to reference W. Chen et al., Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med. Oncol. 32, 43 (2015)CrossRefPubMed W. Chen et al., Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med. Oncol. 32, 43 (2015)CrossRefPubMed
97.
go back to reference P.R. Gielen et al., Connexin43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway. Neuropharmacology. 75, 539–548 (2013)CrossRefPubMed P.R. Gielen et al., Connexin43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway. Neuropharmacology. 75, 539–548 (2013)CrossRefPubMed
98.
go back to reference S.E. Pustchi, N.G. Avci, Y.M. Akay, M. Akay, Astrocytes decreased the sensitivity of Glioblastoma Cells to Temozolomide and Bay 11-7082. Int. J. Mol. Sci. 21, 7154 (2020)PubMedCentralCrossRefPubMed S.E. Pustchi, N.G. Avci, Y.M. Akay, M. Akay, Astrocytes decreased the sensitivity of Glioblastoma Cells to Temozolomide and Bay 11-7082. Int. J. Mol. Sci. 21, 7154 (2020)PubMedCentralCrossRefPubMed
99.
go back to reference B.H. Rath, A. Wahba, K. Camphausen, P.J. Tofilon, Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization. Cancer Med. 4, 1705–1716 (2015)PubMedCentralCrossRefPubMed B.H. Rath, A. Wahba, K. Camphausen, P.J. Tofilon, Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization. Cancer Med. 4, 1705–1716 (2015)PubMedCentralCrossRefPubMed
100.
go back to reference D.A. Altomare, J.R. Testa, Perturbations of the AKT signaling pathway in human cancer. Oncogene. 24, 7455–7464 (2005)CrossRefPubMed D.A. Altomare, J.R. Testa, Perturbations of the AKT signaling pathway in human cancer. Oncogene. 24, 7455–7464 (2005)CrossRefPubMed
101.
go back to reference H. Wang et al., Analysis of the activation status of akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab. Invest. 84, 941–951 (2004)CrossRefPubMed H. Wang et al., Analysis of the activation status of akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab. Invest. 84, 941–951 (2004)CrossRefPubMed
102.
go back to reference P. Korkolopoulou et al., Expression of nuclear factor-kappab in human astrocytomas: relation to pI kappa ba, vascular endothelial growth factor, Cox-2, microvascular characteristics, and survival. Hum. Pathol. 39, 1143–1152 (2008)CrossRefPubMed P. Korkolopoulou et al., Expression of nuclear factor-kappab in human astrocytomas: relation to pI kappa ba, vascular endothelial growth factor, Cox-2, microvascular characteristics, and survival. Hum. Pathol. 39, 1143–1152 (2008)CrossRefPubMed
103.
go back to reference X. Fan et al., NOTCH pathway blockade depletes CD133-Positive Glioblastoma Cells and inhibits growth of Tumor neurospheres and xenografts. Stem Cells. 28, 5–16 (2010)CrossRefPubMed X. Fan et al., NOTCH pathway blockade depletes CD133-Positive Glioblastoma Cells and inhibits growth of Tumor neurospheres and xenografts. Stem Cells. 28, 5–16 (2010)CrossRefPubMed
105.
go back to reference E. Da Cruz, M.-C. Mercier, N. Etienne-Selloum, M. Dontenwill, L. Choulier, A systematic review of Glioblastoma-targeted therapies in Phases II, III, IV clinical trials. Cancers (Basel) 13, 1795 (2021) E. Da Cruz, M.-C. Mercier, N. Etienne-Selloum, M. Dontenwill, L. Choulier, A systematic review of Glioblastoma-targeted therapies in Phases II, III, IV clinical trials. Cancers (Basel) 13, 1795 (2021)
106.
go back to reference Á.C. Murphy et al., Activation of executioner caspases is a predictor of progression-free survival in glioblastoma patients: a systems medicine approach. Cell Death Dis. 4, e629–e629 (2013)PubMedCentralCrossRefPubMed Á.C. Murphy et al., Activation of executioner caspases is a predictor of progression-free survival in glioblastoma patients: a systems medicine approach. Cell Death Dis. 4, e629–e629 (2013)PubMedCentralCrossRefPubMed
107.
go back to reference H. Strik et al., BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J. Neurol. Neurosurg. Psychiatry. 67, 763–768 (1999)PubMedCentralCrossRefPubMed H. Strik et al., BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J. Neurol. Neurosurg. Psychiatry. 67, 763–768 (1999)PubMedCentralCrossRefPubMed
108.
go back to reference B. Qiu, Y. Wang, J. Tao, Y. Wang, Expression and correlation of Bcl-2 with pathological grades in human glioma stem cells. Oncol. Rep. 28, 155–160 (2012)PubMed B. Qiu, Y. Wang, J. Tao, Y. Wang, Expression and correlation of Bcl-2 with pathological grades in human glioma stem cells. Oncol. Rep. 28, 155–160 (2012)PubMed
109.
go back to reference G.-H. Li, H. Wei, S.-Q. Lv, H. Ji, D.-L. Wang, Knockdown of STAT3 expression by RNAi suppresses growth and induces apoptosis and differentiation in glioblastoma stem cells. Int. J. Oncol. 37, 103–110 (2010)PubMed G.-H. Li, H. Wei, S.-Q. Lv, H. Ji, D.-L. Wang, Knockdown of STAT3 expression by RNAi suppresses growth and induces apoptosis and differentiation in glioblastoma stem cells. Int. J. Oncol. 37, 103–110 (2010)PubMed
110.
go back to reference N. Wu et al., Cardamonin induces apoptosis by suppressing STAT3 signaling pathway in glioblastoma stem cells. Tumour Biol. 36, 9667–9676 (2015)CrossRefPubMed N. Wu et al., Cardamonin induces apoptosis by suppressing STAT3 signaling pathway in glioblastoma stem cells. Tumour Biol. 36, 9667–9676 (2015)CrossRefPubMed
111.
go back to reference L. Konnikova, M. Kotecki, M.M. Kruger, B.H. Cochran, Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer. 3, 23 (2003)PubMedCentralCrossRefPubMed L. Konnikova, M. Kotecki, M.M. Kruger, B.H. Cochran, Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer. 3, 23 (2003)PubMedCentralCrossRefPubMed
112.
go back to reference P.F. Cartron, D. Loussouarn, M. Campone, S.A. Martin, F.M. Vallette, Prognostic impact of the expression/phosphorylation of the BH3-only proteins of the BCL-2 family in glioblastoma multiforme. Cell. Death Dis. 3, e421 (2012)PubMedCentralCrossRefPubMed P.F. Cartron, D. Loussouarn, M. Campone, S.A. Martin, F.M. Vallette, Prognostic impact of the expression/phosphorylation of the BH3-only proteins of the BCL-2 family in glioblastoma multiforme. Cell. Death Dis. 3, e421 (2012)PubMedCentralCrossRefPubMed
113.
go back to reference D. Moujalled et al., BH3 mimetic drugs cooperate with Temozolomide, JQ1 and inducers of ferroptosis in killing glioblastoma multiforme cells. Cell. Death Differ. 29, 1335–1348 (2022)PubMedCentralCrossRefPubMed D. Moujalled et al., BH3 mimetic drugs cooperate with Temozolomide, JQ1 and inducers of ferroptosis in killing glioblastoma multiforme cells. Cell. Death Differ. 29, 1335–1348 (2022)PubMedCentralCrossRefPubMed
114.
go back to reference A.L. Koessinger et al., Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell. Death Differ. 29, 2089–2104 (2022)PubMedCentralCrossRefPubMed A.L. Koessinger et al., Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell. Death Differ. 29, 2089–2104 (2022)PubMedCentralCrossRefPubMed
115.
go back to reference S. Calis et al., A novel BH3 mimetic Bcl-2 inhibitor promotes autophagic cell death and reduces in vivo Glioblastoma tumor growth. Cell. Death Discov. 8, 1–13 (2022)CrossRef S. Calis et al., A novel BH3 mimetic Bcl-2 inhibitor promotes autophagic cell death and reduces in vivo Glioblastoma tumor growth. Cell. Death Discov. 8, 1–13 (2022)CrossRef
117.
go back to reference K.E. Tagscherer et al., Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene. 27, 6646–6656 (2008)CrossRefPubMed K.E. Tagscherer et al., Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene. 27, 6646–6656 (2008)CrossRefPubMed
118.
go back to reference M. Respondek et al., MIM1, the Mcl-1– specific BH3 mimetic induces apoptosis in human U87MG glioblastoma cells. Toxicol. In Vitro. 53, 126–135 (2018)CrossRefPubMed M. Respondek et al., MIM1, the Mcl-1– specific BH3 mimetic induces apoptosis in human U87MG glioblastoma cells. Toxicol. In Vitro. 53, 126–135 (2018)CrossRefPubMed
119.
go back to reference P. Antonietti et al., Interference with the HSF1/HSP70/BAG3 pathway primes glioma cells to Matrix Detachment and BH3 Mimetic–Induced apoptosis. Mol. Cancer Ther. 16, 156–168 (2017)CrossRefPubMed P. Antonietti et al., Interference with the HSF1/HSP70/BAG3 pathway primes glioma cells to Matrix Detachment and BH3 Mimetic–Induced apoptosis. Mol. Cancer Ther. 16, 156–168 (2017)CrossRefPubMed
120.
go back to reference E. Vidomanova, P. Racay, I. Pilchova, E. Halasova, J. Hatok, Microfluidic profiling of apoptosis-related genes after treatment with BH3-mimetic agents in astrocyte and glioblastoma cell lines. Oncol. Rep. 36, 3188–3196 (2016)CrossRefPubMed E. Vidomanova, P. Racay, I. Pilchova, E. Halasova, J. Hatok, Microfluidic profiling of apoptosis-related genes after treatment with BH3-mimetic agents in astrocyte and glioblastoma cell lines. Oncol. Rep. 36, 3188–3196 (2016)CrossRefPubMed
121.
go back to reference N.-Y. Kim, M. Lee, Autophagy-mediated growth inhibition of malignant glioma cells by the BH3-mimetic gossypol. Mol. Cell. Toxicol. 10, 157–164 (2014)CrossRef N.-Y. Kim, M. Lee, Autophagy-mediated growth inhibition of malignant glioma cells by the BH3-mimetic gossypol. Mol. Cell. Toxicol. 10, 157–164 (2014)CrossRef
122.
go back to reference C. Schwarzenbach et al., Targeting c-IAP1, c-IAP2, and Bcl-2 eliminates senescent glioblastoma cells following Temozolomide Treatment. Cancers. 13, 3585 (2021)PubMedCentralCrossRefPubMed C. Schwarzenbach et al., Targeting c-IAP1, c-IAP2, and Bcl-2 eliminates senescent glioblastoma cells following Temozolomide Treatment. Cancers. 13, 3585 (2021)PubMedCentralCrossRefPubMed
124.
go back to reference A. Doroshenko, S. Tomkova, T. Kozar, K. Stroffekova, Hypericin, a potential new BH3 mimetic. Front. Pharmacol. 13, 991554 (2022) A. Doroshenko, S. Tomkova, T. Kozar, K. Stroffekova, Hypericin, a potential new BH3 mimetic. Front. Pharmacol. 13, 991554 (2022)
125.
126.
go back to reference F. Pareja et al., PI3K and Bcl-2 inhibition primes Glioblastoma Cells to apoptosis through downregulation of Mcl-1 and Phospho-BAD. Mol. Cancer Res. 12, 987–1001 (2014)CrossRefPubMed F. Pareja et al., PI3K and Bcl-2 inhibition primes Glioblastoma Cells to apoptosis through downregulation of Mcl-1 and Phospho-BAD. Mol. Cancer Res. 12, 987–1001 (2014)CrossRefPubMed
127.
go back to reference C.C. da Hora et al., Sustained NF-κB-STAT3 signaling promotes resistance to Smac mimetics in glioma stem-like cells but creates a vulnerability to EZH2 inhibition. Cell. Death Discov. 5, 1–11 (2019) C.C. da Hora et al., Sustained NF-κB-STAT3 signaling promotes resistance to Smac mimetics in glioma stem-like cells but creates a vulnerability to EZH2 inhibition. Cell. Death Discov. 5, 1–11 (2019)
128.
go back to reference D. Cerna et al., SMAC Mimetic/IAP inhibitor birinapant enhances radiosensitivity of glioblastoma multiforme. Radiat. Res. 195, 549–560 (2021) D. Cerna et al., SMAC Mimetic/IAP inhibitor birinapant enhances radiosensitivity of glioblastoma multiforme. Radiat. Res. 195, 549–560 (2021)
129.
go back to reference C. Lindemann, V. Marschall, A. Weigert, T. Klingebiel, S. Fulda, Smac Mimetic-Induced Upregulation of CCL2/MCP-1 triggers Migration and Invasion of Glioblastoma Cells and influences the Tumor Microenvironment in a Paracrine Manner. Neoplasia. 17, 481–489 (2015)PubMedCentralCrossRefPubMed C. Lindemann, V. Marschall, A. Weigert, T. Klingebiel, S. Fulda, Smac Mimetic-Induced Upregulation of CCL2/MCP-1 triggers Migration and Invasion of Glioblastoma Cells and influences the Tumor Microenvironment in a Paracrine Manner. Neoplasia. 17, 481–489 (2015)PubMedCentralCrossRefPubMed
130.
go back to reference R. Berger et al., NF-κB is required for Smac mimetic-mediated sensitization of glioblastoma cells for γ-irradiation-induced apoptosis. Mol. Cancer Ther. 10, 1867–1875 (2011)CrossRefPubMed R. Berger et al., NF-κB is required for Smac mimetic-mediated sensitization of glioblastoma cells for γ-irradiation-induced apoptosis. Mol. Cancer Ther. 10, 1867–1875 (2011)CrossRefPubMed
131.
go back to reference L. Wagner et al., Smac mimetic sensitizes glioblastoma cells to Temozolomide-induced apoptosis in a RIP1- and NF-κB-dependent manner. Oncogene. 32, 988–997 (2013)CrossRefPubMed L. Wagner et al., Smac mimetic sensitizes glioblastoma cells to Temozolomide-induced apoptosis in a RIP1- and NF-κB-dependent manner. Oncogene. 32, 988–997 (2013)CrossRefPubMed
132.
go back to reference S. Roesler, I. Eckhardt, S. Wolf, S. Fulda, Cooperative TRAIL production mediates IFNα/Smac mimetic-induced cell death in TNFα-resistant solid cancer cells. Oncotarget. 7, 3709–3725 (2016)PubMedCentralCrossRefPubMed S. Roesler, I. Eckhardt, S. Wolf, S. Fulda, Cooperative TRAIL production mediates IFNα/Smac mimetic-induced cell death in TNFα-resistant solid cancer cells. Oncotarget. 7, 3709–3725 (2016)PubMedCentralCrossRefPubMed
134.
go back to reference A. Soubéran et al., Inhibitor of apoptosis proteins determines Glioblastoma Stem-Like Cell Fate in an oxygen-dependent manner. Stem Cells. 37, 731–742 (2019)CrossRefPubMed A. Soubéran et al., Inhibitor of apoptosis proteins determines Glioblastoma Stem-Like Cell Fate in an oxygen-dependent manner. Stem Cells. 37, 731–742 (2019)CrossRefPubMed
135.
go back to reference V. Marschall, S. Fulda, Smac mimetic-induced upregulation of interferon-β sensitizes glioblastoma to temozolomide-induced cell death. Cell. Death Dis. 6, e1888–e1888 (2015)PubMedCentralCrossRefPubMed V. Marschall, S. Fulda, Smac mimetic-induced upregulation of interferon-β sensitizes glioblastoma to temozolomide-induced cell death. Cell. Death Dis. 6, e1888–e1888 (2015)PubMedCentralCrossRefPubMed
136.
go back to reference M. Seyfrid, V. Marschall, S. Fulda, Reactive oxygen species contribute toward Smac mimetic/temozolomide-induced cell death in glioblastoma cells. Anticancer Drugs. 27, 953–959 (2016)CrossRefPubMed M. Seyfrid, V. Marschall, S. Fulda, Reactive oxygen species contribute toward Smac mimetic/temozolomide-induced cell death in glioblastoma cells. Anticancer Drugs. 27, 953–959 (2016)CrossRefPubMed
137.
go back to reference S. Cristofanon et al., Identification of RIP1 as a critical mediator of Smac mimetic-mediated sensitization of glioblastoma cells for Drozitumab-induced apoptosis. Cell. Death Dis. 6, e1724 (2015)PubMedCentralCrossRefPubMed S. Cristofanon et al., Identification of RIP1 as a critical mediator of Smac mimetic-mediated sensitization of glioblastoma cells for Drozitumab-induced apoptosis. Cell. Death Dis. 6, e1724 (2015)PubMedCentralCrossRefPubMed
138.
go back to reference S. Fulda, W. Wick, M. Weller, K.-M. Debatin, Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat. Med. 8, 808–815 (2002)CrossRefPubMed S. Fulda, W. Wick, M. Weller, K.-M. Debatin, Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat. Med. 8, 808–815 (2002)CrossRefPubMed
139.
go back to reference I. Eckhardt, S. Roesler, S. Fulda, Identification of DR5 as a critical, NF-κB-regulated mediator of Smac-induced apoptosis. Cell. Death Dis. 4, e936 (2013)PubMedCentralCrossRefPubMed I. Eckhardt, S. Roesler, S. Fulda, Identification of DR5 as a critical, NF-κB-regulated mediator of Smac-induced apoptosis. Cell. Death Dis. 4, e936 (2013)PubMedCentralCrossRefPubMed
140.
go back to reference Y.-C. Kuo, Y.-J. Lee, R. Rajesh, Enhanced activity of AZD5582 and SM-164 in Rabies virus glycoprotein-lactoferrin-liposomes to downregulate inhibitors of apoptosis proteins in glioblastoma. Biomater. Adv. 133, 112615 (2022)CrossRefPubMed Y.-C. Kuo, Y.-J. Lee, R. Rajesh, Enhanced activity of AZD5582 and SM-164 in Rabies virus glycoprotein-lactoferrin-liposomes to downregulate inhibitors of apoptosis proteins in glioblastoma. Biomater. Adv. 133, 112615 (2022)CrossRefPubMed
141.
go back to reference S.T. Beug et al., Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat. Commun. 8, 14278 (2017)PubMedCentralCrossRefPubMed S.T. Beug et al., Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat. Commun. 8, 14278 (2017)PubMedCentralCrossRefPubMed
143.
go back to reference C. Lois, A. Alvarez-Buylla, Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. PNAS. 90, 2074–2077 (1993)PubMedCentralCrossRefPubMed C. Lois, A. Alvarez-Buylla, Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. PNAS. 90, 2074–2077 (1993)PubMedCentralCrossRefPubMed
145.
go back to reference J.M. García-Verdugo, F. Doetsch, H. Wichterle, D.A. Lim, A. Alvarez-Buylla, Architecture and cell types of the adult subventricular zone: in search of the stem cells. J. Neurobiol. 36, 234–248 (1998)CrossRefPubMed J.M. García-Verdugo, F. Doetsch, H. Wichterle, D.A. Lim, A. Alvarez-Buylla, Architecture and cell types of the adult subventricular zone: in search of the stem cells. J. Neurobiol. 36, 234–248 (1998)CrossRefPubMed
147.
go back to reference V. Hribljan, I. Salamon, A. Đemaili, I. Alić, D. Mitrečić, Transplantation of neural stem cells in the mouse model of ischemic brain stroke and expression of genes involved in programmed cell death. Croat Med. J. 59, 203–212 (2018)PubMedCentralCrossRefPubMed V. Hribljan, I. Salamon, A. Đemaili, I. Alić, D. Mitrečić, Transplantation of neural stem cells in the mouse model of ischemic brain stroke and expression of genes involved in programmed cell death. Croat Med. J. 59, 203–212 (2018)PubMedCentralCrossRefPubMed
148.
go back to reference M. Li et al., Transplantation of N-Acetyl Aspartyl-Glutamate Synthetase-Activated Neural Stem Cells after Experimental Traumatic Brain Injury Significantly Improves Neurological Recovery. CPB 32, 1776–1789 (2013) M. Li et al., Transplantation of N-Acetyl Aspartyl-Glutamate Synthetase-Activated Neural Stem Cells after Experimental Traumatic Brain Injury Significantly Improves Neurological Recovery. CPB 32, 1776–1789 (2013)
149.
go back to reference C. Zhao, W. Deng, F.H. Gage, Mechanisms and functional implications of adult neurogenesis. Cell. 132, 645–660 (2008)CrossRefPubMed C. Zhao, W. Deng, F.H. Gage, Mechanisms and functional implications of adult neurogenesis. Cell. 132, 645–660 (2008)CrossRefPubMed
150.
go back to reference R. Hakem et al., Differential Requirement for Caspase 9 in apoptotic pathways in vivo. Cell. 94, 339–352 (1998)CrossRefPubMed R. Hakem et al., Differential Requirement for Caspase 9 in apoptotic pathways in vivo. Cell. 94, 339–352 (1998)CrossRefPubMed
151.
go back to reference K. Kuida et al., Reduced apoptosis and cytochrome c–Mediated caspase activation in mice lacking caspase 9. Cell. 94, 325–337 (1998)CrossRefPubMed K. Kuida et al., Reduced apoptosis and cytochrome c–Mediated caspase activation in mice lacking caspase 9. Cell. 94, 325–337 (1998)CrossRefPubMed
152.
go back to reference F. Cecconi, G. Alvarez-Bolado, B.I. Meyer, K.A. Roth, P. Gruss, Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell. 94, 727–737 (1998)CrossRefPubMed F. Cecconi, G. Alvarez-Bolado, B.I. Meyer, K.A. Roth, P. Gruss, Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell. 94, 727–737 (1998)CrossRefPubMed
153.
go back to reference H. Yoshida et al., Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell. 94, 739–750 (1998)CrossRefPubMed H. Yoshida et al., Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell. 94, 739–750 (1998)CrossRefPubMed
154.
156.
go back to reference J.Y. Yager, A. Shuaib, J. Thornhill, The effect of age on susceptibility to brain damage in a model of global hemispheric hypoxia-ischemia. Brain Res. Dev. Brain Res. 93, 143–154 (1996)CrossRefPubMed J.Y. Yager, A. Shuaib, J. Thornhill, The effect of age on susceptibility to brain damage in a model of global hemispheric hypoxia-ischemia. Brain Res. Dev. Brain Res. 93, 143–154 (1996)CrossRefPubMed
157.
go back to reference H. Shiraishi, H. Okamoto, H. Hara, H. Yoshida, Alternative cell death of Apaf1-deficient neural progenitor cells induced by withdrawal of EGF or insulin. Biochim. Biophys. Acta. 1800, 405–415 (2010)CrossRefPubMed H. Shiraishi, H. Okamoto, H. Hara, H. Yoshida, Alternative cell death of Apaf1-deficient neural progenitor cells induced by withdrawal of EGF or insulin. Biochim. Biophys. Acta. 1800, 405–415 (2010)CrossRefPubMed
159.
go back to reference J.E. Slemmer, J.J. Shacka, M.I. Sweeney, J.T. Weber, Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr. Med. Chem. 15, 404–414 (2008)CrossRefPubMed J.E. Slemmer, J.J. Shacka, M.I. Sweeney, J.T. Weber, Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr. Med. Chem. 15, 404–414 (2008)CrossRefPubMed
160.
go back to reference G. Giordano, T.J. Kavanagh, L.G. Costa, Mouse cerebellar astrocytes protect cerebellar granule neurons against toxicity of the polybrominated diphenyl ether (PBDE) mixture DE-71. Neurotoxicology. 30, 326–329 (2009)CrossRefPubMed G. Giordano, T.J. Kavanagh, L.G. Costa, Mouse cerebellar astrocytes protect cerebellar granule neurons against toxicity of the polybrominated diphenyl ether (PBDE) mixture DE-71. Neurotoxicology. 30, 326–329 (2009)CrossRefPubMed
161.
go back to reference C.M. Maier, P.H. Chan, Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist. 8, 323–334 (2002)CrossRefPubMed C.M. Maier, P.H. Chan, Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist. 8, 323–334 (2002)CrossRefPubMed
163.
go back to reference T. Lindsten et al., The combined functions of proapoptotic Bcl-2 family members Bak and bax are essential for Normal Development of multiple tissues. Mol. Cell. 6, 1389–1399 (2000)PubMedCentralCrossRefPubMed T. Lindsten et al., The combined functions of proapoptotic Bcl-2 family members Bak and bax are essential for Normal Development of multiple tissues. Mol. Cell. 6, 1389–1399 (2000)PubMedCentralCrossRefPubMed
165.
go back to reference T.M. Miller et al., Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J. Cell. Biol. 139, 205–217 (1997)PubMedCentralCrossRefPubMed T.M. Miller et al., Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J. Cell. Biol. 139, 205–217 (1997)PubMedCentralCrossRefPubMed
166.
go back to reference R.M. Easton, T.L. Deckwerth, A.S. Parsadanian, E.M. Johnson, Analysis of the mechanism of loss of trophic factor dependence associated with neuronal maturation: a phenotype indistinguishable from Bax deletion. J. Neurosci. 17, 9656–9666 (1997)PubMedCentralCrossRefPubMed R.M. Easton, T.L. Deckwerth, A.S. Parsadanian, E.M. Johnson, Analysis of the mechanism of loss of trophic factor dependence associated with neuronal maturation: a phenotype indistinguishable from Bax deletion. J. Neurosci. 17, 9656–9666 (1997)PubMedCentralCrossRefPubMed
167.
go back to reference T.L. Deckwerth et al., BAX is required for neuronal death after trophic factor deprivation and during development. Neuron. 17, 401–411 (1996)CrossRefPubMed T.L. Deckwerth et al., BAX is required for neuronal death after trophic factor deprivation and during development. Neuron. 17, 401–411 (1996)CrossRefPubMed
168.
go back to reference K.A. Sarosiek et al., Developmental regulation of mitochondrial apoptosis by c-Myc governs Age- and tissue-specific sensitivity to Cancer therapeutics. Cancer Cell. 31, 142–156 (2017)CrossRefPubMed K.A. Sarosiek et al., Developmental regulation of mitochondrial apoptosis by c-Myc governs Age- and tissue-specific sensitivity to Cancer therapeutics. Cancer Cell. 31, 142–156 (2017)CrossRefPubMed
169.
go back to reference M. Vila et al., Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 98, 2837–2842 (2001) M. Vila et al., Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 98, 2837–2842 (2001)
170.
go back to reference S. Shimohama, S. Fujimoto, Y. Sumida, H. Tanino, Differential expression of rat brain bcl-2 family proteins in development and aging. Biochem. Biophys. Res. Commun. 252, 92–96 (1998)CrossRefPubMed S. Shimohama, S. Fujimoto, Y. Sumida, H. Tanino, Differential expression of rat brain bcl-2 family proteins in development and aging. Biochem. Biophys. Res. Commun. 252, 92–96 (1998)CrossRefPubMed
171.
go back to reference K. Vekrellis et al., Bax promotes neuronal cell death and is downregulated during the development of the nervous system. Development. 124, 1239–1249 (1997)CrossRefPubMed K. Vekrellis et al., Bax promotes neuronal cell death and is downregulated during the development of the nervous system. Development. 124, 1239–1249 (1997)CrossRefPubMed
173.
174.
go back to reference B.M. Polster, C.L. Robertson, C.J. Bucci, M. Suzuki, G. Fiskum, Postnatal brain development and neural cell differentiation modulate mitochondrial Bax and BH3 peptide-induced cytochrome c release. Cell. Death Differ. 10, 365–370 (2003)CrossRefPubMed B.M. Polster, C.L. Robertson, C.J. Bucci, M. Suzuki, G. Fiskum, Postnatal brain development and neural cell differentiation modulate mitochondrial Bax and BH3 peptide-induced cytochrome c release. Cell. Death Differ. 10, 365–370 (2003)CrossRefPubMed
175.
go back to reference L.C. Fogarty et al., Mcl-1 and Bcl-xL are essential for survival of the developing nervous system. Cell. Death Differ. 26, 1501–1515 (2019)CrossRefPubMed L.C. Fogarty et al., Mcl-1 and Bcl-xL are essential for survival of the developing nervous system. Cell. Death Differ. 26, 1501–1515 (2019)CrossRefPubMed
176.
go back to reference A. Nakamura et al., Bcl-xL is essential for the survival and function of differentiated neurons in the cortex that control complex behaviors. J. Neurosci. 36, 5448–5461 (2016)PubMedCentralCrossRefPubMed A. Nakamura et al., Bcl-xL is essential for the survival and function of differentiated neurons in the cortex that control complex behaviors. J. Neurosci. 36, 5448–5461 (2016)PubMedCentralCrossRefPubMed
177.
go back to reference D.E. Merry, D.J. Veis, W.F. Hickey, S.J. Korsmeyer, bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development. 120, 301–311 (1994)CrossRefPubMed D.E. Merry, D.J. Veis, W.F. Hickey, S.J. Korsmeyer, bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development. 120, 301–311 (1994)CrossRefPubMed
178.
go back to reference G. Middleton, S. Wyatt, N. Ninkina, A.M. Davies, Reciprocal developmental changes in the roles of Bcl-w and Bcl-x(L) in regulating sensory neuron survival. Development. 128, 447–457 (2001)CrossRefPubMed G. Middleton, S. Wyatt, N. Ninkina, A.M. Davies, Reciprocal developmental changes in the roles of Bcl-w and Bcl-x(L) in regulating sensory neuron survival. Development. 128, 447–457 (2001)CrossRefPubMed
179.
go back to reference S. Hamnér, Y. Skoglösa, D. Lindholm, Differential expression of bcl-w and bcl-x messenger RNA in the developing and adult rat nervous system. Neuroscience. 91, 673–684 (1999)CrossRefPubMed S. Hamnér, Y. Skoglösa, D. Lindholm, Differential expression of bcl-w and bcl-x messenger RNA in the developing and adult rat nervous system. Neuroscience. 91, 673–684 (1999)CrossRefPubMed
180.
go back to reference K. Ota et al., Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liver. J. Biochem. 131, 131–135 (2002)CrossRefPubMed K. Ota et al., Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liver. J. Biochem. 131, 131–135 (2002)CrossRefPubMed
181.
go back to reference K.M. Wright, M.I. Smith, L. Farrag, M. Deshmukh, Chromatin modification of Apaf-1 restricts the apoptotic pathway in mature neurons. J. Cell. Biol. 179, 825–832 (2007)PubMedCentralCrossRefPubMed K.M. Wright, M.I. Smith, L. Farrag, M. Deshmukh, Chromatin modification of Apaf-1 restricts the apoptotic pathway in mature neurons. J. Cell. Biol. 179, 825–832 (2007)PubMedCentralCrossRefPubMed
182.
go back to reference M. Donovan, T.G. Cotter, Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development. Cell. Death Differ. 9, 1220–1231 (2002)CrossRefPubMed M. Donovan, T.G. Cotter, Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development. Cell. Death Differ. 9, 1220–1231 (2002)CrossRefPubMed
183.
go back to reference Y. Furukawa et al., Apaf-1 is a mediator of E2F-1-induced apoptosis. J. Biol. Chem. 277, 39760–39768 (2002)CrossRefPubMed Y. Furukawa et al., Apaf-1 is a mediator of E2F-1-induced apoptosis. J. Biol. Chem. 277, 39760–39768 (2002)CrossRefPubMed
184.
go back to reference M.C. Moroni et al., Apaf-1 is a transcriptional target for E2F and p53. Nat. Cell. Biol. 3, 552–558 (2001)CrossRefPubMed M.C. Moroni et al., Apaf-1 is a transcriptional target for E2F and p53. Nat. Cell. Biol. 3, 552–558 (2001)CrossRefPubMed
185.
go back to reference A.G. Yakovlev et al., Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J. Neurosci. 21, 7439–7446 (2001)PubMedCentralCrossRefPubMed A.G. Yakovlev et al., Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J. Neurosci. 21, 7439–7446 (2001)PubMedCentralCrossRefPubMed
186.
go back to reference C.E. Johnson et al., Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proc. Natl. Acad. Sci. U.S.A. 104, 20820–20825 (2007) C.E. Johnson et al., Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proc. Natl. Acad. Sci. U.S.A. 104, 20820–20825 (2007)
187.
go back to reference A.E. Vaughn, M. Deshmukh, Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat. Cell. Biol. 10, 1477–1483 (2008)PubMedCentralCrossRefPubMed A.E. Vaughn, M. Deshmukh, Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat. Cell. Biol. 10, 1477–1483 (2008)PubMedCentralCrossRefPubMed
188.
go back to reference X. Zhang, E. Szabo, M. Michalak, M. Opas, Endoplasmic reticulum stress during the embryonic development of the central nervous system in the mouse. Int. J. Dev. Neurosci. 25, 455–463 (2007)CrossRefPubMed X. Zhang, E. Szabo, M. Michalak, M. Opas, Endoplasmic reticulum stress during the embryonic development of the central nervous system in the mouse. Int. J. Dev. Neurosci. 25, 455–463 (2007)CrossRefPubMed
189.
go back to reference K. Mnich et al., Nerve growth factor-mediated inhibition of apoptosis post-caspase activation is due to removal of active caspase-3 in a lysosome-dependent manner. Cell. Death Dis. 5, e1202 (2014)PubMedCentralCrossRefPubMed K. Mnich et al., Nerve growth factor-mediated inhibition of apoptosis post-caspase activation is due to removal of active caspase-3 in a lysosome-dependent manner. Cell. Death Dis. 5, e1202 (2014)PubMedCentralCrossRefPubMed
190.
go back to reference S. Baratchi, R.K. Kanwar, J.R. Kanwar, Survivin: a target from brain cancer to neurodegenerative disease. Crit. Rev. Biochem. Mol. Biol. 45, 535–554 (2010)CrossRefPubMed S. Baratchi, R.K. Kanwar, J.R. Kanwar, Survivin: a target from brain cancer to neurodegenerative disease. Crit. Rev. Biochem. Mol. Biol. 45, 535–554 (2010)CrossRefPubMed
191.
go back to reference N. Unsain, J.M. Higgins, K.N. Parker, A.D. Johnstone, P.A. Barker, XIAP regulates caspase activity in degenerating axons. Cell. Rep. 4, 751–763 (2013)CrossRefPubMed N. Unsain, J.M. Higgins, K.N. Parker, A.D. Johnstone, P.A. Barker, XIAP regulates caspase activity in degenerating axons. Cell. Rep. 4, 751–763 (2013)CrossRefPubMed
192.
go back to reference A. Mukherjee, D.W. Williams, More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease. Cell. Death Differ. 24, 1411–1421 (2017)PubMedCentralCrossRefPubMed A. Mukherjee, D.W. Williams, More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease. Cell. Death Differ. 24, 1411–1421 (2017)PubMedCentralCrossRefPubMed
194.
go back to reference N. Heck et al., Activity-dependent regulation of neuronal apoptosis in neonatal mouse cerebral cortex. Cereb. Cortex. 18, 1335–1349 (2008)CrossRefPubMed N. Heck et al., Activity-dependent regulation of neuronal apoptosis in neonatal mouse cerebral cortex. Cereb. Cortex. 18, 1335–1349 (2008)CrossRefPubMed
195.
go back to reference H.H. Hansen et al., Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain. Neurobiol. Dis. 16, 440–453 (2004)CrossRefPubMed H.H. Hansen et al., Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain. Neurobiol. Dis. 16, 440–453 (2004)CrossRefPubMed
196.
go back to reference C. Ikonomidou et al., Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 283, 70–74 (1999)CrossRefPubMed C. Ikonomidou et al., Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 283, 70–74 (1999)CrossRefPubMed
198.
go back to reference G.E. Hardingham, Y. Fukunaga, H. Bading, Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002)CrossRefPubMed G.E. Hardingham, Y. Fukunaga, H. Bading, Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002)CrossRefPubMed
199.
go back to reference R. Cabezas, R.S. El-Bachá, J. González, G.E. Barreto, Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci. Res. 74, 80–90 (2012)CrossRefPubMed R. Cabezas, R.S. El-Bachá, J. González, G.E. Barreto, Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci. Res. 74, 80–90 (2012)CrossRefPubMed
200.
go back to reference M. Eddleston, L. Mucke, Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience. 54, 15–36 (1993)CrossRefPubMed M. Eddleston, L. Mucke, Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience. 54, 15–36 (1993)CrossRefPubMed
201.
go back to reference G. Stoll, S. Jander, M. Schroeter, Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol. 56, 149–171 (1998)CrossRefPubMed G. Stoll, S. Jander, M. Schroeter, Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol. 56, 149–171 (1998)CrossRefPubMed
202.
go back to reference L. Bambrick, T. Kristian, G. Fiskum, Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem Res. 29, 601–608 (2004)CrossRefPubMed L. Bambrick, T. Kristian, G. Fiskum, Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem Res. 29, 601–608 (2004)CrossRefPubMed
203.
go back to reference K. Takuma, A. Baba, T. Matsuda, Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol. 72, 111–127 (2004)CrossRefPubMed K. Takuma, A. Baba, T. Matsuda, Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol. 72, 111–127 (2004)CrossRefPubMed
204.
go back to reference K. Takuma et al., T-588 inhibits astrocyte apoptosis via mitogen-activated protein kinase signal pathway. Eur. J. Pharmacol. 399, 1–8 (2000)CrossRefPubMed K. Takuma et al., T-588 inhibits astrocyte apoptosis via mitogen-activated protein kinase signal pathway. Eur. J. Pharmacol. 399, 1–8 (2000)CrossRefPubMed
205.
go back to reference Y. Wang et al., Trk A, B, and C are commonly expressed in human astrocytes and astrocytic gliomas but not by human oligodendrocytes and oligodendroglioma. Acta Neuropathol. 96, 357–364 (1998)CrossRefPubMed Y. Wang et al., Trk A, B, and C are commonly expressed in human astrocytes and astrocytic gliomas but not by human oligodendrocytes and oligodendroglioma. Acta Neuropathol. 96, 357–364 (1998)CrossRefPubMed
206.
go back to reference S.J. Robb, J.R. Connor, Nitric oxide protects astrocytes from oxidative stress. Ann. N Y Acad. Sci. 962, 93–102 (2002)CrossRefPubMed S.J. Robb, J.R. Connor, Nitric oxide protects astrocytes from oxidative stress. Ann. N Y Acad. Sci. 962, 93–102 (2002)CrossRefPubMed
207.
go back to reference C. Lautrette, S. Giraud, C. Vermot-Desroches, J.L. Preud’homme, M.O. Jauberteau, Expression of a functional Fas death receptor by human foetal motoneurons. Neuroscience. 119, 377–385 (2003)CrossRefPubMed C. Lautrette, S. Giraud, C. Vermot-Desroches, J.L. Preud’homme, M.O. Jauberteau, Expression of a functional Fas death receptor by human foetal motoneurons. Neuroscience. 119, 377–385 (2003)CrossRefPubMed
208.
go back to reference Y. Dong, R. Zhao, X.Q. Chen, A.C.H. Yu, 14-3-3gamma and neuroglobin are new intrinsic protective factors for cerebral ischemia. Mol. Neurobiol. 41, 218–231 (2010)CrossRefPubMed Y. Dong, R. Zhao, X.Q. Chen, A.C.H. Yu, 14-3-3gamma and neuroglobin are new intrinsic protective factors for cerebral ischemia. Mol. Neurobiol. 41, 218–231 (2010)CrossRefPubMed
209.
go back to reference B.A. Barres et al., Cell death in the oligodendrocyte lineage. J. Neurobiol. 23, 1221–1230 (1992)CrossRefPubMed B.A. Barres et al., Cell death in the oligodendrocyte lineage. J. Neurobiol. 23, 1221–1230 (1992)CrossRefPubMed
210.
go back to reference A. Alizadeh, S.M. Dyck, S. Karimi-Abdolrezaee, Myelin damage and repair in pathologic CNS: challenges and prospects. Front. Mol. Neurosci. 8, 35 (2015)PubMedCentralCrossRefPubMed A. Alizadeh, S.M. Dyck, S. Karimi-Abdolrezaee, Myelin damage and repair in pathologic CNS: challenges and prospects. Front. Mol. Neurosci. 8, 35 (2015)PubMedCentralCrossRefPubMed
211.
go back to reference G. Piaton, R.M. Gould, C. Lubetzki, Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J. Neurochem. 114, 1243–1260 (2010)CrossRefPubMed G. Piaton, R.M. Gould, C. Lubetzki, Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J. Neurochem. 114, 1243–1260 (2010)CrossRefPubMed
212.
go back to reference B. El Waly, M. Macchi, M. Cayre, P. Durbec, Oligodendrogenesis in the normal and pathological central nervous system. Front. Neurosci. 8, 145 (2014)PubMedCentralPubMed B. El Waly, M. Macchi, M. Cayre, P. Durbec, Oligodendrogenesis in the normal and pathological central nervous system. Front. Neurosci. 8, 145 (2014)PubMedCentralPubMed
213.
go back to reference S.A. Back, J.J. Volpe, Cellular and molecular pathogenesis of periventricular white matter injury. Ment. Retard. Dev. Disabil. Res. Rev. 3, 96–107 (1997)CrossRef S.A. Back, J.J. Volpe, Cellular and molecular pathogenesis of periventricular white matter injury. Ment. Retard. Dev. Disabil. Res. Rev. 3, 96–107 (1997)CrossRef
214.
go back to reference R. Bansal, A.E. Warrington, A.L. Gard, B. Ranscht, S.E. Pfeiffer, Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J. Neurosci. Res. 24, 548–557 (1989)CrossRefPubMed R. Bansal, A.E. Warrington, A.L. Gard, B. Ranscht, S.E. Pfeiffer, Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J. Neurosci. Res. 24, 548–557 (1989)CrossRefPubMed
215.
go back to reference M. Schachner, S.K. Kim, R. Zehnle, Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (o antigens) recognized by monoclonal antibodies. Dev. Biol. 83, 328–338 (1981)CrossRefPubMed M. Schachner, S.K. Kim, R. Zehnle, Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (o antigens) recognized by monoclonal antibodies. Dev. Biol. 83, 328–338 (1981)CrossRefPubMed
217.
go back to reference C. Simon, M. Götz, L. Dimou, Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia. 59, 869–881 (2011)CrossRefPubMed C. Simon, M. Götz, L. Dimou, Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia. 59, 869–881 (2011)CrossRefPubMed
218.
go back to reference M.R.L. Dawson, A. Polito, J.M. Levine, R. Reynolds, NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci. 24, 476–488 (2003)CrossRefPubMed M.R.L. Dawson, A. Polito, J.M. Levine, R. Reynolds, NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci. 24, 476–488 (2003)CrossRefPubMed
220.
go back to reference S. Ivkovic, P. Canoll, J.E. Goldman, Constitutive EGFR signaling in oligodendrocyte progenitors leads to diffuse hyperplasia in postnatal white matter. J. Neurosci. 28, 914–922 (2008)PubMedCentralCrossRefPubMed S. Ivkovic, P. Canoll, J.E. Goldman, Constitutive EGFR signaling in oligodendrocyte progenitors leads to diffuse hyperplasia in postnatal white matter. J. Neurosci. 28, 914–922 (2008)PubMedCentralCrossRefPubMed
222.
go back to reference E.G. Hughes, S.H. Kang, M. Fukaya, D.E. Bergles, Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16, 668–676 (2013)PubMedCentralCrossRefPubMed E.G. Hughes, S.H. Kang, M. Fukaya, D.E. Bergles, Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16, 668–676 (2013)PubMedCentralCrossRefPubMed
223.
go back to reference A. Alcazar, C. Cid, High cytotoxic sensitivity of the oligodendrocyte precursor cells to HSP90 inhibitors in cell cultures. Exp. Neurol. 216, 511–514 (2009)CrossRefPubMed A. Alcazar, C. Cid, High cytotoxic sensitivity of the oligodendrocyte precursor cells to HSP90 inhibitors in cell cultures. Exp. Neurol. 216, 511–514 (2009)CrossRefPubMed
224.
go back to reference D.M. Chari, J.M. Gilson, R.J.M. Franklin, W.F. Blakemore, Oligodendrocyte progenitor cell (OPC) transplantation is unlikely to offer a means of preventing X-irradiation induced damage in the CNS. Exp. Neurol. 198, 145–153 (2006)CrossRefPubMed D.M. Chari, J.M. Gilson, R.J.M. Franklin, W.F. Blakemore, Oligodendrocyte progenitor cell (OPC) transplantation is unlikely to offer a means of preventing X-irradiation induced damage in the CNS. Exp. Neurol. 198, 145–153 (2006)CrossRefPubMed
225.
go back to reference V.A. Baldassarro, A. Marchesini, L. Giardino, L. Calzà, PARP activity and inhibition in fetal and adult oligodendrocyte precursor cells: Effect on cell survival and differentiation. Stem Cell. Res. 22, 54–60 (2017)CrossRefPubMed V.A. Baldassarro, A. Marchesini, L. Giardino, L. Calzà, PARP activity and inhibition in fetal and adult oligodendrocyte precursor cells: Effect on cell survival and differentiation. Stem Cell. Res. 22, 54–60 (2017)CrossRefPubMed
226.
go back to reference H. Yan, S.A. Rivkees, Hypoglycemia influences oligodendrocyte development and myelin formation. Neuroreport. 17, 55–59 (2006)CrossRefPubMed H. Yan, S.A. Rivkees, Hypoglycemia influences oligodendrocyte development and myelin formation. Neuroreport. 17, 55–59 (2006)CrossRefPubMed
227.
go back to reference S.K. Thorburne, B.H. Juurlink, Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J. Neurochem. 67, 1014–1022 (1996)CrossRefPubMed S.K. Thorburne, B.H. Juurlink, Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J. Neurochem. 67, 1014–1022 (1996)CrossRefPubMed
228.
go back to reference W. Cammer, Carbonic anhydrase in oligodendrocytes and myelin in the central nervous system. Ann. N Y Acad. Sci. 429, 494–497 (1984)CrossRefPubMed W. Cammer, Carbonic anhydrase in oligodendrocytes and myelin in the central nervous system. Ann. N Y Acad. Sci. 429, 494–497 (1984)CrossRefPubMed
229.
go back to reference J.R. Connor, S.L. Menzies, Relationship of iron to oligodendrocytes and myelination. Glia. 17, 83–93 (1996)CrossRefPubMed J.R. Connor, S.L. Menzies, Relationship of iron to oligodendrocytes and myelination. Glia. 17, 83–93 (1996)CrossRefPubMed
230.
go back to reference G. Fragoso et al., Developmental differences in HO-induced oligodendrocyte cell death: role of glutathione, mitogen-activated protein kinases and caspase 3. J. Neurochem. 90, 392–404 (2004)CrossRefPubMed G. Fragoso et al., Developmental differences in HO-induced oligodendrocyte cell death: role of glutathione, mitogen-activated protein kinases and caspase 3. J. Neurochem. 90, 392–404 (2004)CrossRefPubMed
231.
go back to reference B.H. Juurlink, Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci. Biobehav Rev. 21, 151–166 (1997)CrossRefPubMed B.H. Juurlink, Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci. Biobehav Rev. 21, 151–166 (1997)CrossRefPubMed
232.
go back to reference G. Almazan et al., Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radic Biol. Med. 29, 858–869 (2000)CrossRefPubMed G. Almazan et al., Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radic Biol. Med. 29, 858–869 (2000)CrossRefPubMed
233.
go back to reference G.S. Vemuri, F.A. McMorris, Oligodendrocytes and their precursors require phosphatidylinositol 3-kinase signaling for survival. Dev. (Cambridge England). 122, 2529–2537 (1996)CrossRef G.S. Vemuri, F.A. McMorris, Oligodendrocytes and their precursors require phosphatidylinositol 3-kinase signaling for survival. Dev. (Cambridge England). 122, 2529–2537 (1996)CrossRef
234.
go back to reference N. Mazaheri et al., Ameliorating effect of Osteopontin on H2O2-Induced apoptosis of human oligodendrocyte progenitor cells. Cell. Mol. Neurobiol. 38, 891–899 (2018)CrossRefPubMed N. Mazaheri et al., Ameliorating effect of Osteopontin on H2O2-Induced apoptosis of human oligodendrocyte progenitor cells. Cell. Mol. Neurobiol. 38, 891–899 (2018)CrossRefPubMed
235.
go back to reference C. Li et al., BNIP3 mediates pre-myelinating oligodendrocyte cell death in hypoxia and ischemia. J. Neurochem. 127, 426–433 (2013)CrossRefPubMed C. Li et al., BNIP3 mediates pre-myelinating oligodendrocyte cell death in hypoxia and ischemia. J. Neurochem. 127, 426–433 (2013)CrossRefPubMed
236.
go back to reference F. Binamé, D. Sakry, L. Dimou, V. Jolivel, J. Trotter, NG2 regulates directional migration of oligodendrocyte precursor cells via rho GTPases and polarity complex proteins. J. Neurosci. 33, 10858–10874 (2013)PubMedCentralCrossRefPubMed F. Binamé, D. Sakry, L. Dimou, V. Jolivel, J. Trotter, NG2 regulates directional migration of oligodendrocyte precursor cells via rho GTPases and polarity complex proteins. J. Neurosci. 33, 10858–10874 (2013)PubMedCentralCrossRefPubMed
237.
go back to reference F. Maus et al., The NG2 Proteoglycan protects oligodendrocyte precursor cells against oxidative stress via Interaction with OMI/HtrA2. PLoS One. 10, e0137311 (2015)PubMedCentralCrossRefPubMed F. Maus et al., The NG2 Proteoglycan protects oligodendrocyte precursor cells against oxidative stress via Interaction with OMI/HtrA2. PLoS One. 10, e0137311 (2015)PubMedCentralCrossRefPubMed
238.
go back to reference V. Tsiperson et al., Brain-derived neurotrophic factor deficiency restricts proliferation of oligodendrocyte progenitors following cuprizone-induced demyelination. ASN Neuro 7, 1759091414566878 (2015) V. Tsiperson et al., Brain-derived neurotrophic factor deficiency restricts proliferation of oligodendrocyte progenitors following cuprizone-induced demyelination. ASN Neuro 7, 1759091414566878 (2015)
239.
go back to reference J.W. McDonald, J.M. Levine, Y. Qu, Multiple classes of the oligodendrocyte lineage are highly vulnerable to excitotoxicity. Neuroreport. 9, 2757–2762 (1998)CrossRefPubMed J.W. McDonald, J.M. Levine, Y. Qu, Multiple classes of the oligodendrocyte lineage are highly vulnerable to excitotoxicity. Neuroreport. 9, 2757–2762 (1998)CrossRefPubMed
240.
go back to reference S. Simonishvili, M.R. Jain, H. Li, S.W. Levison, T.L. Wood, Identification of bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia-ischemia. ASN Neuro. 5, e00131 (2013)PubMedCentralCrossRefPubMed S. Simonishvili, M.R. Jain, H. Li, S.W. Levison, T.L. Wood, Identification of bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia-ischemia. ASN Neuro. 5, e00131 (2013)PubMedCentralCrossRefPubMed
241.
go back to reference B. Kavanaugh et al., Neurotrophin-3 (NT-3) diminishes susceptibility of the oligodendroglial lineage to AMPA glutamate receptor-mediated excitotoxicity. J. Neurosci. Res. 60, 725–732 (2000)CrossRefPubMed B. Kavanaugh et al., Neurotrophin-3 (NT-3) diminishes susceptibility of the oligodendroglial lineage to AMPA glutamate receptor-mediated excitotoxicity. J. Neurosci. Res. 60, 725–732 (2000)CrossRefPubMed
242.
go back to reference A. Khorchid, G. Fragoso, G. Shore, G. Almazan, Catecholamine-induced oligodendrocyte cell death in culture is developmentally regulated and involves free radical generation and differential activation of caspase-3. Glia. 40, 283–299 (2002)CrossRefPubMed A. Khorchid, G. Fragoso, G. Shore, G. Almazan, Catecholamine-induced oligodendrocyte cell death in culture is developmentally regulated and involves free radical generation and differential activation of caspase-3. Glia. 40, 283–299 (2002)CrossRefPubMed
243.
go back to reference D.L. Madison, S.E. Pfeiffer, Cloning of the 3′ end of rat bax-α and corresponding developmental down-regulation in differentiating primary, cultured oligodendrocytes. Neurosci. Lett. 220, 183–186 (1996)CrossRefPubMed D.L. Madison, S.E. Pfeiffer, Cloning of the 3′ end of rat bax-α and corresponding developmental down-regulation in differentiating primary, cultured oligodendrocytes. Neurosci. Lett. 220, 183–186 (1996)CrossRefPubMed
244.
go back to reference M.D. Polewski et al., Increased expression of System x c– in Glioblastoma confers an altered metabolic state and Temozolomide Resistance. Mol. Cancer Res. 14, 1229–1242 (2016)PubMedCentralCrossRefPubMed M.D. Polewski et al., Increased expression of System x c in Glioblastoma confers an altered metabolic state and Temozolomide Resistance. Mol. Cancer Res. 14, 1229–1242 (2016)PubMedCentralCrossRefPubMed
245.
248.
go back to reference E.E. Varfolomeev et al., Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity. 9, 267–276 (1998)CrossRefPubMed E.E. Varfolomeev et al., Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity. 9, 267–276 (1998)CrossRefPubMed
249.
go back to reference L. Ricci-Vitiani et al., Absence of Caspase 8 and high expression of PED protect primitive neural cells from cell death. J. Exp. Med. 200, 1257–1266 (2004)PubMedCentralCrossRefPubMed L. Ricci-Vitiani et al., Absence of Caspase 8 and high expression of PED protect primitive neural cells from cell death. J. Exp. Med. 200, 1257–1266 (2004)PubMedCentralCrossRefPubMed
250.
251.
go back to reference V.N. Ivanov, T.K. Hei, Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation. Apoptosis. 20, 996–1015 (2015)PubMedCentralCrossRefPubMed V.N. Ivanov, T.K. Hei, Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation. Apoptosis. 20, 996–1015 (2015)PubMedCentralCrossRefPubMed
252.
go back to reference S. Ceccatelli, C. Tamm, E. Sleeper, S. Orrenius, Neural stem cells and cell death. Toxicol. Lett. 149, 59–66 (2004)CrossRefPubMed S. Ceccatelli, C. Tamm, E. Sleeper, S. Orrenius, Neural stem cells and cell death. Toxicol. Lett. 149, 59–66 (2004)CrossRefPubMed
253.
go back to reference C. Tamm et al., Differential regulation of the mitochondrial and death receptor pathways in neural stem cells. Eur. J. Neurosci. 19, 2613–2621 (2004)CrossRefPubMed C. Tamm et al., Differential regulation of the mitochondrial and death receptor pathways in neural stem cells. Eur. J. Neurosci. 19, 2613–2621 (2004)CrossRefPubMed
254.
255.
go back to reference N.S. Corsini et al., The death receptor CD95 activates adult neural stem cells for working memory formation and brain repair. Cell. Stem Cell. 5, 178–190 (2009)CrossRefPubMed N.S. Corsini et al., The death receptor CD95 activates adult neural stem cells for working memory formation and brain repair. Cell. Stem Cell. 5, 178–190 (2009)CrossRefPubMed
256.
go back to reference V.N. Ivanov, T.K. Hei, A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells. Apoptosis. 19, 399–413 (2014)PubMedCentralCrossRefPubMed V.N. Ivanov, T.K. Hei, A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells. Apoptosis. 19, 399–413 (2014)PubMedCentralCrossRefPubMed
257.
go back to reference V.N. Ivanov, T.K. Hei, Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC). Apoptosis. 19, 1736–1754 (2014)PubMedCentralCrossRefPubMed V.N. Ivanov, T.K. Hei, Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC). Apoptosis. 19, 1736–1754 (2014)PubMedCentralCrossRefPubMed
258.
go back to reference A. Semont et al., Involvement of p53 and Fas/CD95 in murine neural progenitor cell response to ionizing irradiation. Oncogene. 23, 8497–8508 (2004)CrossRefPubMed A. Semont et al., Involvement of p53 and Fas/CD95 in murine neural progenitor cell response to ionizing irradiation. Oncogene. 23, 8497–8508 (2004)CrossRefPubMed
259.
go back to reference M.L. Agarwal, A. Agarwal, W.R. Taylor, G.R. Stark, p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 92, 8493–8497 (1995) M.L. Agarwal, A. Agarwal, W.R. Taylor, G.R. Stark, p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 92, 8493–8497 (1995)
260.
go back to reference S. Bates, K.M. Ryan, A.C. Phillips, K.H. Vousden, Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression. Oncogene. 17, 1691–1703 (1998)CrossRefPubMed S. Bates, K.M. Ryan, A.C. Phillips, K.H. Vousden, Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression. Oncogene. 17, 1691–1703 (1998)CrossRefPubMed
261.
go back to reference J.W. Harper, G.R. Adami, N. Wei, K. Keyomarsi, S.J. Elledge, The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75, 805–816 (1993)CrossRefPubMed J.W. Harper, G.R. Adami, N. Wei, K. Keyomarsi, S.J. Elledge, The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75, 805–816 (1993)CrossRefPubMed
262.
go back to reference A. Okuda et al., Poly(ADP-ribose) polymerase inhibitors activate the p53 signaling pathway in neural stem/progenitor cells. BMC Neurosci. 18, 14 (2017)PubMedCentralCrossRefPubMed A. Okuda et al., Poly(ADP-ribose) polymerase inhibitors activate the p53 signaling pathway in neural stem/progenitor cells. BMC Neurosci. 18, 14 (2017)PubMedCentralCrossRefPubMed
263.
go back to reference H. Fukuda et al., Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell. Death Differ. 11, 1166–1178 (2004)CrossRefPubMed H. Fukuda et al., Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell. Death Differ. 11, 1166–1178 (2004)CrossRefPubMed
264.
go back to reference K. Osato et al., Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation. Cell. Death Dis. 1, e84–e84 (2010)PubMedCentralCrossRefPubMed K. Osato et al., Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation. Cell. Death Dis. 1, e84–e84 (2010)PubMedCentralCrossRefPubMed
265.
go back to reference A. Martin-Villalba et al., CD95 Ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate Ischemia-Induced apoptosis in neurons. J. Neurosci. 19, 3809–3817 (1999)PubMedCentralCrossRefPubMed A. Martin-Villalba et al., CD95 Ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate Ischemia-Induced apoptosis in neurons. J. Neurosci. 19, 3809–3817 (1999)PubMedCentralCrossRefPubMed
266.
go back to reference G. Cantarella et al., Neutralization of TRAIL death pathway protects human neuronal cell line from beta-amyloid toxicity. Cell. Death Differ. 10, 134–141 (2003)CrossRefPubMed G. Cantarella et al., Neutralization of TRAIL death pathway protects human neuronal cell line from beta-amyloid toxicity. Cell. Death Differ. 10, 134–141 (2003)CrossRefPubMed
267.
go back to reference D.W. Ethell, R. Kinloch, D.R. Green, Metalloproteinase shedding of Fas ligand regulates beta-amyloid neurotoxicity. Curr. Biol. 12, 1595–1600 (2002)CrossRefPubMed D.W. Ethell, R. Kinloch, D.R. Green, Metalloproteinase shedding of Fas ligand regulates beta-amyloid neurotoxicity. Curr. Biol. 12, 1595–1600 (2002)CrossRefPubMed
268.
go back to reference L.E. French et al., Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J. Cell. Biol. 133, 335–343 (1996)CrossRefPubMed L.E. French et al., Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J. Cell. Biol. 133, 335–343 (1996)CrossRefPubMed
269.
go back to reference I. Ferrer, R. Blanco, B. Cutillas, S. Ambrosio, Fas and Fas-L expression in Huntington’s disease and Parkinson’s disease. Neuropathol. Appl. Neurobiol. 26, 424–433 (2000)CrossRefPubMed I. Ferrer, R. Blanco, B. Cutillas, S. Ambrosio, Fas and Fas-L expression in Huntington’s disease and Parkinson’s disease. Neuropathol. Appl. Neurobiol. 26, 424–433 (2000)CrossRefPubMed
270.
go back to reference Y. Morishima et al., Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J. Neurosci. 21, 7551–7560 (2001)PubMedCentralCrossRefPubMed Y. Morishima et al., Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J. Neurosci. 21, 7551–7560 (2001)PubMedCentralCrossRefPubMed
271.
go back to reference C. Raoul et al., Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron. 35, 1067–1083 (2002)CrossRefPubMed C. Raoul et al., Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron. 35, 1067–1083 (2002)CrossRefPubMed
272.
go back to reference M. Mogi et al., The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neurosci. Lett. 220, 195–198 (1996)CrossRefPubMed M. Mogi et al., The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neurosci. Lett. 220, 195–198 (1996)CrossRefPubMed
273.
go back to reference C. Zuliani et al., Control of neuronal branching by the death receptor CD95 (Fas/Apo-1). Cell. Death Differ. 13, 31–40 (2006)CrossRefPubMed C. Zuliani et al., Control of neuronal branching by the death receptor CD95 (Fas/Apo-1). Cell. Death Differ. 13, 31–40 (2006)CrossRefPubMed
274.
go back to reference J. Desbarats et al., Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat. Cell Biol. 5, 118–125 (2003)CrossRefPubMed J. Desbarats et al., Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat. Cell Biol. 5, 118–125 (2003)CrossRefPubMed
275.
go back to reference Y. Saeed et al., Astroglial U87 cells protect neuronal SH-SY5Y cells from Indirect Effect of Radiation by reducing DNA damage and inhibiting Fas mediated apoptotic pathway in Coculture System. Neurochem Res. 40, 1644–1654 (2015)CrossRefPubMed Y. Saeed et al., Astroglial U87 cells protect neuronal SH-SY5Y cells from Indirect Effect of Radiation by reducing DNA damage and inhibiting Fas mediated apoptotic pathway in Coculture System. Neurochem Res. 40, 1644–1654 (2015)CrossRefPubMed
276.
go back to reference E.H. Ahn et al., PEP-1-PEA-15 protects against toxin-induced neuronal damage in a mouse model of Parkinson’s disease. Biochim. Biophys. Acta. 1840, 1686–1700 (2014)CrossRefPubMed E.H. Ahn et al., PEP-1-PEA-15 protects against toxin-induced neuronal damage in a mouse model of Parkinson’s disease. Biochim. Biophys. Acta. 1840, 1686–1700 (2014)CrossRefPubMed
277.
go back to reference M.J. García-Fuster et al., FADD adaptor and PEA-15/ERK1/2 partners in major depression and schizophrenia postmortem brains: basal contents and effects of psychotropic treatments. Neuroscience. 277, 541–551 (2014)CrossRefPubMed M.J. García-Fuster et al., FADD adaptor and PEA-15/ERK1/2 partners in major depression and schizophrenia postmortem brains: basal contents and effects of psychotropic treatments. Neuroscience. 277, 541–551 (2014)CrossRefPubMed
278.
go back to reference E. Taoufik et al., FLIP(L) protects neurons against in vivo ischemia and in vitro glucose deprivation-induced cell death. J. Neurosci. 27, 6633–6646 (2007)PubMedCentralCrossRefPubMed E. Taoufik et al., FLIP(L) protects neurons against in vivo ischemia and in vitro glucose deprivation-induced cell death. J. Neurosci. 27, 6633–6646 (2007)PubMedCentralCrossRefPubMed
279.
go back to reference E.M. Graham et al., Neonatal mice lacking functional Fas death receptors are resistant to hypoxic-ischemic brain injury. Neurobiol. Dis. 17, 89–98 (2004)CrossRefPubMed E.M. Graham et al., Neonatal mice lacking functional Fas death receptors are resistant to hypoxic-ischemic brain injury. Neurobiol. Dis. 17, 89–98 (2004)CrossRefPubMed
280.
go back to reference A.R. Davis, G. Lotocki, A.E. Marcillo, W.D. Dietrich, R.W. Keane, FasL, Fas, and death-inducing signaling complex (DISC) proteins are recruited to membrane rafts after spinal cord injury. J. Neurotrauma. 24, 823–834 (2007)CrossRefPubMed A.R. Davis, G. Lotocki, A.E. Marcillo, W.D. Dietrich, R.W. Keane, FasL, Fas, and death-inducing signaling complex (DISC) proteins are recruited to membrane rafts after spinal cord injury. J. Neurotrauma. 24, 823–834 (2007)CrossRefPubMed
281.
go back to reference C.P. Beier et al., FasL (CD95L/APO-1L) resistance of neurons mediated by Phosphatidylinositol 3-Kinase-Akt/Protein kinase B-Dependent expression of Lifeguard/Neuronal membrane protein 35. J. Neurosci. 25, 6765–6774 (2005)PubMedCentralCrossRefPubMed C.P. Beier et al., FasL (CD95L/APO-1L) resistance of neurons mediated by Phosphatidylinositol 3-Kinase-Akt/Protein kinase B-Dependent expression of Lifeguard/Neuronal membrane protein 35. J. Neurosci. 25, 6765–6774 (2005)PubMedCentralCrossRefPubMed
282.
go back to reference Y. Qu et al., MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain. Exp. Neurol. 279, 223–231 (2016)CrossRefPubMed Y. Qu et al., MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain. Exp. Neurol. 279, 223–231 (2016)CrossRefPubMed
283.
go back to reference M.F. Segura et al., The long form of Fas apoptotic inhibitory molecule is expressed specifically in neurons and protects them against death receptor-triggered apoptosis. J. Neurosci. 27, 11228–11241 (2007)PubMedCentralCrossRefPubMed M.F. Segura et al., The long form of Fas apoptotic inhibitory molecule is expressed specifically in neurons and protects them against death receptor-triggered apoptosis. J. Neurosci. 27, 11228–11241 (2007)PubMedCentralCrossRefPubMed
284.
go back to reference A.D. Kovac et al., Comparison of neuronal density and subfield sizes in the hippocampus of CD95L-deficient (gld), CD95-deficient (lpr) and nondeficient mice. Eur. J. Neurosci. 16, 159–163 (2002)CrossRefPubMed A.D. Kovac et al., Comparison of neuronal density and subfield sizes in the hippocampus of CD95L-deficient (gld), CD95-deficient (lpr) and nondeficient mice. Eur. J. Neurosci. 16, 159–163 (2002)CrossRefPubMed
285.
go back to reference M. Bette, O. Kaut, M.K.-H. Schäfer, E. Weihe, Constitutive expression of p55TNFR mRNA and mitogen-specific up-regulation of TNF alpha and p75TNFR mRNA in mouse brain. J. Comp. Neurol. 465, 417–430 (2003)CrossRefPubMed M. Bette, O. Kaut, M.K.-H. Schäfer, E. Weihe, Constitutive expression of p55TNFR mRNA and mitogen-specific up-regulation of TNF alpha and p75TNFR mRNA in mouse brain. J. Comp. Neurol. 465, 417–430 (2003)CrossRefPubMed
286.
go back to reference S. Nadeau, S. Rivest, Regulation of the gene encoding tumor necrosis factor alpha (TNF-alpha) in the rat brain and pituitary in response in different models of systemic immune challenge. J. Neuropathol. Exp. Neurol. 58, 61–77 (1999)CrossRefPubMed S. Nadeau, S. Rivest, Regulation of the gene encoding tumor necrosis factor alpha (TNF-alpha) in the rat brain and pituitary in response in different models of systemic immune challenge. J. Neuropathol. Exp. Neurol. 58, 61–77 (1999)CrossRefPubMed
287.
go back to reference R.S. Moubarak et al., FAIM-L is an IAP-binding protein that inhibits XIAP ubiquitinylation and protects from Fas-induced apoptosis. J. Neurosci. 33, 19262–19275 (2013)PubMedCentralCrossRefPubMed R.S. Moubarak et al., FAIM-L is an IAP-binding protein that inhibits XIAP ubiquitinylation and protects from Fas-induced apoptosis. J. Neurosci. 33, 19262–19275 (2013)PubMedCentralCrossRefPubMed
288.
go back to reference R. Martínez-Mármol et al., FAIM-L regulation of XIAP degradation modulates synaptic long-term Depression and Axon Degeneration. Sci. Rep. 6, 35775 (2016)PubMedCentralCrossRefPubMed R. Martínez-Mármol et al., FAIM-L regulation of XIAP degradation modulates synaptic long-term Depression and Axon Degeneration. Sci. Rep. 6, 35775 (2016)PubMedCentralCrossRefPubMed
289.
go back to reference L. Planells-Ferrer et al., Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J. Neurochem. 139, 11–21 (2016)CrossRefPubMed L. Planells-Ferrer et al., Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J. Neurochem. 139, 11–21 (2016)CrossRefPubMed
290.
go back to reference P. Carriba, J.X. Comella, Amyloid Beta, TNFα and FAIM-L; approaching new therapeutic strategies for AD. Front. Neurol. 5, 1415641 (2014) P. Carriba, J.X. Comella, Amyloid Beta, TNFα and FAIM-L; approaching new therapeutic strategies for AD. Front. Neurol. 5, 1415641 (2014)
291.
go back to reference P. Carriba et al., Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death. Cell. Death Dis. 6, e1639 (2015)PubMedCentralCrossRefPubMed P. Carriba et al., Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death. Cell. Death Dis. 6, e1639 (2015)PubMedCentralCrossRefPubMed
292.
go back to reference A.J. Bruce et al., Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat. Med. 2, 788–794 (1996)CrossRefPubMed A.J. Bruce et al., Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat. Med. 2, 788–794 (1996)CrossRefPubMed
293.
go back to reference S.W. Barger et al., Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2 + accumulation. PNAS. 92, 9328–9332 (1995)PubMedCentralCrossRefPubMed S.W. Barger et al., Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2 + accumulation. PNAS. 92, 9328–9332 (1995)PubMedCentralCrossRefPubMed
294.
go back to reference B. Cheng, S. Christakos, M.P. Mattson, Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron. 12, 139–153 (1994)CrossRefPubMed B. Cheng, S. Christakos, M.P. Mattson, Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron. 12, 139–153 (1994)CrossRefPubMed
295.
go back to reference M. Emmanouil et al., Neuronal IκB kinase β protects mice from autoimmune encephalomyelitis by mediating neuroprotective and immunosuppressive effects in the Central Nervous System. J. Immunol. 183, 7877–7889 (2009)CrossRefPubMed M. Emmanouil et al., Neuronal IκB kinase β protects mice from autoimmune encephalomyelitis by mediating neuroprotective and immunosuppressive effects in the Central Nervous System. J. Immunol. 183, 7877–7889 (2009)CrossRefPubMed
296.
go back to reference X. Su et al., Necrostatin-1 ameliorates Intracerebral Hemorrhage-Induced Brain Injury in mice through inhibiting RIP1/RIP3 pathway. Neurochem Res. 40, 643–650 (2015)CrossRefPubMed X. Su et al., Necrostatin-1 ameliorates Intracerebral Hemorrhage-Induced Brain Injury in mice through inhibiting RIP1/RIP3 pathway. Neurochem Res. 40, 643–650 (2015)CrossRefPubMed
299.
go back to reference J. Dörr et al., Lack of Tumor Necrosis factor-related apoptosis-inducing ligand but Presence of its receptors in the human brain. J. Neurosci. 22, RC209–RC209 (2002)PubMedCentralCrossRefPubMed J. Dörr et al., Lack of Tumor Necrosis factor-related apoptosis-inducing ligand but Presence of its receptors in the human brain. J. Neurosci. 22, RC209–RC209 (2002)PubMedCentralCrossRefPubMed
300.
go back to reference D.C. Spierings et al., Tissue distribution of the death ligand TRAIL and its receptors. J. Histochem. Cytochem. 52, 821–831 (2004)CrossRefPubMed D.C. Spierings et al., Tissue distribution of the death ligand TRAIL and its receptors. J. Histochem. Cytochem. 52, 821–831 (2004)CrossRefPubMed
301.
go back to reference R. Nitsch et al., Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet. 356, 827–828 (2000)CrossRefPubMed R. Nitsch et al., Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet. 356, 827–828 (2000)CrossRefPubMed
302.
go back to reference L.A. Ryan et al., TNF-related apoptosis-inducing ligand mediates human neuronal apoptosis: links to HIV-1-associated dementia. J. Neuroimmunol. 148, 127–139 (2004)CrossRefPubMed L.A. Ryan et al., TNF-related apoptosis-inducing ligand mediates human neuronal apoptosis: links to HIV-1-associated dementia. J. Neuroimmunol. 148, 127–139 (2004)CrossRefPubMed
303.
go back to reference A. Kichev et al., Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation. J. Biol. Chem. 289, 9430–9439 (2014)PubMedCentralCrossRefPubMed A. Kichev et al., Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation. J. Biol. Chem. 289, 9430–9439 (2014)PubMedCentralCrossRefPubMed
304.
go back to reference J. Dörr et al., Tumor-necrosis-factor-related apoptosis-inducing-ligand (TRAIL)-mediated death of neurons in living human brain tissue is inhibited by flupirtine-maleate. J. Neuroimmunol. 167, 204–209 (2005)CrossRefPubMed J. Dörr et al., Tumor-necrosis-factor-related apoptosis-inducing-ligand (TRAIL)-mediated death of neurons in living human brain tissue is inhibited by flupirtine-maleate. J. Neuroimmunol. 167, 204–209 (2005)CrossRefPubMed
305.
go back to reference Y. Huang, N. Erdmann, H. Peng, Y. Zhao, J. Zheng, The role of TNF related apoptosis-inducing ligand in neurodegenerative diseases. Cell. Mol. Immunol. 2, 113–122 (2005)PubMed Y. Huang, N. Erdmann, H. Peng, Y. Zhao, J. Zheng, The role of TNF related apoptosis-inducing ligand in neurodegenerative diseases. Cell. Mol. Immunol. 2, 113–122 (2005)PubMed
306.
go back to reference C. Mc Guire, R. Beyaert, G. van Loo, Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci. 34, 619–628 (2011)CrossRefPubMed C. Mc Guire, R. Beyaert, G. van Loo, Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci. 34, 619–628 (2011)CrossRefPubMed
307.
go back to reference G.D. Benedetto et al., The Proinflammatory Cytokine GITRL contributes to TRAIL-mediated neurotoxicity in the HCN-2 human neuronal cell line. Curr. Alzheimer Res. 14, 1090–1101 (2017)CrossRefPubMed G.D. Benedetto et al., The Proinflammatory Cytokine GITRL contributes to TRAIL-mediated neurotoxicity in the HCN-2 human neuronal cell line. Curr. Alzheimer Res. 14, 1090–1101 (2017)CrossRefPubMed
308.
go back to reference M. Cui et al., Blocking TRAIL-DR5 signaling with soluble DR5 reduces delayed neuronal damage after transient global cerebral ischemia. Neurobiol. Dis. 39, 138–147 (2010)CrossRefPubMed M. Cui et al., Blocking TRAIL-DR5 signaling with soluble DR5 reduces delayed neuronal damage after transient global cerebral ischemia. Neurobiol. Dis. 39, 138–147 (2010)CrossRefPubMed
309.
go back to reference O. Aktas, U. Schulze-Topphoff, F. Zipp, The role of TRAIL/TRAIL receptors in central nervous system pathology. Front. Biosci. 12, 2912–2921 (2007)CrossRefPubMed O. Aktas, U. Schulze-Topphoff, F. Zipp, The role of TRAIL/TRAIL receptors in central nervous system pathology. Front. Biosci. 12, 2912–2921 (2007)CrossRefPubMed
310.
go back to reference O. Aktas et al., Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron. 46, 421–432 (2005)CrossRefPubMed O. Aktas et al., Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron. 46, 421–432 (2005)CrossRefPubMed
312.
go back to reference Y. Miura, Y. Koyanagi, H. Mizusawa, TNF-related apoptosis-inducing ligand (TRAIL) induces neuronal apoptosis in HIV-encephalopathy. J. Med. Dent. Sci. 50, 17–25 (2003)PubMed Y. Miura, Y. Koyanagi, H. Mizusawa, TNF-related apoptosis-inducing ligand (TRAIL) induces neuronal apoptosis in HIV-encephalopathy. J. Med. Dent. Sci. 50, 17–25 (2003)PubMed
313.
go back to reference D.T. Yew, W. Ping Li, W., W.K. Liu, Fas and activated caspase 8 in normal, Alzheimer and multiple infarct brains. Neurosci. Lett. 367, 113–117 (2004)CrossRefPubMed D.T. Yew, W. Ping Li, W., W.K. Liu, Fas and activated caspase 8 in normal, Alzheimer and multiple infarct brains. Neurosci. Lett. 367, 113–117 (2004)CrossRefPubMed
314.
go back to reference K. Wosik, B. Becher, A. Ezman, J. Nalbantoglu, J.P. Antel, Caspase 8 expression and signaling in Fas injury–resistant human fetal astrocytes. Glia. 33, 217–224 (2001)CrossRefPubMed K. Wosik, B. Becher, A. Ezman, J. Nalbantoglu, J.P. Antel, Caspase 8 expression and signaling in Fas injury–resistant human fetal astrocytes. Glia. 33, 217–224 (2001)CrossRefPubMed
315.
go back to reference O. Barca, C. Carneiro, J.A. Costoya, R.M. Señarís, V.M. Arce, Resistance of neonatal primary astrocytes against Fas-induced apoptosis depends on silencing of caspase 8. Neurosci. Lett. 479, 206–210 (2010)CrossRefPubMed O. Barca, C. Carneiro, J.A. Costoya, R.M. Señarís, V.M. Arce, Resistance of neonatal primary astrocytes against Fas-induced apoptosis depends on silencing of caspase 8. Neurosci. Lett. 479, 206–210 (2010)CrossRefPubMed
316.
go back to reference R.N. Aravalli, S. Hu, T.N. Rowen, G. Gekker, J.R. Lokensgard, Differential apoptotic signaling in primary glial cells infected with herpes simplex virus 1. J. Neurovirol. 12, 501–510 (2006)CrossRefPubMed R.N. Aravalli, S. Hu, T.N. Rowen, G. Gekker, J.R. Lokensgard, Differential apoptotic signaling in primary glial cells infected with herpes simplex virus 1. J. Neurovirol. 12, 501–510 (2006)CrossRefPubMed
318.
go back to reference I. Bechmann et al., Astrocyte-induced T cell elimination is CD95 ligand dependent. J. Neuroimmunol. 132, 60–65 (2002)CrossRefPubMed I. Bechmann et al., Astrocyte-induced T cell elimination is CD95 ligand dependent. J. Neuroimmunol. 132, 60–65 (2002)CrossRefPubMed
319.
go back to reference J.S. Hunt, D. Vassmer, T.A. Ferguson, L. Miller, Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J. Immunol. 158, 4122–4128 (1997)CrossRefPubMed J.S. Hunt, D. Vassmer, T.A. Ferguson, L. Miller, Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J. Immunol. 158, 4122–4128 (1997)CrossRefPubMed
320.
go back to reference T.S. Griffith, T. Brunner, S.M. Fletcher, D.R. Green, T.A. Ferguson, Fas ligand-Induced apoptosis as a mechanism of Immune Privilege. Science. 270, 1189–1192 (1995)CrossRefPubMed T.S. Griffith, T. Brunner, S.M. Fletcher, D.R. Green, T.A. Ferguson, Fas ligand-Induced apoptosis as a mechanism of Immune Privilege. Science. 270, 1189–1192 (1995)CrossRefPubMed
321.
go back to reference D. Bellgrau et al., A role for CD95 ligand in preventing graft rejection. Nature. 377, 630–632 (1995)CrossRefPubMed D. Bellgrau et al., A role for CD95 ligand in preventing graft rejection. Nature. 377, 630–632 (1995)CrossRefPubMed
322.
go back to reference F. Giuliani, C.G. Goodyer, J.P. Antel, V.W. Yong, Vulnerability of human neurons to T cell-mediated cytotoxicity. J. Immunol. 171, 368–379 (2003)CrossRefPubMed F. Giuliani, C.G. Goodyer, J.P. Antel, V.W. Yong, Vulnerability of human neurons to T cell-mediated cytotoxicity. J. Immunol. 171, 368–379 (2003)CrossRefPubMed
323.
go back to reference B. Becher, S.D. D’Souza, A.B. Troutt, J.P. Antel, Fas expression on human fetal astrocytes without susceptibility to fas-mediated cytotoxicity. Neuroscience. 84, 627–634 (1998)CrossRefPubMed B. Becher, S.D. D’Souza, A.B. Troutt, J.P. Antel, Fas expression on human fetal astrocytes without susceptibility to fas-mediated cytotoxicity. Neuroscience. 84, 627–634 (1998)CrossRefPubMed
324.
go back to reference P. Saas et al., A self-defence mechanism of astrocytes against Fas-mediated death involving interleukin-8 and CXCR2. Neuroreport 13, 1921–1924 (2002) P. Saas et al., A self-defence mechanism of astrocytes against Fas-mediated death involving interleukin-8 and CXCR2. Neuroreport 13, 1921–1924 (2002)
325.
go back to reference D.J.J. Waugh, C. Wilson, The Interleukin-8 pathway in Cancer. Clin. Cancer Res. 14, 6735–6741 (2008)CrossRefPubMed D.J.J. Waugh, C. Wilson, The Interleukin-8 pathway in Cancer. Clin. Cancer Res. 14, 6735–6741 (2008)CrossRefPubMed
326.
go back to reference C. Choi et al., Fas ligand and Fas are expressed constitutively in human astrocytes and the expression increases with IL-1, IL-6, TNF-alpha, or IFN-gamma. J. Immunol. 162, 1889–1895 (1999)CrossRefPubMed C. Choi et al., Fas ligand and Fas are expressed constitutively in human astrocytes and the expression increases with IL-1, IL-6, TNF-alpha, or IFN-gamma. J. Immunol. 162, 1889–1895 (1999)CrossRefPubMed
327.
go back to reference S.M. de la Monte, Y.K. Sohn, J.R. Wands, Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J. Neurol. Sci. 152, 73–83 (1997)CrossRefPubMed S.M. de la Monte, Y.K. Sohn, J.R. Wands, Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J. Neurol. Sci. 152, 73–83 (1997)CrossRefPubMed
328.
go back to reference J. Falsig, M. Latta, M. Leist, Defined inflammatory states in astrocyte cultures: correlation with susceptibility towards CD95-driven apoptosis. J. Neurochem. 88, 181–193 (2004)CrossRefPubMed J. Falsig, M. Latta, M. Leist, Defined inflammatory states in astrocyte cultures: correlation with susceptibility towards CD95-driven apoptosis. J. Neurochem. 88, 181–193 (2004)CrossRefPubMed
329.
go back to reference B. Vernet-der Garabedian, P. Derer, Y. Bailly, J. Mariani, Innate immunity in the Grid2Lc/+mouse model of cerebellar neurodegeneration: glial CD95/CD95L plays a non-apoptotic role in persistent neuron loss-associated inflammatory reactions in the cerebellum. J. Neuroinflamm. 10, 829 (2013)CrossRef B. Vernet-der Garabedian, P. Derer, Y. Bailly, J. Mariani, Innate immunity in the Grid2Lc/+mouse model of cerebellar neurodegeneration: glial CD95/CD95L plays a non-apoptotic role in persistent neuron loss-associated inflammatory reactions in the cerebellum. J. Neuroinflamm. 10, 829 (2013)CrossRef
330.
go back to reference L.E. Clarke et al., Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci. U.S.A. 115, E1896–E1905 (2018) L.E. Clarke et al., Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci. U.S.A. 115, E1896–E1905 (2018)
331.
go back to reference P. Saas et al., CD95 (Fas/Apo-1) as a receptor governing astrocyte apoptotic or inflammatory responses: a key role in brain inflammation? J. Immunol. 162, 2326–2333 (1999)CrossRefPubMed P. Saas et al., CD95 (Fas/Apo-1) as a receptor governing astrocyte apoptotic or inflammatory responses: a key role in brain inflammation? J. Immunol. 162, 2326–2333 (1999)CrossRefPubMed
332.
go back to reference M. Krzyzowska, J. Cymerys, A. Winnicka, M. Niemiałtowski, Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain. Virus Res. 115, 141–149 (2006)CrossRefPubMed M. Krzyzowska, J. Cymerys, A. Winnicka, M. Niemiałtowski, Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain. Virus Res. 115, 141–149 (2006)CrossRefPubMed
333.
go back to reference M.D. Siegelin, T. Gaiser, A. Habel, Y. Siegelin, Myricetin sensitizes malignant glioma cells to TRAIL-mediated apoptosis by down-regulation of the short isoform of FLIP and bcl-2. Cancer Lett. 283, 230–238 (2009)CrossRefPubMed M.D. Siegelin, T. Gaiser, A. Habel, Y. Siegelin, Myricetin sensitizes malignant glioma cells to TRAIL-mediated apoptosis by down-regulation of the short isoform of FLIP and bcl-2. Cancer Lett. 283, 230–238 (2009)CrossRefPubMed
334.
go back to reference E. Riddick, S. Evans, J. Rousch, E. Gwebu, H.N. Banerjee, Identification of death receptors DR4 and DR5 in HTB-12 astrocytoma cell lines and determination of TRAIL sensitivity. J. Solid Tumors. 3, 20–26 (2013)PubMedCentralCrossRefPubMed E. Riddick, S. Evans, J. Rousch, E. Gwebu, H.N. Banerjee, Identification of death receptors DR4 and DR5 in HTB-12 astrocytoma cell lines and determination of TRAIL sensitivity. J. Solid Tumors. 3, 20–26 (2013)PubMedCentralCrossRefPubMed
335.
go back to reference D. Uberti et al., TRAIL is expressed in the brain cells of Alzheimer’s disease patients. NeuroReport. 15, 579–581 (2004)CrossRefPubMed D. Uberti et al., TRAIL is expressed in the brain cells of Alzheimer’s disease patients. NeuroReport. 15, 579–581 (2004)CrossRefPubMed
336.
go back to reference G. Cantarella et al., Trail interacts redundantly with nitric oxide in rat astrocytes: potential contribution to neurodegenerative processes. J. Neuroimmunol. 182, 41–47 (2007)CrossRefPubMed G. Cantarella et al., Trail interacts redundantly with nitric oxide in rat astrocytes: potential contribution to neurodegenerative processes. J. Neuroimmunol. 182, 41–47 (2007)CrossRefPubMed
337.
go back to reference C. Li et al., Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res. 8, 67–80 (2011)CrossRefPubMed C. Li et al., Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res. 8, 67–80 (2011)CrossRefPubMed
338.
go back to reference E.H. Kim et al., Arsenic trioxide sensitizes human glioma cells, but not normal astrocytes, to TRAIL-induced apoptosis via CCAAT/enhancer-binding protein homologous protein-dependent DR5 up-regulation. Cancer Res. 68, 266–275 (2008)CrossRefPubMed E.H. Kim et al., Arsenic trioxide sensitizes human glioma cells, but not normal astrocytes, to TRAIL-induced apoptosis via CCAAT/enhancer-binding protein homologous protein-dependent DR5 up-regulation. Cancer Res. 68, 266–275 (2008)CrossRefPubMed
339.
go back to reference I.M. Germano, M. Uzzaman, R.J. Benveniste, M. Zaurova, G. Keller, Apoptosis in human glioblastoma cells produced using embryonic stem cell-derived astrocytes expressing tumor necrosis factor-related apoptosis-inducing ligand. J. Neurosurg. 105, 88–95 (2006)CrossRefPubMed I.M. Germano, M. Uzzaman, R.J. Benveniste, M. Zaurova, G. Keller, Apoptosis in human glioblastoma cells produced using embryonic stem cell-derived astrocytes expressing tumor necrosis factor-related apoptosis-inducing ligand. J. Neurosurg. 105, 88–95 (2006)CrossRefPubMed
340.
go back to reference T.R. Burton et al., BNIP3 acts as transcriptional repressor of death receptor-5 expression and prevents TRAIL-induced cell death in gliomas. Cell. Death Dis. 4, e587 (2013)PubMedCentralCrossRefPubMed T.R. Burton et al., BNIP3 acts as transcriptional repressor of death receptor-5 expression and prevents TRAIL-induced cell death in gliomas. Cell. Death Dis. 4, e587 (2013)PubMedCentralCrossRefPubMed
341.
go back to reference T.R. Burton, E.S. Henson, P. Baijal, D.D. Eisenstat, S.B. Gibson, The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: implications for glioblastoma multiforme tumor cell survival under hypoxia. Int. J. Cancer. 118, 1660–1669 (2006)PubMedCentralCrossRefPubMed T.R. Burton, E.S. Henson, P. Baijal, D.D. Eisenstat, S.B. Gibson, The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: implications for glioblastoma multiforme tumor cell survival under hypoxia. Int. J. Cancer. 118, 1660–1669 (2006)PubMedCentralCrossRefPubMed
342.
go back to reference D.M. Ashley et al., In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs. Br. J. Cancer. 99, 294–304 (2008)PubMedCentralCrossRefPubMed D.M. Ashley et al., In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs. Br. J. Cancer. 99, 294–304 (2008)PubMedCentralCrossRefPubMed
343.
go back to reference D. Kwon, K. Choi, C. Choi, E.N. Benveniste, Hydrogen peroxide enhances TRAIL-induced cell death through up-regulation of DR5 in human astrocytic cells. Biochem. Biophys. Res. Commun. 372, 870–874 (2008)CrossRefPubMed D. Kwon, K. Choi, C. Choi, E.N. Benveniste, Hydrogen peroxide enhances TRAIL-induced cell death through up-regulation of DR5 in human astrocytic cells. Biochem. Biophys. Res. Commun. 372, 870–874 (2008)CrossRefPubMed
344.
go back to reference M.D. Siegelin, T. Gaiser, Y. Siegelin, The XIAP inhibitor Embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by down-regulation of the short isoform of FLIP. Neurochem Int. 55, 423–430 (2009)CrossRefPubMed M.D. Siegelin, T. Gaiser, Y. Siegelin, The XIAP inhibitor Embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by down-regulation of the short isoform of FLIP. Neurochem Int. 55, 423–430 (2009)CrossRefPubMed
345.
go back to reference S.-R. Lee et al., Accelerated degradation of cFLIPL and sensitization of the TRAIL DISC-mediated apoptotic cascade by pinoresinol, a lignan isolated from Rubia philippinensis. Sci. Rep. 9, 13505 (2019)PubMedCentralCrossRefPubMed S.-R. Lee et al., Accelerated degradation of cFLIPL and sensitization of the TRAIL DISC-mediated apoptotic cascade by pinoresinol, a lignan isolated from Rubia philippinensis. Sci. Rep. 9, 13505 (2019)PubMedCentralCrossRefPubMed
346.
go back to reference M. Nakamura et al., APO2L/TRAIL expression in human brain tumors. Acta Neuropathol. 99, 1–6 (2000)CrossRefPubMed M. Nakamura et al., APO2L/TRAIL expression in human brain tumors. Acta Neuropathol. 99, 1–6 (2000)CrossRefPubMed
347.
go back to reference T. Khaibullin et al., Elevated levels of Proinflammatory cytokines in Cerebrospinal Fluid of multiple sclerosis patients. Front. Immunol. 8, 531 (2017)PubMedCentralCrossRefPubMed T. Khaibullin et al., Elevated levels of Proinflammatory cytokines in Cerebrospinal Fluid of multiple sclerosis patients. Front. Immunol. 8, 531 (2017)PubMedCentralCrossRefPubMed
348.
go back to reference V.A. Baldassarro, A. Marchesini, L. Giardino, L. Calzà, Differential effects of glucose deprivation on the survival of fetal versus adult neural stem cells-derived oligodendrocyte precursor cells. Glia. 68, 898–917 (2020)CrossRefPubMed V.A. Baldassarro, A. Marchesini, L. Giardino, L. Calzà, Differential effects of glucose deprivation on the survival of fetal versus adult neural stem cells-derived oligodendrocyte precursor cells. Glia. 68, 898–917 (2020)CrossRefPubMed
349.
go back to reference Y. Pang, Z. Cai, P.G. Rhodes, Effect of tumor necrosis factor-α on developing optic nerve oligodendrocytes in culture. J. Neurosci. Res. 80, 226–234 (2005)CrossRefPubMed Y. Pang, Z. Cai, P.G. Rhodes, Effect of tumor necrosis factor-α on developing optic nerve oligodendrocytes in culture. J. Neurosci. Res. 80, 226–234 (2005)CrossRefPubMed
350.
go back to reference B. Scurlock, G. Dawson, Differential responses of oligodendrocytes to tumor necrosis factor and other pro-apoptotic agents: role of ceramide in apoptosis. J. Neurosci. Res. 55, 514–522 (1999)CrossRefPubMed B. Scurlock, G. Dawson, Differential responses of oligodendrocytes to tumor necrosis factor and other pro-apoptotic agents: role of ceramide in apoptosis. J. Neurosci. Res. 55, 514–522 (1999)CrossRefPubMed
351.
go back to reference Q.-L. Cui et al., Oligodendrocyte progenitor cell susceptibility to injury in multiple sclerosis. Am. J. Pathol. 183, 516–525 (2013)CrossRefPubMed Q.-L. Cui et al., Oligodendrocyte progenitor cell susceptibility to injury in multiple sclerosis. Am. J. Pathol. 183, 516–525 (2013)CrossRefPubMed
352.
go back to reference M. Horiuchi, A. Itoh, D. Pleasure, T. Itoh, MEK-ERK signaling is involved in interferon-gamma-induced death of oligodendroglial progenitor cells. J. Biol. Chem. 281, 20095–20106 (2006)CrossRefPubMed M. Horiuchi, A. Itoh, D. Pleasure, T. Itoh, MEK-ERK signaling is involved in interferon-gamma-induced death of oligodendroglial progenitor cells. J. Biol. Chem. 281, 20095–20106 (2006)CrossRefPubMed
353.
go back to reference T. Andrews, P. Zhang, N.R. Bhat, TNFalpha potentiates IFNgamma-induced cell death in oligodendrocyte progenitors. J. Neurosci. Res. 54, 574–583 (1998)CrossRefPubMed T. Andrews, P. Zhang, N.R. Bhat, TNFalpha potentiates IFNgamma-induced cell death in oligodendrocyte progenitors. J. Neurosci. Res. 54, 574–583 (1998)CrossRefPubMed
354.
go back to reference B. Feldhaus, I.D. Dietzel, R. Heumann, R. Berger, Effects of interferon-gamma and tumor necrosis factor-alpha on survival and differentiation of oligodendrocyte progenitors. J. Soc. Gynecol. Investig. 11, 89–96 (2004)CrossRefPubMed B. Feldhaus, I.D. Dietzel, R. Heumann, R. Berger, Effects of interferon-gamma and tumor necrosis factor-alpha on survival and differentiation of oligodendrocyte progenitors. J. Soc. Gynecol. Investig. 11, 89–96 (2004)CrossRefPubMed
355.
go back to reference V. Ruggiero, J. Tavernier, W. Fiers, C. Baglioni, Induction of the synthesis of tumor necrosis factor receptors by interferon-gamma. J. Immunol. 136, 2445–2450 (1986)CrossRefPubMed V. Ruggiero, J. Tavernier, W. Fiers, C. Baglioni, Induction of the synthesis of tumor necrosis factor receptors by interferon-gamma. J. Immunol. 136, 2445–2450 (1986)CrossRefPubMed
356.
go back to reference L.-J. Chew, W.C. King, A. Kennedy, V. Gallo, Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia. 52, 127–143 (2005)CrossRefPubMed L.-J. Chew, W.C. King, A. Kennedy, V. Gallo, Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia. 52, 127–143 (2005)CrossRefPubMed
357.
go back to reference Y. Pang, B. Zheng, L.-W. Fan, P.G. Rhodes, Z. Cai, IGF-1 protects oligodendrocyte progenitors against TNFalpha-induced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway. Glia. 55, 1099–1107 (2007)CrossRefPubMed Y. Pang, B. Zheng, L.-W. Fan, P.G. Rhodes, Z. Cai, IGF-1 protects oligodendrocyte progenitors against TNFalpha-induced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway. Glia. 55, 1099–1107 (2007)CrossRefPubMed
358.
go back to reference H. Dong et al., Enhanced oligodendrocyte survival after spinal cord injury in bax-deficient mice and mice with delayed wallerian degeneration. J. Neurosci. 23, 8682–8691 (2003)PubMedCentralCrossRefPubMed H. Dong et al., Enhanced oligodendrocyte survival after spinal cord injury in bax-deficient mice and mice with delayed wallerian degeneration. J. Neurosci. 23, 8682–8691 (2003)PubMedCentralCrossRefPubMed
359.
go back to reference H.A. Arnett et al., TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat. Neurosci. 4, 1116–1122 (2001)CrossRefPubMed H.A. Arnett et al., TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat. Neurosci. 4, 1116–1122 (2001)CrossRefPubMed
360.
go back to reference K. Selmaj, C.S. Raine, A.H. Cross, Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann. Neurol. 30, 694–700 (1991)CrossRefPubMed K. Selmaj, C.S. Raine, A.H. Cross, Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann. Neurol. 30, 694–700 (1991)CrossRefPubMed
361.
go back to reference K.W. Selmaj, C.S. Raine, Experimental autoimmune encephalomyelitis: immunotherapy with anti-tumor necrosis factor antibodies and soluble tumor necrosis factor receptors. Neurology. 45, S44–49 (1995)CrossRefPubMed K.W. Selmaj, C.S. Raine, Experimental autoimmune encephalomyelitis: immunotherapy with anti-tumor necrosis factor antibodies and soluble tumor necrosis factor receptors. Neurology. 45, S44–49 (1995)CrossRefPubMed
362.
go back to reference M. Tanno, I. Nakamura, S. Kobayashi, K. Kurihara, K. Ito, New-onset demyelination induced by infliximab therapy in two rheumatoid arthritis patients. Clin. Rheumatol. 25, 929–933 (2006)CrossRefPubMed M. Tanno, I. Nakamura, S. Kobayashi, K. Kurihara, K. Ito, New-onset demyelination induced by infliximab therapy in two rheumatoid arthritis patients. Clin. Rheumatol. 25, 929–933 (2006)CrossRefPubMed
363.
go back to reference N. Mohan et al., Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides. Arthritis Rheum. 44, 2862–2869 (2001)CrossRefPubMed N. Mohan et al., Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides. Arthritis Rheum. 44, 2862–2869 (2001)CrossRefPubMed
364.
go back to reference O. Maier, R. Fischer, C. Agresti, K. Pfizenmaier, TNF receptor 2 protects oligodendrocyte progenitor cells against oxidative stress. Biochem. Biophys. Res. Commun. 440, 336–341 (2013)CrossRefPubMed O. Maier, R. Fischer, C. Agresti, K. Pfizenmaier, TNF receptor 2 protects oligodendrocyte progenitor cells against oxidative stress. Biochem. Biophys. Res. Commun. 440, 336–341 (2013)CrossRefPubMed
366.
go back to reference P.M. Madsen et al., Oligodendroglial TNFR2 mediates membrane TNF-Dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination. J. Neurosci. 36, 5128–5143 (2016)PubMedCentralCrossRefPubMed P.M. Madsen et al., Oligodendroglial TNFR2 mediates membrane TNF-Dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination. J. Neurosci. 36, 5128–5143 (2016)PubMedCentralCrossRefPubMed
367.
go back to reference P.M. Madsen et al., Oligodendrocytes modulate the immune-inflammatory response in EAE via TNFR2 signaling. Brain. Behav. Immun. 84, 132–146 (2020)CrossRefPubMed P.M. Madsen et al., Oligodendrocytes modulate the immune-inflammatory response in EAE via TNFR2 signaling. Brain. Behav. Immun. 84, 132–146 (2020)CrossRefPubMed
368.
go back to reference M.-L. Xiao, J.-Q. Liu, C. Chen, [Effect of tumor necrosis factor-related apoptosis-inducing ligand on developing human oligodendrocytes in culture]. Mol. Biol. (Mosk). 48, 963–969 (2014)CrossRefPubMed M.-L. Xiao, J.-Q. Liu, C. Chen, [Effect of tumor necrosis factor-related apoptosis-inducing ligand on developing human oligodendrocytes in culture]. Mol. Biol. (Mosk). 48, 963–969 (2014)CrossRefPubMed
369.
go back to reference A. Jurewicz, M. Matysiak, S. Andrzejak, K. Selmaj, TRAIL-induced death of human adult oligodendrocytes is mediated by JNK pathway. Glia. 53, 158–166 (2006)CrossRefPubMed A. Jurewicz, M. Matysiak, S. Andrzejak, K. Selmaj, TRAIL-induced death of human adult oligodendrocytes is mediated by JNK pathway. Glia. 53, 158–166 (2006)CrossRefPubMed
370.
go back to reference M. Matysiak, A. Jurewicz, D. Jaskolski, K. Selmaj, TRAIL induces death of human oligodendrocytes isolated from adult brain. Brain. 125, 2469–2480 (2002)CrossRefPubMed M. Matysiak, A. Jurewicz, D. Jaskolski, K. Selmaj, TRAIL induces death of human oligodendrocytes isolated from adult brain. Brain. 125, 2469–2480 (2002)CrossRefPubMed
371.
go back to reference J. Watzlawik, A.E. Warrington, M. Rodriguez, Importance of oligodendrocyte protection, BBB breakdown and inflammation for remyelination. Expert Rev. Neurother. 10, 441–457 (2010)PubMedCentralCrossRefPubMed J. Watzlawik, A.E. Warrington, M. Rodriguez, Importance of oligodendrocyte protection, BBB breakdown and inflammation for remyelination. Expert Rev. Neurother. 10, 441–457 (2010)PubMedCentralCrossRefPubMed
372.
go back to reference K. Wosik et al., Oligodendrocyte injury in multiple sclerosis: a role for p53. J. Neurochem. 85, 635–644 (2003)CrossRefPubMed K. Wosik et al., Oligodendrocyte injury in multiple sclerosis: a role for p53. J. Neurochem. 85, 635–644 (2003)CrossRefPubMed
374.
go back to reference Y. Zhang et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014)PubMedCentralCrossRefPubMed Y. Zhang et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014)PubMedCentralCrossRefPubMed
375.
go back to reference W. Li et al., Apoptotic death following Fas activation in human oligodendrocyte hybrid cultures. J. Neurosci. Res. 69, 189–196 (2002)CrossRefPubMed W. Li et al., Apoptotic death following Fas activation in human oligodendrocyte hybrid cultures. J. Neurosci. Res. 69, 189–196 (2002)CrossRefPubMed
376.
go back to reference S. Pouly, B. Becher, M. Blain, J.P. Antel, Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J. Neuropathol. Exp. Neurol. 59, 280–286 (2000)CrossRefPubMed S. Pouly, B. Becher, M. Blain, J.P. Antel, Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J. Neuropathol. Exp. Neurol. 59, 280–286 (2000)CrossRefPubMed
377.
go back to reference H. Wang, J. Wu, 17β-estradiol suppresses hyperoxia-induced apoptosis of oligodendrocytes through paired-immunoglobulin-like receptor B. Mol. Med. Rep. 13, 2892–2898 (2016)CrossRefPubMed H. Wang, J. Wu, 17β-estradiol suppresses hyperoxia-induced apoptosis of oligodendrocytes through paired-immunoglobulin-like receptor B. Mol. Med. Rep. 13, 2892–2898 (2016)CrossRefPubMed
378.
379.
go back to reference C. Hao et al., Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. Cancer Res. 61, 1162–1170 (2001)PubMed C. Hao et al., Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. Cancer Res. 61, 1162–1170 (2001)PubMed
380.
go back to reference H.H. Cheung, D.J. Mahoney, E.C. LaCasse, R.G. Korneluk, Down-regulation of c-FLIP enhances death of Cancer cells by Smac mimetic compound. Cancer Res. 69, 7729–7738 (2009)CrossRefPubMed H.H. Cheung, D.J. Mahoney, E.C. LaCasse, R.G. Korneluk, Down-regulation of c-FLIP enhances death of Cancer cells by Smac mimetic compound. Cancer Res. 69, 7729–7738 (2009)CrossRefPubMed
381.
go back to reference G. Fianco et al., Caspase-8 contributes to angiogenesis and chemotherapy resistance in glioblastoma. eLife 6 G. Fianco et al., Caspase-8 contributes to angiogenesis and chemotherapy resistance in glioblastoma. eLife 6
382.
go back to reference H.S. Jang, S. Lal, J.A. Greenwood, Calpain 2 is required for Glioblastoma Cell Invasion: regulation of Matrix Metalloproteinase 2. Neurochem Res. 35, 1796–1804 (2010)PubMedCentralCrossRefPubMed H.S. Jang, S. Lal, J.A. Greenwood, Calpain 2 is required for Glioblastoma Cell Invasion: regulation of Matrix Metalloproteinase 2. Neurochem Res. 35, 1796–1804 (2010)PubMedCentralCrossRefPubMed
383.
go back to reference M.N. Stillger et al., Changes in calpain-2 expression during glioblastoma progression predisposes tumor cells to temozolomide resistance by minimizing DNA damage and p53-dependent apoptosis. Cancer Cell Int. 23, 49 (2023)PubMedCentralCrossRefPubMed M.N. Stillger et al., Changes in calpain-2 expression during glioblastoma progression predisposes tumor cells to temozolomide resistance by minimizing DNA damage and p53-dependent apoptosis. Cancer Cell Int. 23, 49 (2023)PubMedCentralCrossRefPubMed
384.
go back to reference D. Moretti, Del B. Bello, G. Allavena, E. Maellaro, Calpains and cancer: friends or enemies? Arch. Biochem. Biophys. 564, 26–36 (2014)CrossRefPubMed D. Moretti, Del B. Bello, G. Allavena, E. Maellaro, Calpains and cancer: friends or enemies? Arch. Biochem. Biophys. 564, 26–36 (2014)CrossRefPubMed
385.
go back to reference S.J. Storr, N.O. Carragher, M.C. Frame, T. Parr, S.G. Martin, The calpain system and cancer. Nat. Rev. Cancer. 11, 364–374 (2011)CrossRefPubMed S.J. Storr, N.O. Carragher, M.C. Frame, T. Parr, S.G. Martin, The calpain system and cancer. Nat. Rev. Cancer. 11, 364–374 (2011)CrossRefPubMed
386.
go back to reference F.P. Saggioro et al., Fas, FasL, and cleaved caspases 8 and 3 in glioblastomas: a tissue microarray-based study. Pathol. Res. Pract. 210, 267–273 (2014)CrossRefPubMed F.P. Saggioro et al., Fas, FasL, and cleaved caspases 8 and 3 in glioblastomas: a tissue microarray-based study. Pathol. Res. Pract. 210, 267–273 (2014)CrossRefPubMed
387.
go back to reference H.-B. Wang, T. Li, D.-Z. Ma, Y.-X. Ji, H. Zhi, Overexpression of FADD and Caspase-8 inhibits proliferation and promotes apoptosis of human glioblastoma cells. Biomed. Pharmacother. 93, 1–7 (2017)CrossRefPubMed H.-B. Wang, T. Li, D.-Z. Ma, Y.-X. Ji, H. Zhi, Overexpression of FADD and Caspase-8 inhibits proliferation and promotes apoptosis of human glioblastoma cells. Biomed. Pharmacother. 93, 1–7 (2017)CrossRefPubMed
388.
go back to reference B.B. Aggarwal, L. Schwarz, M.E. Hogan, R.F. Rando, Triple helix-forming oligodeoxyribonucleotides targeted to the human tumor necrosis factor (TNF) gene inhibit TNF production and block the TNF-dependent growth of human glioblastoma tumor cells. Cancer Res. 56, 5156–5164 (1996)PubMed B.B. Aggarwal, L. Schwarz, M.E. Hogan, R.F. Rando, Triple helix-forming oligodeoxyribonucleotides targeted to the human tumor necrosis factor (TNF) gene inhibit TNF production and block the TNF-dependent growth of human glioblastoma tumor cells. Cancer Res. 56, 5156–5164 (1996)PubMed
389.
go back to reference S. Hayashi et al., Expression of nuclear factor-kappa B, tumor necrosis factor receptor type 1, and c-Myc in human astrocytomas. Neurol. Med. Chir. (Tokyo). 41, 187–195 (2001)CrossRefPubMed S. Hayashi et al., Expression of nuclear factor-kappa B, tumor necrosis factor receptor type 1, and c-Myc in human astrocytomas. Neurol. Med. Chir. (Tokyo). 41, 187–195 (2001)CrossRefPubMed
390.
go back to reference S.A. Valdés-Rives, D. Casique-Aguirre, L. Germán-Castelán, M.A. Velasco-Velázquez, A. González-Arenas, Apoptotic Signaling Pathways in Glioblastoma and Therapeutic Implications. Biomed. Res. Int. 2017 (2017) S.A. Valdés-Rives, D. Casique-Aguirre, L. Germán-Castelán, M.A. Velasco-Velázquez, A. González-Arenas, Apoptotic Signaling Pathways in Glioblastoma and Therapeutic Implications. Biomed. Res. Int. 2017 (2017)
391.
go back to reference G. Guo et al., Primary resistance to EGFR inhibition in glioblastoma is mediated by a TNF-JNK-Axl-ERK signaling axis. Nat. Neurosci. 20, 1074–1084 (2017)PubMedCentralCrossRefPubMed G. Guo et al., Primary resistance to EGFR inhibition in glioblastoma is mediated by a TNF-JNK-Axl-ERK signaling axis. Nat. Neurosci. 20, 1074–1084 (2017)PubMedCentralCrossRefPubMed
392.
go back to reference Z. Luo, B. Wang, H. Liu, L. Shi, TNF inhibitor Pomalidomide sensitizes Glioblastoma Cells to EGFR Inhibition. Ann. Clin. Lab. Sci. 50, 474–480 (2020)PubMed Z. Luo, B. Wang, H. Liu, L. Shi, TNF inhibitor Pomalidomide sensitizes Glioblastoma Cells to EGFR Inhibition. Ann. Clin. Lab. Sci. 50, 474–480 (2020)PubMed
393.
394.
go back to reference Y. Möller et al., EGFR-Targeted TRAIL and a Smac Mimetic Synergize to overcome apoptosis resistance in KRAS Mutant Colorectal Cancer cells. PLoS One. 9, e107165 (2014)PubMedCentralCrossRefPubMed Y. Möller et al., EGFR-Targeted TRAIL and a Smac Mimetic Synergize to overcome apoptosis resistance in KRAS Mutant Colorectal Cancer cells. PLoS One. 9, e107165 (2014)PubMedCentralCrossRefPubMed
395.
go back to reference K.P.L. Bhat et al., Mesenchymal differentiation mediated by NF-κB promotes Radiation Resistance in Glioblastoma. Cancer Cell. 24, 331–346 (2013) K.P.L. Bhat et al., Mesenchymal differentiation mediated by NF-κB promotes Radiation Resistance in Glioblastoma. Cancer Cell. 24, 331–346 (2013)
396.
go back to reference C. Gratas et al., Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol. 7, 863–869 (1997)CrossRefPubMed C. Gratas et al., Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol. 7, 863–869 (1997)CrossRefPubMed
397.
go back to reference C. Choi, G.Y. Gillespie, N.J. Van Wagoner, E.N. Benveniste, Fas engagement increases expression of interleukin-6 in human glioma cells. J. Neurooncol. 56, 13–19 (2002)CrossRefPubMed C. Choi, G.Y. Gillespie, N.J. Van Wagoner, E.N. Benveniste, Fas engagement increases expression of interleukin-6 in human glioma cells. J. Neurooncol. 56, 13–19 (2002)CrossRefPubMed
398.
go back to reference M. Ichinose, J. Masuoka, T. Shiraishi, T. Mineta, K. Tabuchi, Fas ligand expression and depletion of T-cell infiltration in astrocytic tumors. Brain Tumor Pathol. 18, 37–42 (2001)CrossRefPubMed M. Ichinose, J. Masuoka, T. Shiraishi, T. Mineta, K. Tabuchi, Fas ligand expression and depletion of T-cell infiltration in astrocytic tumors. Brain Tumor Pathol. 18, 37–42 (2001)CrossRefPubMed
399.
go back to reference B. Frankel, S.L. Longo, M. Kyle, G.W. Canute, T.C. Ryken, Tumor Fas (APO-1/CD95) up-regulation results in increased apoptosis and survival times for rats with intracranial malignant gliomas. Neurosurgery 49, 168–175; discussion 175–176 (2001) B. Frankel, S.L. Longo, M. Kyle, G.W. Canute, T.C. Ryken, Tumor Fas (APO-1/CD95) up-regulation results in increased apoptosis and survival times for rats with intracranial malignant gliomas. Neurosurgery 49, 168–175; discussion 175–176 (2001)
400.
go back to reference J. Blaes et al., Inhibition of CD95/CD95L (FAS/FASLG) signaling with APG101 prevents Invasion and enhances Radiation Therapy for Glioblastoma. Mol. Cancer Res. 16, 767–776 (2018)CrossRefPubMed J. Blaes et al., Inhibition of CD95/CD95L (FAS/FASLG) signaling with APG101 prevents Invasion and enhances Radiation Therapy for Glioblastoma. Mol. Cancer Res. 16, 767–776 (2018)CrossRefPubMed
401.
go back to reference E. Ciusani et al., Fas/CD95-mediated apoptosis in human glioblastoma cells: a target for sensitisation to topoisomerase I inhibitors. Biochem. Pharmacol. 63, 881–887 (2002)CrossRefPubMed E. Ciusani et al., Fas/CD95-mediated apoptosis in human glioblastoma cells: a target for sensitisation to topoisomerase I inhibitors. Biochem. Pharmacol. 63, 881–887 (2002)CrossRefPubMed
402.
go back to reference B. Bessette et al., Decrease in Fas-induced apoptosis by the γ-secretase inhibitor is dependent on p75(NTR) in a glioblastoma cell line. Exp. Ther. Med. 3, 873–877 (2012)PubMedCentralCrossRefPubMed B. Bessette et al., Decrease in Fas-induced apoptosis by the γ-secretase inhibitor is dependent on p75(NTR) in a glioblastoma cell line. Exp. Ther. Med. 3, 873–877 (2012)PubMedCentralCrossRefPubMed
403.
go back to reference S. Han, X. Tie, L. Meng, Y. Wang, A. Wu, PMA and ionomycin induce glioblastoma cell death: activation-induced cell-death-like phenomena occur in glioma cells. PLoS One. 8, e76717 (2013)PubMedCentralCrossRefPubMed S. Han, X. Tie, L. Meng, Y. Wang, A. Wu, PMA and ionomycin induce glioblastoma cell death: activation-induced cell-death-like phenomena occur in glioma cells. PLoS One. 8, e76717 (2013)PubMedCentralCrossRefPubMed
404.
go back to reference W. Roth et al., Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res. 61, 2759–2765 (2001)PubMed W. Roth et al., Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res. 61, 2759–2765 (2001)PubMed
405.
go back to reference Y. Arakawa et al., Frequent gene amplification and overexpression of decoy receptor 3 in glioblastoma. Acta Neuropathol. 109, 294–298 (2005)CrossRefPubMed Y. Arakawa et al., Frequent gene amplification and overexpression of decoy receptor 3 in glioblastoma. Acta Neuropathol. 109, 294–298 (2005)CrossRefPubMed
406.
go back to reference G. Eisele, M. Weller, Targeting apoptosis pathways in glioblastoma. Cancer Lett. 332, 335–345 (2013)CrossRefPubMed G. Eisele, M. Weller, Targeting apoptosis pathways in glioblastoma. Cancer Lett. 332, 335–345 (2013)CrossRefPubMed
407.
go back to reference J. Bertrand et al., Cancer stem cells from human glioma cell line are resistant to Fas-induced apoptosis. Int. J. Oncol. 34, 717–727 (2009)PubMed J. Bertrand et al., Cancer stem cells from human glioma cell line are resistant to Fas-induced apoptosis. Int. J. Oncol. 34, 717–727 (2009)PubMed
408.
go back to reference M. Khan, Y. Bi, J.I. Qazi, L. Fan, H. Gao, Evodiamine sensitizes U87 glioblastoma cells to TRAIL via the death receptor pathway. Mol. Med. Rep. 11, 257–262 (2015)CrossRefPubMed M. Khan, Y. Bi, J.I. Qazi, L. Fan, H. Gao, Evodiamine sensitizes U87 glioblastoma cells to TRAIL via the death receptor pathway. Mol. Med. Rep. 11, 257–262 (2015)CrossRefPubMed
409.
go back to reference C. Xiao, B.F. Yang, N. Asadi, F. Beguinot, C. Hao, Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma Cells*. J. Biol. Chem. 277, 25020–25025 (2002)CrossRefPubMed C. Xiao, B.F. Yang, N. Asadi, F. Beguinot, C. Hao, Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma Cells*. J. Biol. Chem. 277, 25020–25025 (2002)CrossRefPubMed
410.
go back to reference L. Ding et al., Cisplatin restores TRAIL apoptotic pathway in glioblastoma-derived stem cells through up-regulation of DR5 and down-regulation of c-FLIP. Cancer Invest. 29, 511–520 (2011)PubMedCentralCrossRefPubMed L. Ding et al., Cisplatin restores TRAIL apoptotic pathway in glioblastoma-derived stem cells through up-regulation of DR5 and down-regulation of c-FLIP. Cancer Invest. 29, 511–520 (2011)PubMedCentralCrossRefPubMed
411.
go back to reference H. Han et al., Icaritin sensitizes human glioblastoma cells to TRAIL-Induced apoptosis. Cell. Biochem. Biophys. 72, 533–542 (2015)CrossRefPubMed H. Han et al., Icaritin sensitizes human glioblastoma cells to TRAIL-Induced apoptosis. Cell. Biochem. Biophys. 72, 533–542 (2015)CrossRefPubMed
412.
go back to reference J. Liu et al., Synergistic effect of TRAIL and irradiation in elimination of glioblastoma stem-like cells. Clin. Exp. Med. 18, 399–411 (2018)CrossRefPubMed J. Liu et al., Synergistic effect of TRAIL and irradiation in elimination of glioblastoma stem-like cells. Clin. Exp. Med. 18, 399–411 (2018)CrossRefPubMed
413.
go back to reference F.A. Lincoln et al., Sensitization of glioblastoma cells to TRAIL-induced apoptosis by IAP- and Bcl-2 antagonism. Cell Death Dis. 9, 1–14 (2018)CrossRef F.A. Lincoln et al., Sensitization of glioblastoma cells to TRAIL-induced apoptosis by IAP- and Bcl-2 antagonism. Cell Death Dis. 9, 1–14 (2018)CrossRef
414.
go back to reference Á.C. Murphy et al., Modulation of Mcl-1 sensitizes glioblastoma to TRAIL-induced apoptosis. Apoptosis. 19, 629–642 (2014)CrossRefPubMed Á.C. Murphy et al., Modulation of Mcl-1 sensitizes glioblastoma to TRAIL-induced apoptosis. Apoptosis. 19, 629–642 (2014)CrossRefPubMed
415.
go back to reference M.D. Siegelin, A. Habel, T. Gaiser, Epigalocatechin-3-gallate (EGCG) downregulates PEA15 and thereby augments TRAIL-mediated apoptosis in malignant glioma. Neurosci. Lett. 448, 161–165 (2008)CrossRefPubMed M.D. Siegelin, A. Habel, T. Gaiser, Epigalocatechin-3-gallate (EGCG) downregulates PEA15 and thereby augments TRAIL-mediated apoptosis in malignant glioma. Neurosci. Lett. 448, 161–165 (2008)CrossRefPubMed
416.
go back to reference A. Eckert et al., The PEA-15/PED protein protects glioblastoma cells from glucose deprivation-induced apoptosis via the ERK/MAP kinase pathway. Oncogene. 27, 1155–1166 (2008)CrossRefPubMed A. Eckert et al., The PEA-15/PED protein protects glioblastoma cells from glucose deprivation-induced apoptosis via the ERK/MAP kinase pathway. Oncogene. 27, 1155–1166 (2008)CrossRefPubMed
417.
go back to reference J.S. Riley, A. Malik, C. Holohan, D.B. Longley, DED or alive: assembly and regulation of the death effector domain complexes. Cell. Death Dis. 6, e1866–e1866 (2015)PubMedCentralCrossRefPubMed J.S. Riley, A. Malik, C. Holohan, D.B. Longley, DED or alive: assembly and regulation of the death effector domain complexes. Cell. Death Dis. 6, e1866–e1866 (2015)PubMedCentralCrossRefPubMed
418.
go back to reference K. Yaacoub et al., The identification of New c-FLIP inhibitors for restoring apoptosis in TRAIL-Resistant Cancer cells. Curr. Issues. Mol. Biol. 46, 710–728 (2024)PubMedCentralCrossRefPubMed K. Yaacoub et al., The identification of New c-FLIP inhibitors for restoring apoptosis in TRAIL-Resistant Cancer cells. Curr. Issues. Mol. Biol. 46, 710–728 (2024)PubMedCentralCrossRefPubMed
419.
go back to reference J. Park et al., Effect of combined anti-PD-1 and temozolomide therapy in glioblastoma. Oncoimmunology. 8, e1525243 (2019)CrossRefPubMed J. Park et al., Effect of combined anti-PD-1 and temozolomide therapy in glioblastoma. Oncoimmunology. 8, e1525243 (2019)CrossRefPubMed
420.
go back to reference E. Sjöstedt et al., An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020) E. Sjöstedt et al., An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020)
423.
go back to reference J.K.X. Maier et al., Distribution of neuronal apoptosis inhibitory protein in human tissues. J. Histochem. Cytochem. 55, 911–923 (2007)CrossRefPubMed J.K.X. Maier et al., Distribution of neuronal apoptosis inhibitory protein in human tissues. J. Histochem. Cytochem. 55, 911–923 (2007)CrossRefPubMed
424.
go back to reference R. Götz et al., The neuronal apoptosis inhibitory protein suppresses neuronal differentiation and apoptosis in PC12 cells. Hum. Mol. Genet. 9, 2479–2489 (2000)CrossRefPubMed R. Götz et al., The neuronal apoptosis inhibitory protein suppresses neuronal differentiation and apoptosis in PC12 cells. Hum. Mol. Genet. 9, 2479–2489 (2000)CrossRefPubMed
425.
go back to reference L.-A. Christie et al., Differential regulation of inhibitors of apoptosis proteins in Alzheimer’s disease brains. Neurobiol. Dis. 26, 165–173 (2007)PubMedCentralCrossRefPubMed L.-A. Christie et al., Differential regulation of inhibitors of apoptosis proteins in Alzheimer’s disease brains. Neurobiol. Dis. 26, 165–173 (2007)PubMedCentralCrossRefPubMed
426.
go back to reference W.J. Lukiw, J.G. Cui, Y.Y. Li, F. Culicchia, Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J. Neurooncol. 91, 27–32 (2009)CrossRefPubMed W.J. Lukiw, J.G. Cui, Y.Y. Li, F. Culicchia, Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J. Neurooncol. 91, 27–32 (2009)CrossRefPubMed
427.
go back to reference E. Blahovcova et al., Apoptosis-related gene expression in tumor tissue samples obtained from patients diagnosed with glioblastoma multiforme. Int. J. Mol. Med. 36, 1677–1684 (2015)CrossRefPubMed E. Blahovcova et al., Apoptosis-related gene expression in tumor tissue samples obtained from patients diagnosed with glioblastoma multiforme. Int. J. Mol. Med. 36, 1677–1684 (2015)CrossRefPubMed
429.
go back to reference F. Polito et al., Silencing of telomere-binding protein adrenocortical dysplasia (ACD) homolog enhances radiosensitivity in glioblastoma cells. Transl Res. 202, 99–108 (2018)CrossRefPubMed F. Polito et al., Silencing of telomere-binding protein adrenocortical dysplasia (ACD) homolog enhances radiosensitivity in glioblastoma cells. Transl Res. 202, 99–108 (2018)CrossRefPubMed
430.
go back to reference Y. Hao et al., Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat. Cell. Biol. 6, 849–860 (2004)CrossRefPubMed Y. Hao et al., Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat. Cell. Biol. 6, 849–860 (2004)CrossRefPubMed
431.
go back to reference J. Ren et al., The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc. Nat. Acad. Sci. 102, 565–570 (2005) J. Ren et al., The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc. Nat. Acad. Sci. 102, 565–570 (2005)
433.
go back to reference M. Chakrabarti, D.J. Klionsky, S.K. Ray, miR-30e blocks Autophagy and acts synergistically with Proanthocyanidin for Inhibition of AVEN and BIRC6 to increase apoptosis in Glioblastoma Stem Cells and Glioblastoma SNB19 cells. PLoS One. 11, e0158537 (2016)PubMedCentralCrossRefPubMed M. Chakrabarti, D.J. Klionsky, S.K. Ray, miR-30e blocks Autophagy and acts synergistically with Proanthocyanidin for Inhibition of AVEN and BIRC6 to increase apoptosis in Glioblastoma Stem Cells and Glioblastoma SNB19 cells. PLoS One. 11, e0158537 (2016)PubMedCentralCrossRefPubMed
434.
go back to reference G.M. Kasof, B.C. Gomes, Livin, a Novel inhibitor of apoptosis protein family Member*. J. Biol. Chem. 276, 3238–3246 (2001)CrossRefPubMed G.M. Kasof, B.C. Gomes, Livin, a Novel inhibitor of apoptosis protein family Member*. J. Biol. Chem. 276, 3238–3246 (2001)CrossRefPubMed
435.
go back to reference Y. Ashhab, A. Alian, A. Polliack, A. Panet, D. Ben Yehuda, Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett. 495, 56–60 (2001)CrossRefPubMed Y. Ashhab, A. Alian, A. Polliack, A. Panet, D. Ben Yehuda, Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett. 495, 56–60 (2001)CrossRefPubMed
436.
437.
go back to reference B.K. Elmekkawy, R.M.S. Shoaib, A.K. Seleem, D. Shaalan, E.A. Saad, Livin/BIRC7 gene expression as a possible diagnostic biomarker for endometrial hyperplasia and carcinoma. J. Genet. Eng. Biotechnol. 19, 141 (2021)PubMedCentralCrossRefPubMed B.K. Elmekkawy, R.M.S. Shoaib, A.K. Seleem, D. Shaalan, E.A. Saad, Livin/BIRC7 gene expression as a possible diagnostic biomarker for endometrial hyperplasia and carcinoma. J. Genet. Eng. Biotechnol. 19, 141 (2021)PubMedCentralCrossRefPubMed
438.
go back to reference A. Tchoghandjian et al., Inhibitor of apoptosis protein expression in glioblastomas and their in vitro and in vivo targeting by SMAC mimetic GDC-0152. Cell. Death Dis. 7, e2325 (2016)PubMedCentralCrossRefPubMed A. Tchoghandjian et al., Inhibitor of apoptosis protein expression in glioblastomas and their in vitro and in vivo targeting by SMAC mimetic GDC-0152. Cell. Death Dis. 7, e2325 (2016)PubMedCentralCrossRefPubMed
439.
go back to reference C.-H. Hsieh et al., Livin contributes to tumor hypoxia–induced resistance to cytotoxic therapies in glioblastoma multiforme. Clin. Cancer Res. 21, 460–470 (2015)CrossRefPubMed C.-H. Hsieh et al., Livin contributes to tumor hypoxia–induced resistance to cytotoxic therapies in glioblastoma multiforme. Clin. Cancer Res. 21, 460–470 (2015)CrossRefPubMed
440.
go back to reference F. Jin et al., Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells. Brain Res. 1336, 103–111 (2010)CrossRefPubMed F. Jin et al., Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells. Brain Res. 1336, 103–111 (2010)CrossRefPubMed
441.
go back to reference F. Jin et al., Comparison between cells and cancer stem-like cells isolated from glioblastoma and astrocytoma on expression of anti-apoptotic and multidrug resistance-associated protein genes. Neuroscience. 154, 541–550 (2008)CrossRefPubMed F. Jin et al., Comparison between cells and cancer stem-like cells isolated from glioblastoma and astrocytoma on expression of anti-apoptotic and multidrug resistance-associated protein genes. Neuroscience. 154, 541–550 (2008)CrossRefPubMed
442.
go back to reference G. Li et al., Effect of temozolomide on livin and caspase-3 in U251 glioma stem cells. Exp. Ther. Med. 9, 744–750 (2015)CrossRefPubMed G. Li et al., Effect of temozolomide on livin and caspase-3 in U251 glioma stem cells. Exp. Ther. Med. 9, 744–750 (2015)CrossRefPubMed
443.
go back to reference Y. Liu et al., Effect of siRNA-Livin on drug resistance to chemotherapy in glioma U251 cells and CD133 + stem cells. Exp. Ther. Med. 10, 1317–1323 (2015)PubMedCentralCrossRefPubMed Y. Liu et al., Effect of siRNA-Livin on drug resistance to chemotherapy in glioma U251 cells and CD133 + stem cells. Exp. Ther. Med. 10, 1317–1323 (2015)PubMedCentralCrossRefPubMed
444.
go back to reference F. Jin et al., Paradoxical expression of anti-apoptotic and MRP genes on cancer stem-like cell isolated from TJ905 glioblastoma multiforme cell line. Cancer Invest. 26, 338–343 (2008)CrossRefPubMed F. Jin et al., Paradoxical expression of anti-apoptotic and MRP genes on cancer stem-like cell isolated from TJ905 glioblastoma multiforme cell line. Cancer Invest. 26, 338–343 (2008)CrossRefPubMed
445.
go back to reference J. Liang et al., Comprehensive molecular characterization of inhibitors of apoptosis proteins (IAPs) for therapeutic targeting in cancer. BMC Med. Genom. 13, 7 (2020)CrossRef J. Liang et al., Comprehensive molecular characterization of inhibitors of apoptosis proteins (IAPs) for therapeutic targeting in cancer. BMC Med. Genom. 13, 7 (2020)CrossRef
446.
go back to reference E.C. LaCasse, Pulling the plug on a cancer cell by eliminating XIAP with AEG35156. Cancer Lett. 332, 215–224 (2013)CrossRefPubMed E.C. LaCasse, Pulling the plug on a cancer cell by eliminating XIAP with AEG35156. Cancer Lett. 332, 215–224 (2013)CrossRefPubMed
448.
go back to reference P.L.C. Lopez et al., Sensitization of glioma cells by X-linked inhibitor of apoptosis protein knockdown. OCL 83, 75–82 (2012) P.L.C. Lopez et al., Sensitization of glioma cells by X-linked inhibitor of apoptosis protein knockdown. OCL 83, 75–82 (2012)
449.
go back to reference H.-N. Zhen et al., Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells. Int. J. Oncol. 31, 1111–1117 (2007)PubMed H.-N. Zhen et al., Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells. Int. J. Oncol. 31, 1111–1117 (2007)PubMed
450.
go back to reference A. Chakravarti et al., Survivin enhances radiation resistance in primary human glioblastoma cells via caspase-independent mechanisms. Oncogene. 23, 7494–7506 (2004)CrossRefPubMed A. Chakravarti et al., Survivin enhances radiation resistance in primary human glioblastoma cells via caspase-independent mechanisms. Oncogene. 23, 7494–7506 (2004)CrossRefPubMed
451.
go back to reference J.-H. Tang et al., Bortezomib inhibits growth and sensitizes glioma to temozolomide (TMZ) via down-regulating the FOXM1–Survivin axis. Cancer Commun. 39, 81 (2019)CrossRef J.-H. Tang et al., Bortezomib inhibits growth and sensitizes glioma to temozolomide (TMZ) via down-regulating the FOXM1–Survivin axis. Cancer Commun. 39, 81 (2019)CrossRef
452.
go back to reference X. Zhang et al., YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J. Transl Med. 16, 79 (2018)PubMedCentralCrossRefPubMed X. Zhang et al., YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J. Transl Med. 16, 79 (2018)PubMedCentralCrossRefPubMed
453.
go back to reference P.C. Lai et al., Novel survivin inhibitor YM155 elicits cytotoxicity in Glioblastoma Cell Lines with Normal or Deficiency DNA-Dependent protein kinase activity. Pediatr. Neonatology. 53, 199–204 (2012)CrossRef P.C. Lai et al., Novel survivin inhibitor YM155 elicits cytotoxicity in Glioblastoma Cell Lines with Normal or Deficiency DNA-Dependent protein kinase activity. Pediatr. Neonatology. 53, 199–204 (2012)CrossRef
454.
go back to reference H. Guo et al., Silencing of survivin using YM155 inhibits invasion and suppresses proliferation in glioma cells. Cell. Biochem. Biophys. 71, 587–593 (2015)CrossRefPubMed H. Guo et al., Silencing of survivin using YM155 inhibits invasion and suppresses proliferation in glioma cells. Cell. Biochem. Biophys. 71, 587–593 (2015)CrossRefPubMed
455.
go back to reference E.P. Jane et al., YM-155 potentiates the effect of ABT-737 in Malignant Human Glioma cells via Survivin and Mcl-1 downregulation in an EGFR-Dependent context. Mol. Cancer Ther. 12, 326–338 (2013)PubMedCentralCrossRefPubMed E.P. Jane et al., YM-155 potentiates the effect of ABT-737 in Malignant Human Glioma cells via Survivin and Mcl-1 downregulation in an EGFR-Dependent context. Mol. Cancer Ther. 12, 326–338 (2013)PubMedCentralCrossRefPubMed
456.
go back to reference R.P. Mackay, P.M. Weinberger, J.A. Copland, E. Mahdavian, Q. Xu, YM155 induces DNA damage and cell death in anaplastic thyroid Cancer cells by inhibiting DNA topoisomerase IIα at the ATP-Binding site. Mol. Cancer Ther. 21, 925–935 (2022)PubMedCentralCrossRefPubMed R.P. Mackay, P.M. Weinberger, J.A. Copland, E. Mahdavian, Q. Xu, YM155 induces DNA damage and cell death in anaplastic thyroid Cancer cells by inhibiting DNA topoisomerase IIα at the ATP-Binding site. Mol. Cancer Ther. 21, 925–935 (2022)PubMedCentralCrossRefPubMed
458.
go back to reference A. Mondal et al., Ym155 localizes to the mitochondria leading to mitochondria dysfunction and activation of AMPK that inhibits BMP signaling in lung cancer cells. Sci. Rep. 12, 13135 (2022)PubMedCentralCrossRefPubMed A. Mondal et al., Ym155 localizes to the mitochondria leading to mitochondria dysfunction and activation of AMPK that inhibits BMP signaling in lung cancer cells. Sci. Rep. 12, 13135 (2022)PubMedCentralCrossRefPubMed
459.
go back to reference R.A. Fenstermaker, M.J. Ciesielski, Challenges in the development of a survivin vaccine (SurVaxM) for malignant glioma. Expert Rev. Vaccines. 13, 377–385 (2014)CrossRefPubMed R.A. Fenstermaker, M.J. Ciesielski, Challenges in the development of a survivin vaccine (SurVaxM) for malignant glioma. Expert Rev. Vaccines. 13, 377–385 (2014)CrossRefPubMed
460.
go back to reference R.A. Fenstermaker et al., Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol. Immunother. 65, 1339–1352 (2016)PubMedCentralCrossRefPubMed R.A. Fenstermaker et al., Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol. Immunother. 65, 1339–1352 (2016)PubMedCentralCrossRefPubMed
461.
go back to reference A. Chakravarti et al., Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J. Clin. Oncol. 20, 1063–1068 (2002)CrossRefPubMed A. Chakravarti et al., Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J. Clin. Oncol. 20, 1063–1068 (2002)CrossRefPubMed
462.
go back to reference X. Tong et al., Survivin is a prognostic indicator in glioblastoma and may be a target of microRNA-218. Oncol. Lett. 18, 359–367 (2019)PubMedCentralPubMed X. Tong et al., Survivin is a prognostic indicator in glioblastoma and may be a target of microRNA-218. Oncol. Lett. 18, 359–367 (2019)PubMedCentralPubMed
464.
go back to reference D. Wang et al., BIRC3 is a biomarker of mesenchymal habitat of glioblastoma, and a mediator of survival adaptation in hypoxia-driven glioblastoma habitats. Sci. Rep. 7, 9350 (2017)PubMedCentralCrossRefPubMed D. Wang et al., BIRC3 is a biomarker of mesenchymal habitat of glioblastoma, and a mediator of survival adaptation in hypoxia-driven glioblastoma habitats. Sci. Rep. 7, 9350 (2017)PubMedCentralCrossRefPubMed
465.
go back to reference H. Peng et al., Cellular IAP1 regulates TRAIL-induced apoptosis in human fetal cortical neural progenitor cells. J. Neurosci. Res. 82, 295–305 (2005)CrossRefPubMed H. Peng et al., Cellular IAP1 regulates TRAIL-induced apoptosis in human fetal cortical neural progenitor cells. J. Neurosci. Res. 82, 295–305 (2005)CrossRefPubMed
466.
go back to reference R. Feng et al., Sox2 protects neural stem cells from apoptosis via up-regulating survivin expression. Biochem. J. 450, 459–468 (2013)CrossRefPubMed R. Feng et al., Sox2 protects neural stem cells from apoptosis via up-regulating survivin expression. Biochem. J. 450, 459–468 (2013)CrossRefPubMed
467.
go back to reference S.E. Kendall et al., NRAGE mediates p38 activation and neural progenitor apoptosis via the bone morphogenetic protein Signaling Cascade. Mol. Cell. Biol. 25, 7711–7724 (2005)PubMedCentralCrossRefPubMed S.E. Kendall et al., NRAGE mediates p38 activation and neural progenitor apoptosis via the bone morphogenetic protein Signaling Cascade. Mol. Cell. Biol. 25, 7711–7724 (2005)PubMedCentralCrossRefPubMed
468.
go back to reference N. Matluk, J.A. Rochira, A. Karaczyn, T. Adams, J. Verdi, M. A role for NRAGE in NF-kappaB activation through the non-canonical BMP pathway. BMC Biol. 8, 7 (2010)PubMedCentralCrossRefPubMed N. Matluk, J.A. Rochira, A. Karaczyn, T. Adams, J. Verdi, M. A role for NRAGE in NF-kappaB activation through the non-canonical BMP pathway. BMC Biol. 8, 7 (2010)PubMedCentralCrossRefPubMed
469.
go back to reference J.A. Rochira et al., A small peptide modeled after the NRAGE repeat domain inhibits XIAP-Tables 1-TAK1 signaling for NF-κB activation and apoptosis in P19 cells. PLOS ONE. 6, e20659 (2011)PubMedCentralCrossRefPubMed J.A. Rochira et al., A small peptide modeled after the NRAGE repeat domain inhibits XIAP-Tables 1-TAK1 signaling for NF-κB activation and apoptosis in P19 cells. PLOS ONE. 6, e20659 (2011)PubMedCentralCrossRefPubMed
470.
go back to reference S. Pennartz et al., Purification of neuronal precursors from the adult mouse brain: comprehensive gene expression analysis provides new insights into the control of cell migration, differentiation, and homeostasis. Mol. Cell. Neurosci. 25, 692–706 (2004)CrossRefPubMed S. Pennartz et al., Purification of neuronal precursors from the adult mouse brain: comprehensive gene expression analysis provides new insights into the control of cell migration, differentiation, and homeostasis. Mol. Cell. Neurosci. 25, 692–706 (2004)CrossRefPubMed
471.
go back to reference L. Zhang et al., Survivin, a key component of the Wnt/β–catenin signaling pathway, contributes to traumatic brain injury-induced adult neurogenesis in the mouse dentate gyrus. Int. J. Mol. Med. 32, 867–875 (2013)CrossRefPubMed L. Zhang et al., Survivin, a key component of the Wnt/β–catenin signaling pathway, contributes to traumatic brain injury-induced adult neurogenesis in the mouse dentate gyrus. Int. J. Mol. Med. 32, 867–875 (2013)CrossRefPubMed
473.
go back to reference C.J. Miranda et al., Aging brain microenvironment decreases hippocampal neurogenesis through wnt-mediated survivin signaling. Aging Cell. 11, 542–552 (2012)CrossRefPubMed C.J. Miranda et al., Aging brain microenvironment decreases hippocampal neurogenesis through wnt-mediated survivin signaling. Aging Cell. 11, 542–552 (2012)CrossRefPubMed
474.
go back to reference J.K. Choi, K.H. Kim, S.R. Park, B.H. Choi, Granulocyte macrophage colony-stimulating factor shows anti-apoptotic activity via the PI3K-NF-κB-HIF-1α-survivin pathway in mouse neural progenitor cells. Mol. Neurobiol. 49, 724–733 (2014)CrossRefPubMed J.K. Choi, K.H. Kim, S.R. Park, B.H. Choi, Granulocyte macrophage colony-stimulating factor shows anti-apoptotic activity via the PI3K-NF-κB-HIF-1α-survivin pathway in mouse neural progenitor cells. Mol. Neurobiol. 49, 724–733 (2014)CrossRefPubMed
475.
476.
go back to reference Q. Hu et al., The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells. 28, 279–286 (2010)CrossRefPubMed Q. Hu et al., The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells. 28, 279–286 (2010)CrossRefPubMed
477.
go back to reference A.L.M. Ferri et al., Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development. 131, 3805–3819 (2004)CrossRefPubMed A.L.M. Ferri et al., Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development. 131, 3805–3819 (2004)CrossRefPubMed
478.
go back to reference V. Coremans et al., Impaired neurogenesis, learning and memory and low seizure threshold associated with loss of neural precursor cell survivin. BMC Neurosci. 11, 2 (2010)PubMedCentralCrossRefPubMed V. Coremans et al., Impaired neurogenesis, learning and memory and low seizure threshold associated with loss of neural precursor cell survivin. BMC Neurosci. 11, 2 (2010)PubMedCentralCrossRefPubMed
479.
go back to reference X. Dong, J. Yang, X. Nie, J. Xiao, S. Jiang, Perfluorooctane sulfonate (PFOS) impairs the proliferation of C17.2 neural stem cells via the downregulation of GSK-3β/β-catenin signaling. J. Appl. Toxicol. 36, 1591–1598 (2016)CrossRefPubMed X. Dong, J. Yang, X. Nie, J. Xiao, S. Jiang, Perfluorooctane sulfonate (PFOS) impairs the proliferation of C17.2 neural stem cells via the downregulation of GSK-3β/β-catenin signaling. J. Appl. Toxicol. 36, 1591–1598 (2016)CrossRefPubMed
481.
go back to reference E. Iscru et al., Loss of survivin in neural precursor cells results in impaired long-term potentiation in the dentate gyrus and CA1-region. Neuroscience. 231, 413–419 (2013)CrossRefPubMed E. Iscru et al., Loss of survivin in neural precursor cells results in impaired long-term potentiation in the dentate gyrus and CA1-region. Neuroscience. 231, 413–419 (2013)CrossRefPubMed
482.
go back to reference S. Zhou et al., Survivin improves reprogramming efficiency of human neural progenitors by single molecule OCT4. Stem Cells Int. 2016, 4729535 (2016) S. Zhou et al., Survivin improves reprogramming efficiency of human neural progenitors by single molecule OCT4. Stem Cells Int. 2016, 4729535 (2016)
483.
go back to reference P.R. Potts, S. Singh, M. Knezek, C.B. Thompson, M. Deshmukh, Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J. Cell. Biol. 163, 789–799 (2003)PubMedCentralCrossRefPubMed P.R. Potts, S. Singh, M. Knezek, C.B. Thompson, M. Deshmukh, Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J. Cell. Biol. 163, 789–799 (2003)PubMedCentralCrossRefPubMed
484.
go back to reference M.J. Druse, R.A. Gillespie, N.F. Tajuddin, M. Rich, S100B-mediated protection against the pro-apoptotic effects of ethanol on fetal rhombencephalic neurons. Brain Res. 1150, 46–54 (2007)PubMedCentralCrossRefPubMed M.J. Druse, R.A. Gillespie, N.F. Tajuddin, M. Rich, S100B-mediated protection against the pro-apoptotic effects of ethanol on fetal rhombencephalic neurons. Brain Res. 1150, 46–54 (2007)PubMedCentralCrossRefPubMed
485.
go back to reference K.M. Wright, M.W. Linhoff, P.R. Potts, M. Deshmukh, Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. J. Cell. Biol. 167, 303–313 (2004)PubMedCentralCrossRefPubMed K.M. Wright, M.W. Linhoff, P.R. Potts, M. Deshmukh, Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. J. Cell. Biol. 167, 303–313 (2004)PubMedCentralCrossRefPubMed
486.
go back to reference M. D’Amelio, V. Cavallucci, F. Cecconi, Neuronal caspase-3 signaling: not only cell death. Cell. Death Differ. 17, 1104–1114 (2010)CrossRefPubMed M. D’Amelio, V. Cavallucci, F. Cecconi, Neuronal caspase-3 signaling: not only cell death. Cell. Death Differ. 17, 1104–1114 (2010)CrossRefPubMed
487.
go back to reference J. Gibon et al., The X-linked inhibitor of apoptosis regulates long-term depression and learning rate. FASEB J. 30, 3083–3090 (2016)CrossRefPubMed J. Gibon et al., The X-linked inhibitor of apoptosis regulates long-term depression and learning rate. FASEB J. 30, 3083–3090 (2016)CrossRefPubMed
488.
go back to reference C.L. Cusack, V. Swahari, W.H. Henley, J.M. Ramsey, M. Deshmukh, Distinct pathways mediate Axon Degeneration during apoptosis and Axon-Specific Pruning. Nat. Commun. 4, 1876 (2013)CrossRefPubMed C.L. Cusack, V. Swahari, W.H. Henley, J.M. Ramsey, M. Deshmukh, Distinct pathways mediate Axon Degeneration during apoptosis and Axon-Specific Pruning. Nat. Commun. 4, 1876 (2013)CrossRefPubMed
489.
go back to reference J. Grant et al., Over-expression of X-linked inhibitor of apoptosis protein modulates multiple aspects of neuronal Ca2 + signaling. Neurochem Res. 38, 847–856 (2013)CrossRefPubMed J. Grant et al., Over-expression of X-linked inhibitor of apoptosis protein modulates multiple aspects of neuronal Ca2 + signaling. Neurochem Res. 38, 847–856 (2013)CrossRefPubMed
490.
go back to reference S. Kügler et al., The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell. Death Differ. 7, 815–824 (2000)CrossRefPubMed S. Kügler et al., The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell. Death Differ. 7, 815–824 (2000)CrossRefPubMed
491.
go back to reference D. Perrelet et al., IAPs are essential for GDNF-mediated neuroprotective effects in injured motor neurons in vivo. Nat. Cell Biol. 4, 175–179 (2002)CrossRefPubMed D. Perrelet et al., IAPs are essential for GDNF-mediated neuroprotective effects in injured motor neurons in vivo. Nat. Cell Biol. 4, 175–179 (2002)CrossRefPubMed
492.
go back to reference S. Blancas, R. Fadó, J. Rodriguez-Alvarez, J. Morán, Endogenous XIAP, but not other members of the inhibitory apoptosis protein family modulates cerebellar granule neurons survival. Int. J. Dev. Neurosci. 37, 26–35 (2014)CrossRefPubMed S. Blancas, R. Fadó, J. Rodriguez-Alvarez, J. Morán, Endogenous XIAP, but not other members of the inhibitory apoptosis protein family modulates cerebellar granule neurons survival. Int. J. Dev. Neurosci. 37, 26–35 (2014)CrossRefPubMed
493.
go back to reference X. Wang et al., X-linked inhibitor of apoptosis (XIAP) protein protects against caspase activation and tissue loss after neonatal hypoxia-ischemia. Neurobiol. Dis. 16, 179–189 (2004)CrossRefPubMed X. Wang et al., X-linked inhibitor of apoptosis (XIAP) protein protects against caspase activation and tissue loss after neonatal hypoxia-ischemia. Neurobiol. Dis. 16, 179–189 (2004)CrossRefPubMed
494.
go back to reference G. Lotocki, O.F. Alonso, B. Frydel, W.D. Dietrich, R.W. Keane, Monoubiquitination and cellular distribution of XIAP in neurons after traumatic brain injury. J. Cereb. Blood Flow. Metab. 23, 1129–1136 (2003)CrossRefPubMed G. Lotocki, O.F. Alonso, B. Frydel, W.D. Dietrich, R.W. Keane, Monoubiquitination and cellular distribution of XIAP in neurons after traumatic brain injury. J. Cereb. Blood Flow. Metab. 23, 1129–1136 (2003)CrossRefPubMed
495.
go back to reference J.C. Russell, H. Whiting, N. Szuflita, M.A. Hossain, Nuclear translocation of X-linked inhibitor of apoptosis (XIAP) determines cell fate after hypoxia ischemia in neonatal brain. J. Neurochem. 106, 1357–1370 (2008)CrossRefPubMed J.C. Russell, H. Whiting, N. Szuflita, M.A. Hossain, Nuclear translocation of X-linked inhibitor of apoptosis (XIAP) determines cell fate after hypoxia ischemia in neonatal brain. J. Neurochem. 106, 1357–1370 (2008)CrossRefPubMed
496.
go back to reference M.D. Siegelin, L.S. Kossatz, J. Winckler, A. Rami, Regulation of XIAP and Smac/DIABLO in the rat hippocampus following transient forebrain ischemia. Neurochem Int. 46, 41–51 (2005)CrossRefPubMed M.D. Siegelin, L.S. Kossatz, J. Winckler, A. Rami, Regulation of XIAP and Smac/DIABLO in the rat hippocampus following transient forebrain ischemia. Neurochem Int. 46, 41–51 (2005)CrossRefPubMed
497.
go back to reference C. Gao et al., X-linked inhibitor of apoptosis inhibits apoptosis and preserves the blood-brain barrier after experimental subarachnoid hemorrhage. Sci. Rep. 7, 44918 (2017)PubMedCentralCrossRefPubMed C. Gao et al., X-linked inhibitor of apoptosis inhibits apoptosis and preserves the blood-brain barrier after experimental subarachnoid hemorrhage. Sci. Rep. 7, 44918 (2017)PubMedCentralCrossRefPubMed
498.
go back to reference M. Siegelin, O. Touzani, J. Toutain, P. Liston, A. Rami, Induction and redistribution of XAF1, a new antagonist of XIAP in the rat brain after transient focal ischemia. Neurobiol. Dis. 20, 509–518 (2005)CrossRefPubMed M. Siegelin, O. Touzani, J. Toutain, P. Liston, A. Rami, Induction and redistribution of XAF1, a new antagonist of XIAP in the rat brain after transient focal ischemia. Neurobiol. Dis. 20, 509–518 (2005)CrossRefPubMed
499.
go back to reference L.M. Katz et al., Regulation of caspases and XIAP in the brain after asphyxial cardiac arrest in rats. Neuroreport. 12, 3751–3754 (2001)CrossRefPubMed L.M. Katz et al., Regulation of caspases and XIAP in the brain after asphyxial cardiac arrest in rats. Neuroreport. 12, 3751–3754 (2001)CrossRefPubMed
500.
go back to reference T. Li, Y. Fan, Y. Luo, B. Xiao, C. Lu, In vivo delivery of a XIAP (BIR3-RING) fusion protein containing the protein transduction domain protects against neuronal death induced by seizures. Exp. Neurol. 197, 301–308 (2006)CrossRefPubMed T. Li, Y. Fan, Y. Luo, B. Xiao, C. Lu, In vivo delivery of a XIAP (BIR3-RING) fusion protein containing the protein transduction domain protects against neuronal death induced by seizures. Exp. Neurol. 197, 301–308 (2006)CrossRefPubMed
501.
go back to reference R. Askalan, R. Salweski, U.I. Tuor, J. Hutchison, C. Hawkins, X-linked inhibitor of apoptosis protein expression after ischemic injury in the human and rat developing brain. Pediatr. Res. 65, 21–26 (2009)CrossRefPubMed R. Askalan, R. Salweski, U.I. Tuor, J. Hutchison, C. Hawkins, X-linked inhibitor of apoptosis protein expression after ischemic injury in the human and rat developing brain. Pediatr. Res. 65, 21–26 (2009)CrossRefPubMed
502.
go back to reference S.J. Crocker et al., Attenuation of MPTP-induced neurotoxicity and behavioural impairment in NSE-XIAP transgenic mice. Neurobiol. Dis. 12, 150–161 (2003)CrossRefPubMed S.J. Crocker et al., Attenuation of MPTP-induced neurotoxicity and behavioural impairment in NSE-XIAP transgenic mice. Neurobiol. Dis. 12, 150–161 (2003)CrossRefPubMed
503.
go back to reference T. West et al., Lack of X-linked inhibitor of apoptosis protein leads to increased apoptosis and tissue loss following neonatal brain injury. ASN Neuro 1, e00004 (2009) T. West et al., Lack of X-linked inhibitor of apoptosis protein leads to increased apoptosis and tissue loss following neonatal brain injury. ASN Neuro 1, e00004 (2009)
504.
go back to reference J. Althaus et al., The serine protease Omi/HtrA2 is involved in XIAP cleavage and in neuronal cell death following focal cerebral ischemia/reperfusion. Neurochem Int. 50, 172–180 (2007)CrossRefPubMed J. Althaus et al., The serine protease Omi/HtrA2 is involved in XIAP cleavage and in neuronal cell death following focal cerebral ischemia/reperfusion. Neurochem Int. 50, 172–180 (2007)CrossRefPubMed
505.
go back to reference S.J. McKinnon et al., Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol. Ther. 5, 780–787 (2002)CrossRefPubMed S.J. McKinnon et al., Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol. Ther. 5, 780–787 (2002)CrossRefPubMed
506.
go back to reference R.W. Keane et al., Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J. Cereb. Blood Flow. Metab. 21, 1189–1198 (2001)CrossRefPubMed R.W. Keane et al., Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J. Cereb. Blood Flow. Metab. 21, 1189–1198 (2001)CrossRefPubMed
507.
go back to reference P. Maycotte, S. Blancas, J. Morán, Role of inhibitor of apoptosis proteins and Smac/DIABLO in staurosporine-induced cerebellar granule neurons death. Neurochem Res. 33, 1534–1540 (2008)CrossRefPubMed P. Maycotte, S. Blancas, J. Morán, Role of inhibitor of apoptosis proteins and Smac/DIABLO in staurosporine-induced cerebellar granule neurons death. Neurochem Res. 33, 1534–1540 (2008)CrossRefPubMed
508.
go back to reference R.W. Keane et al., Apoptotic and anti-apoptotic mechanisms following spinal cord injury. J. Neuropathol. Exp. Neurol. 60, 422–429 (2001)CrossRefPubMed R.W. Keane et al., Apoptotic and anti-apoptotic mechanisms following spinal cord injury. J. Neuropathol. Exp. Neurol. 60, 422–429 (2001)CrossRefPubMed
510.
go back to reference M. Kairisalo et al., NF-kappaB-dependent regulation of brain-derived neurotrophic factor in hippocampal neurons by X-linked inhibitor of apoptosis protein. Eur. J. Neurosci. 30, 958–966 (2009)CrossRefPubMed M. Kairisalo et al., NF-kappaB-dependent regulation of brain-derived neurotrophic factor in hippocampal neurons by X-linked inhibitor of apoptosis protein. Eur. J. Neurosci. 30, 958–966 (2009)CrossRefPubMed
511.
go back to reference L. Kisiswa, J. Albon, J.E. Morgan, M.A. Wride, Cellular inhibitor of apoptosis (cIAP1) is down-regulated during retinal ganglion cell (RGC) maturation. Exp. Eye Res. 91, 739–747 (2010)CrossRefPubMed L. Kisiswa, J. Albon, J.E. Morgan, M.A. Wride, Cellular inhibitor of apoptosis (cIAP1) is down-regulated during retinal ganglion cell (RGC) maturation. Exp. Eye Res. 91, 739–747 (2010)CrossRefPubMed
512.
go back to reference B.S. Darshit, M. Ramanathan, Activation of AKT1/GSK-3β/β-Catenin-TRIM11/Survivin pathway by novel GSK-3β inhibitor promotes Neuron Cell Survival: study in differentiated SH-SY5Y cells in OGD Model. Mol. Neurobiol. 53, 6716–6729 (2016)CrossRefPubMed B.S. Darshit, M. Ramanathan, Activation of AKT1/GSK-3β/β-Catenin-TRIM11/Survivin pathway by novel GSK-3β inhibitor promotes Neuron Cell Survival: study in differentiated SH-SY5Y cells in OGD Model. Mol. Neurobiol. 53, 6716–6729 (2016)CrossRefPubMed
513.
go back to reference E.A. Johnson et al., Cell-specific upregulation of survivin after experimental traumatic brain injury in rats. J. Neurotrauma. 21, 1183–1195 (2004)CrossRefPubMed E.A. Johnson et al., Cell-specific upregulation of survivin after experimental traumatic brain injury in rats. J. Neurotrauma. 21, 1183–1195 (2004)CrossRefPubMed
514.
go back to reference L. Wang et al., [Intermittent hypoxia promotes the expressions of rat hippocampal neuronal hypoxia-inducible factor-1 and survivin]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 31, 338–341 (2015)PubMed L. Wang et al., [Intermittent hypoxia promotes the expressions of rat hippocampal neuronal hypoxia-inducible factor-1 and survivin]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 31, 338–341 (2015)PubMed
515.
go back to reference Z. Zhang et al., Downregulation of survivin regulates adult hippocampal neurogenesis and apoptosis, and inhibits spatial learning and memory following traumatic brain injury. Neuroscience. 300, 219–228 (2015)CrossRefPubMed Z. Zhang et al., Downregulation of survivin regulates adult hippocampal neurogenesis and apoptosis, and inhibits spatial learning and memory following traumatic brain injury. Neuroscience. 300, 219–228 (2015)CrossRefPubMed
516.
go back to reference S.-F. Chu et al., Upregulating the expression of Survivin-HBXIP Complex contributes to the protective role of IMM-H004 in transient global cerebral Ischemia/Reperfusion. Mol. Neurobiol. 54, 524–540 (2017)CrossRefPubMed S.-F. Chu et al., Upregulating the expression of Survivin-HBXIP Complex contributes to the protective role of IMM-H004 in transient global cerebral Ischemia/Reperfusion. Mol. Neurobiol. 54, 524–540 (2017)CrossRefPubMed
517.
go back to reference H. Xiao, Z. Sun, J. Wan, S. Hou, Y. Xiong, Overexpression of protocadherin 7 inhibits neuronal survival by downregulating BIRC5 in vitro. Exp. Cell. Res. 366, 71–80 (2018)CrossRefPubMed H. Xiao, Z. Sun, J. Wan, S. Hou, Y. Xiong, Overexpression of protocadherin 7 inhibits neuronal survival by downregulating BIRC5 in vitro. Exp. Cell. Res. 366, 71–80 (2018)CrossRefPubMed
518.
go back to reference E.A. Johnson, S.I. Svetlov, K.K.W. Wang, R.L. Hayes, J.A. Pineda, Cell-specific DNA fragmentation may be attenuated by a survivin-dependent mechanism after traumatic brain injury in rats. Exp. Brain Res. 167, 17–26 (2005)CrossRefPubMed E.A. Johnson, S.I. Svetlov, K.K.W. Wang, R.L. Hayes, J.A. Pineda, Cell-specific DNA fragmentation may be attenuated by a survivin-dependent mechanism after traumatic brain injury in rats. Exp. Brain Res. 167, 17–26 (2005)CrossRefPubMed
519.
go back to reference S. Villapol, L. Acarin, M. Faiz, B. Castellano, B. Gonzalez, Survivin and heat shock protein 25/27 colocalize with cleaved caspase-3 in surviving reactive astrocytes following excitotoxicity to the immature brain. Neuroscience. 153, 108–119 (2008)CrossRefPubMed S. Villapol, L. Acarin, M. Faiz, B. Castellano, B. Gonzalez, Survivin and heat shock protein 25/27 colocalize with cleaved caspase-3 in surviving reactive astrocytes following excitotoxicity to the immature brain. Neuroscience. 153, 108–119 (2008)CrossRefPubMed
520.
go back to reference L. Acarin, B. González, B. Castellano, Stat3 and NFκB glial expression after excitotoxic damage to the postnatal brain. NeuroReport. 9, 2869–2873 (1998)CrossRefPubMed L. Acarin, B. González, B. Castellano, Stat3 and NFκB glial expression after excitotoxic damage to the postnatal brain. NeuroReport. 9, 2869–2873 (1998)CrossRefPubMed
521.
go back to reference L. Acarin, B. González, B. Castellano, STAT3 and NFkappaB activation precedes glial reactivity in the excitotoxically injured young cortex but not in the corresponding distal thalamic nuclei. J. Neuropathol. Exp. Neurol. 59, 151–163 (2000)CrossRefPubMed L. Acarin, B. González, B. Castellano, STAT3 and NFkappaB activation precedes glial reactivity in the excitotoxically injured young cortex but not in the corresponding distal thalamic nuclei. J. Neuropathol. Exp. Neurol. 59, 151–163 (2000)CrossRefPubMed
522.
go back to reference W.J. Van Houdt et al., The human survivin promoter: a novel transcriptional targeting strategy for treatment of glioma. J. Neurosurg. 104, 583–592 (2006)CrossRefPubMed W.J. Van Houdt et al., The human survivin promoter: a novel transcriptional targeting strategy for treatment of glioma. J. Neurosurg. 104, 583–592 (2006)CrossRefPubMed
523.
go back to reference J.-E. Jung et al., Survivin inhibits anti-growth effect of p53 activated by aurora B. Biochem. Biophys. Res. Commun. 336, 1164–1171 (2005)CrossRefPubMed J.-E. Jung et al., Survivin inhibits anti-growth effect of p53 activated by aurora B. Biochem. Biophys. Res. Commun. 336, 1164–1171 (2005)CrossRefPubMed
524.
go back to reference S. Sukumari-Ramesh, C.H. Alleyne, K.M. Dhandapani, Astrocyte-specific expression of survivin after intracerebral hemorrhage in mice: a possible role in reactive gliosis? J. Neurotrauma. 29, 2798–2804 (2012)PubMedCentralCrossRefPubMed S. Sukumari-Ramesh, C.H. Alleyne, K.M. Dhandapani, Astrocyte-specific expression of survivin after intracerebral hemorrhage in mice: a possible role in reactive gliosis? J. Neurotrauma. 29, 2798–2804 (2012)PubMedCentralCrossRefPubMed
525.
go back to reference M.E. Johnson, E.W. Howerth, Survivin: a bifunctional inhibitor of apoptosis protein. Vet. Pathol. 41, 599–607 (2004)CrossRefPubMed M.E. Johnson, E.W. Howerth, Survivin: a bifunctional inhibitor of apoptosis protein. Vet. Pathol. 41, 599–607 (2004)CrossRefPubMed
526.
go back to reference N. Rubio, L.M. Garcia-Segura, M.-A. Arevalo, Survivin prevents apoptosis by binding to caspase-3 in astrocytes infected with the BeAn strain of Theiler’s murine encephalomyelitis virus. J. Neurovirol. 18, 354–363 (2012)CrossRefPubMed N. Rubio, L.M. Garcia-Segura, M.-A. Arevalo, Survivin prevents apoptosis by binding to caspase-3 in astrocytes infected with the BeAn strain of Theiler’s murine encephalomyelitis virus. J. Neurovirol. 18, 354–363 (2012)CrossRefPubMed
527.
go back to reference S. Piña-Oviedo et al., Effects of JC virus infection on anti-apoptotic protein survivin in progressive multifocal leukoencephalopathy. Am. J. Pathol. 170, 1291–1304 (2007)PubMedCentralCrossRefPubMed S. Piña-Oviedo et al., Effects of JC virus infection on anti-apoptotic protein survivin in progressive multifocal leukoencephalopathy. Am. J. Pathol. 170, 1291–1304 (2007)PubMedCentralCrossRefPubMed
528.
go back to reference U. Naumann et al., Adenoviral expression of XIAP antisense RNA induces apoptosis in glioma cells and suppresses the growth of xenografts in nude mice. Gene Ther. 14, 147–161 (2007)CrossRefPubMed U. Naumann et al., Adenoviral expression of XIAP antisense RNA induces apoptosis in glioma cells and suppresses the growth of xenografts in nude mice. Gene Ther. 14, 147–161 (2007)CrossRefPubMed
529.
go back to reference M.M. Salman et al., Transcriptome analysis of Gene expression provides New insights into the effect of mild therapeutic hypothermia on primary human cortical astrocytes cultured under Hypoxia. Front. Cell. Neurosci. 11, 386 (2017)PubMedCentralCrossRefPubMed M.M. Salman et al., Transcriptome analysis of Gene expression provides New insights into the effect of mild therapeutic hypothermia on primary human cortical astrocytes cultured under Hypoxia. Front. Cell. Neurosci. 11, 386 (2017)PubMedCentralCrossRefPubMed
530.
go back to reference D.S. Gonçalves, G. Lenz, J. Karl, C.A. Gonçalves, R. Rodnight, Extracellular S100B protein modulates ERK in astrocyte cultures. Neuroreport. 11, 807–809 (2000)CrossRefPubMed D.S. Gonçalves, G. Lenz, J. Karl, C.A. Gonçalves, R. Rodnight, Extracellular S100B protein modulates ERK in astrocyte cultures. Neuroreport. 11, 807–809 (2000)CrossRefPubMed
531.
532.
533.
go back to reference J.M. Rumble et al., Apoptotic sensitivity of murine IAP-deficient cells. Biochem. J. 415, 21–25 (2008)CrossRefPubMed J.M. Rumble et al., Apoptotic sensitivity of murine IAP-deficient cells. Biochem. J. 415, 21–25 (2008)CrossRefPubMed
534.
go back to reference W. Yang, M. Cooke, C.S. Duckett, X. Yang, J.F. Dorsey, Distinctive effects of the cellular inhibitor of apoptosis protein c-IAP2 through stabilization by XIAP in glioblastoma multiforme cells. Cell. Cycle. 13, 992–1005 (2014)PubMedCentralCrossRefPubMed W. Yang, M. Cooke, C.S. Duckett, X. Yang, J.F. Dorsey, Distinctive effects of the cellular inhibitor of apoptosis protein c-IAP2 through stabilization by XIAP in glioblastoma multiforme cells. Cell. Cycle. 13, 992–1005 (2014)PubMedCentralCrossRefPubMed
537.
go back to reference J. Michie, C.J. Kearney, E.D. Hawkins, J. Silke, J. Oliaro, The Immuno-Modulatory effects of inhibitor of apoptosis protein antagonists in Cancer Immunotherapy. Cells. 9, 207 (2020)PubMedCentralCrossRefPubMed J. Michie, C.J. Kearney, E.D. Hawkins, J. Silke, J. Oliaro, The Immuno-Modulatory effects of inhibitor of apoptosis protein antagonists in Cancer Immunotherapy. Cells. 9, 207 (2020)PubMedCentralCrossRefPubMed
538.
go back to reference A.J. Knights, J. Fucikova, A. Pasam, S. Koernig, J. Cebon, Inhibitor of apoptosis protein (IAP) antagonists demonstrate divergent immunomodulatory properties in human immune subsets with implications for combination therapy. Cancer Immunol. Immunother. 62, 321–335 (2013)CrossRefPubMed A.J. Knights, J. Fucikova, A. Pasam, S. Koernig, J. Cebon, Inhibitor of apoptosis protein (IAP) antagonists demonstrate divergent immunomodulatory properties in human immune subsets with implications for combination therapy. Cancer Immunol. Immunother. 62, 321–335 (2013)CrossRefPubMed
540.
go back to reference Z. Chen et al., The SMAC mimetic APG-1387 sensitizes immune-mediated cell apoptosis in Hepatocellular Carcinoma. Front. Pharmacol. 9, 1298 (2018) Z. Chen et al., The SMAC mimetic APG-1387 sensitizes immune-mediated cell apoptosis in Hepatocellular Carcinoma. Front. Pharmacol. 9, 1298 (2018)
541.
go back to reference A. Soubéran et al., Inhibitor of apoptosis proteins determine Glioblastoma Stem-Like cells Fate in an oxygen-dependent manner. Stem Cells. 37, 731 (2019)CrossRefPubMed A. Soubéran et al., Inhibitor of apoptosis proteins determine Glioblastoma Stem-Like cells Fate in an oxygen-dependent manner. Stem Cells. 37, 731 (2019)CrossRefPubMed
542.
go back to reference L.V. Gressot et al., Analysis of the inhibitors of apoptosis identifies BIRC3 as a facilitator of malignant progression in glioma. Oncotarget. 8, 12695–12704 (2017)CrossRefPubMed L.V. Gressot et al., Analysis of the inhibitors of apoptosis identifies BIRC3 as a facilitator of malignant progression in glioma. Oncotarget. 8, 12695–12704 (2017)CrossRefPubMed
543.
go back to reference S. Fulda, Cell death-based treatment of glioblastoma. Cell Death Dis. 9, 1–8 (2018)CrossRef S. Fulda, Cell death-based treatment of glioblastoma. Cell Death Dis. 9, 1–8 (2018)CrossRef
544.
go back to reference Q. Wu, A.E. Berglund, R.J. MacAulay, A.B. Etame, A novel role of BIRC3 in Stemness Reprogramming of Glioblastoma. Int. J. Mol. Sci. 23, 297 (2022)CrossRef Q. Wu, A.E. Berglund, R.J. MacAulay, A.B. Etame, A novel role of BIRC3 in Stemness Reprogramming of Glioblastoma. Int. J. Mol. Sci. 23, 297 (2022)CrossRef
545.
go back to reference J. Wang et al., Hyaluronan tetrasaccharide in the cerebrospinal fluid is associated with self-repair of rats after chronic spinal cord compression. Neuroscience. 210, 467–480 (2012)CrossRefPubMed J. Wang et al., Hyaluronan tetrasaccharide in the cerebrospinal fluid is associated with self-repair of rats after chronic spinal cord compression. Neuroscience. 210, 467–480 (2012)CrossRefPubMed
546.
go back to reference I. Solaroglu, T. Tsubokawa, J. Cahill, J.H. Zhang, Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience. 143, 965–974 (2006)CrossRefPubMed I. Solaroglu, T. Tsubokawa, J. Cahill, J.H. Zhang, Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience. 143, 965–974 (2006)CrossRefPubMed
547.
go back to reference S. Ishigaki et al., X-Linked inhibitor of apoptosis protein is involved in mutant SOD1-mediated neuronal degeneration. J. Neurochem. 82, 576–584 (2002)CrossRefPubMed S. Ishigaki et al., X-Linked inhibitor of apoptosis protein is involved in mutant SOD1-mediated neuronal degeneration. J. Neurochem. 82, 576–584 (2002)CrossRefPubMed
548.
go back to reference B.J. Kerr, P.H. Patterson, Leukemia inhibitory factor promotes oligodendrocyte survival after spinal cord injury. Glia. 51, 73–79 (2005)CrossRefPubMed B.J. Kerr, P.H. Patterson, Leukemia inhibitory factor promotes oligodendrocyte survival after spinal cord injury. Glia. 51, 73–79 (2005)CrossRefPubMed
549.
go back to reference M.F. Azari et al., Leukemia inhibitory factor arrests oligodendrocyte death and demyelination in spinal cord Injury. J. Neuropathol. Exp. Neurol. 65, 914–929 (2006)CrossRefPubMed M.F. Azari et al., Leukemia inhibitory factor arrests oligodendrocyte death and demyelination in spinal cord Injury. J. Neuropathol. Exp. Neurol. 65, 914–929 (2006)CrossRefPubMed
550.
go back to reference M.F. Azari et al., Leukemia inhibitory factor arrests oligodendrocyte death and demyelination in spinal cord Injury. J. Neuropathology Experimental Neurol. 65, 914–929 (2006)CrossRef M.F. Azari et al., Leukemia inhibitory factor arrests oligodendrocyte death and demyelination in spinal cord Injury. J. Neuropathology Experimental Neurol. 65, 914–929 (2006)CrossRef
551.
go back to reference G.M. Kim et al., Tumor necrosis factor receptor deletion reduces nuclear factor-kappab activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J. Neurosci. 21, 6617–6625 (2001)PubMedCentralCrossRefPubMed G.M. Kim et al., Tumor necrosis factor receptor deletion reduces nuclear factor-kappab activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J. Neurosci. 21, 6617–6625 (2001)PubMedCentralCrossRefPubMed
Metadata
Title
Cell death in glioblastoma and the central nervous system
Authors
Kyle Malone
Eric LaCasse
Shawn T. Beug
Publication date
06-11-2024
Publisher
Springer International Publishing
Published in
Cellular Oncology
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-024-01007-8
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Watch now